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Abstract. A second-order variational inclusion for control systems under

state constraints is derived and applied to investigate necessary optimality

conditions for the Mayer optimal control problem. A new pointwise condi-

tion verified by the adjoint state of the maximum principle is obtained as

well as a second-order necessary optimality condition in the integral form.

Finally, a new sufficient condition for normality of the maximum principle

is proposed. Some extensions to the Mayer optimization problem involving

a differential inclusion under state constraints are also provided.

1. Introduction. This paper is devoted to second-order necessary op-
timality conditions for control problems in the presence of pure state constraints
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together with endpoint constraints. Let us consider first an abstract optimization
problem

(1) min
c∈C

φ(c),

where C is a subset of a Banach space X and φ : X → R is a twice Fréchet
differentiable function. Assume that c̄ ∈ C is an optimal solution, i.e.

φ(c̄) = min
c∈C

φ(c),

and denote by φ′ and φ′′ the first and second-order derivatives of φ. If c̄ lies in the
interior of C, then the classical results guarantee the first-order necessary optimal-
ity condition φ′(c̄) = 0 (Fermat rule) and the second-order condition φ′′(c̄) ≥ 0.
Let us assume now that c̄ is a boundary point of C and denote by T ♭

C(c̄) the
adjacent cone to C at c̄. Recall that u ∈ T ♭

C(c̄) whenever there exist δ > 0 and
a “path" x : [0, δ] → C satisfying x(0) = c̄ and such that the difference quotients
1

h
(x(h) − x(0)) converge to u when h→ 0+. The Fermat rule becomes then:

(2) φ′(c̄)u ≥ 0 ∀ u ∈ T ♭
C(c̄).

This is a first-order necessary optimality condition for problem (1). Furthermore,
if the set C is convex and for some c̄ ∈ C, we have

inf
u∈T ♭

C(c̄), ‖u‖=1
φ′(c̄)u > 0,

then it is not difficult to justify that c̄ is a local minimum for the problem (1).
Observe that the second-order derivative of φ has no influence on this conclusion.
In particular it may happen that φ′′(c̄)(u, u) < 0 for some u ∈ T ♭

C(c̄).
The second derivative starts to play a role in the expression of optimality

conditions when u ∈ T ♭
C(c̄) is such that φ′(c̄)u = 0. In this case it is natural

to consider not only the second-order derivative of the function φ but also a
second-order “linearization” of the constraint. To this end, one uses second-order
tangents, whose definition we recall next.

With every u ∈ T ♭
C(c̄) we associate the set of second-order tangents to C

at (c̄, u). Namely v ∈ T
♭(2)
C (c̄, u) if we can find δ > 0 and a “path" x : [0, δ] → C

satisfying x(0) = c̄ such that the difference quotients
1

h2
(x(h)−x(0)−hu) converge

to v when h → 0+. The Taylor formula implies then that the following second-
order optimality condition holds true:
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(3) φ′(c̄)v +
1

2
φ′′(c̄)(u, u) ≥ 0 ∀ u ∈ T ♭

C(c̄), v ∈ T
♭(2)
C (c̄, u)

such that φ′(c̄)u = 0.

The optimality conditions (2) and (3) are classical in mathematical programming,
see for instance [5] for an overview of this subject, and were largely explored in
the optimal control theory, where they have led to various second-order neces-
sary optimality conditions, mostly in the form of an integral inequality. See for
instance [4, 16, 22, 27] and the bibliographies contained therein. The space X
is then usually the space of essentially bounded controls and it is assumed that
every control determines a unique state trajectory, see for instance [4, 16]. The
map associating to each control the corresponding state trajectory is then, under
suitable assumptions on the system dynamics, Fréchet differentiable. The set C
incorporates restrictions imposed on trajectories and controls.

To derive necessary optimality conditions, the optimal control problem
at hand is usually reformulated as an infinite dimensional abstract optimization
problem involving inequality and equality constraints. Then first and second-
order optimality conditions that are dual to (2) and (3) are obtained, see for
instance [5, 7, 19]. This approach requires Robinson’s like constraint qualifica-
tions. The obtained necessary conditions have to be translated then in terms of
the original optimal control problem. Verification of Robinson’s constraint quali-
fications and translation of the abstract necessary conditions in terms of control
problems is not an easy task and it often requires strong assumptions on control
systems and on optimal controls. This is the reason why in many published pa-
pers it is assumed that optimal controls are piecewise continuous, that the control
system depends on time in a continuous way and the equality and inequality con-
straints satisfy qualification hypotheses like linear independence of gradients of
active constraints. Moreover, in some works on second-order necessary optimal-
ity conditions in optimal control, see for instance [16, 22], the proposed first and
second-order conditions are strictly linked, that is each u appearing in (3) gives
rise to a pair of first/second-order conditions. This is usually inconvenient for the
analysis of possible candidates for optimality. Let us also underline that, espe-
cially in the context of state constrained problems, it is more natural to expect
optimal controls to be merely measurable and very general first-order necessary
optimality conditions are already known in this context, see for instance [26]. This
creates an important gap between generality of the available results on first and
second-order necessary optimality conditions.

Avoiding the reformulation of optimal control problems under state con-
straints in an abstract way by using a direct variational approach allows to work
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under less restrictive hypotheses. In particular, in [26], several very general first-
order necessary optimality conditions were derived from the Ekeland variational
principle stated on metric spaces. The main tools used there are penalization,
limiting gradients, generalized normals and their calculus.

An alternative approach was proposed in [6, 25] by considering the space
X = C([0, 1]; Rn) of continuous mappings defined on the time interval [0, 1] and
taking values in R

n and the subset C equal to the set of trajectories of the control
system satisfying state and endpoint constraints.

It was shown that solutions of a linearized control system under linearized
constraints (along a given trajectory) are tangent to the set of trajectories of
the original control system under state constraints. This, inequality (2) and the
duality theory of convex analysis allowed then to obtain a direct proof of the
maximum principle in the presence of state constraints.

The aim of our paper is to go beyond these first-order results and to inves-
tigate second-order necessary optimality conditions using second-order tangents.

In the context of optimal control theory this approach was applied in
[17, 18] by considering second-order tangents to the sets of admissible controls. An
important difference with the existing literature is the fact that the analysis takes
place in the framework of measurable controls and therefore larger sets of second-
order tangents are considered, since weaker convergence properties are imposed
(L1 versus L∞). In particular, an optimal control may be merely measurable.
The derived integral type second-order necessary conditions for weak optimality
were obtained in primal form for general control and state constraints.

In the present work we address second-order necessary optimality condi-
tions for strong local minima (that is we work with trajectories instead of con-
trols). To investigate the second-order tangents to the set of trajectories of a
control system under constraints, we derive a second-order variational differential
inclusion. Applying it to the Mayer optimal control problem under state and end
point constraints, we obtain a pointwise second-order maximum principle and a
second-order necessary optimality condition in the form of an integral inequality
which extends some earlier known results to the case of strong local minimiz-
ers. The second-order maximum principles derived in Theorems 5.10, 6.9 and
Corollaries 5.11, 6.10 seem to be new even in the case without state constraints.

Furthermore, for the Mayer optimization problem involving a differen-
tial inclusion under state constraints, we also obtain a second-order maximum
principle. Since the presence of end point constraints requires some additional
assumptions, to simplify the discussion, we first state results not involving the
end point constraints, postponing to the last section their analogues in a more
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general setting.

We would like to underline that, in the difference with the traditional ap-
proach to the first-order necessary optimality conditions based on normal cones,
see for instance [26], in the present work we explore first- and second-order tan-
gents and the associated graphical derivatives/variations of set-valued maps. In
particular, we prove here several new properties of second order graphical varia-
tions, see Section 2. The first-order graphical derivatives having a wide range of
applications, see for instance [1], [9] and the bibliographies contained therein, we
believe that further analysis of second-order graphical variations may bring new
results also to other areas of variational analysis.

The outline of the paper is as follows. In Section 2 we introduce some
notations and provide a few preliminary results. In Section 3 a second-order
variational differential inclusion is derived. Section 4 is devoted to a second-order
approximation of differential inclusions under state constraints and to second-
order necessary optimality conditions for a Mayer problem. Section 5 deals with
the Mayer optimal control problem under state constraints. Finally Section 6
extends results of Sections 4 and 5 to the case when endpoint constraints are
present.

2. Preliminaries. The spaces of continuous and essentially bounded
maps from [0, 1] into R

n are denoted respectively by C([0, 1]; Rn) and L∞([0, 1]; Rn)
and their norms by ‖·‖∞ , while W 1,1([0, 1]; Rn) and L1([0, 1]; Rn) stand respec-
tively for the spaces of absolutely continuous and of integrable maps from [0, 1] to
R

n with the usual norms ‖·‖W 1,1 and ‖·‖1. The space of mappings from [0, 1] to
R

n having bounded total variation that are right continuous on ]0, 1[ and vanish
at zero is denoted by NBV ([0, 1]; Rn). The norm ‖f‖TV of f ∈ NBV ([0, 1]; Rn)
is the total variation of f on [0, 1].

Partial derivatives are denoted with subscripts, for instance fu :=
∂f

∂u
.

Similarly, partial second-order derivatives are denoted by a double subscript, i.e.

fxu :=
∂2f

∂x∂u
. Moreover, for y1, y2 ∈ R

n we will abbreviate fxx(t0, x0, u0)(y1, y2)

by fxx(t0, x0, u0)y1y2. If f : R
n → R is differentiable at x, then we denote by

∇f(x) its gradient.

We denote the norm in R
n by |·| and by 〈·, ·〉 the inner product. For a

set K ⊂ R
n, let K be its closure, ∂K its boundary, int K its interior, Kc its

complement and coK its convex hull. K− stands for the (negative) polar cone to
K, i.e. K− = {v ∈ R

n | 〈v, k〉 ≤ 0, ∀ k ∈ K}. The open unit ball in R
n is denoted
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by B := {x ∈ R
n | |x| < 1}. Write B(x, r) for an open ball with radius r > 0 and

center x ∈ R
n and Sn−1 for the unit sphere.

Let X be a Banach space and K ⊂ X. The distance between a point
x ∈ X and K is defined by distK(x) := inf

k∈K
‖x− k‖X . When K is a nonempty

proper subset of R
n, the oriented distance bK(·) from K is a real valued function

defined by bK(x) := distK(x) − distKc(x) for all x ∈ R
n. We set bK(·) ≡ 0 if

K = R
n. Note that any closed set K ⊂ R

n can be represented via an inequality
constraint involving the oriented distance function:

K = {x ∈ R
n | bK(x) ≤ 0} .

Let

B0 := {v = (v1, . . . , vn) ∈ B | vn = 0} & B− := {v = (v1, . . . , vn) ∈ B | vn < 0} .

A proper closed subset K of R
n is said to be of class C

2 at x0 ∈ ∂K if there
exist an open neighborhood N of x0 and a bijective map ϑ : N → B such that
ϑ(·) ∈ C

2(N ;B), its inverse ϑ−1(·) ∈ C
2(B;N ) and

ϑ−1(B−) = (int K) ∩ N , ϑ−1(B0) = ∂K ∩ N =: Γ, ϑ(Γ) = B0.

We say that K is of class C
2 if it is so for every x0 ∈ ∂K.

Remark 2.1. If K is of class C
2 at x0 ∈ ∂K, then there exists a neighbor-

hood W of x0 such that the oriented distance bK(·) ∈ C
2(W; R), see for instance

[8, Theorem 4.3].

We recall next some definitions concerning tangent sets to a nonempty
subset K of a Banach space X.

Let T be a metric space and {Kτ}τ∈T be a family of subsets of X. The
lower limit of Kτ at τ0 ∈ T is defined by:

Liminf
τ→τ0

Kτ :=

{
v ∈ X

∣∣∣∣ lim
τ→τ0

distKτ (v) = 0

}
.

Moreover, we will write xi
K
→ x, when a sequence xi converges to x and xi ∈ K

for all i. First and second-order adjacent subsets are defined next.

Definition. Let K be a closed subset of X and x ∈ K. The adjacent
cone to K at x is the set,

T ♭
K(x) := Liminf

h→0+

K − x

h
.
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The second-order adjacent subset to K at (x, u) ∈ K ×X is the set defined by,

T
♭(2)
K (x, u) := Liminf

h→0+

K − x− hu

h2
.

Note that T
♭(2)
K (x, u) 6= ∅ implies u ∈ T ♭

K(x). If K is convex, then T ♭
K(x)

coincides with the tangent cone of convex analysis to K at x and is denoted by
TK(x).

Below CK(x) stands for the Clarke tangent cone to K at x and NK(x) =
CK(x)−. If X = R

n then it is convenient to abbreviate,

N1
K(x) := NK(x) ∩ Sn−1.

A set K is called sleek if for all x ∈ K the contingent cone and the Clarke tangent
cone to K at x do coincide (see [1] for the definition of contingent cone). In this
case also T ♭

K(x) = CK(x) for every x ∈ K.

Remark 2.2. If K ⊂ R
n is of class C

2 at some x0 ∈ ∂K, then for all
x ∈ ∂K sufficiently close to x0, T

♭
K(x) = {u ∈ R

n | 〈∇bK(x), u〉 ≤ 0} and ∇bK(x)

is the unit outward normal to K at x. Furthermore v ∈ T
♭(2)
K (x, u) if and only

if either 〈∇bK(x), u〉 < 0 or 〈∇bK(x), u〉 = 0 and 〈∇bK(x), v〉 +
1

2
b′′K(x)uu ≤ 0.

Consequently, in this case, T
♭(2)
K (x, u) is a closed affine halfspace.

Example 2.3. Let K = ∩k
i=1Ki, where Ki ⊂ R

n are of class C
2 for every

i = 1, . . . , k. Denote by bi the oriented distance associated to Ki and by I(x0)
the set of active indices at x0, that is, i ∈ I(x0) if and only if x0 ∈ ∂Ki. If
0 /∈ co {∇bi(x0) | i ∈ I(x0)} for every x0 ∈ ∂K, then it is well known that K is
sleek and

T ♭
K(y0) =

⋂

i∈I(y0)

T ♭
Ki

(y0) ∀ y0 ∈ ∂K.

It is not difficult to check that if x0 ∈ ∂K, then for every u ∈ T ♭
K(x0), a vector

v ∈ T
♭(2)
K (x0, u) if and only if

〈∇bi(x0), v〉 +
1

2
b′′i (x0)uu ≤ 0 ∀ i ∈ I(1)(x0, u),

where I(1)(x0, u) = {i ∈ I(x0) | 〈∇bi(x0), u〉 = 0}. That is if I(1)(x0, u) 6= ∅, then

T
♭(2)
K (x0, u) is a closed convex polytope in R

n (an intersection of a finite family of
affine halfspaces in R

n).
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For any K ⊂ X we adopt the following convention: K+∅ = ∅+K = ∅. A
useful property of the second-order adjacent set is given in the following lemma.

Lemma 2.4. Let K ⊂ X, x ∈ K and u ∈ T ♭
K(x). Then,

T
♭(2)
K (x, u) = T

♭(2)
K (x, u) + CK(x).

P r o o f. Since 0 ∈ CK(x), the inclusion ⊂ is obvious. To prove the

opposite, let v ∈ T
♭(2)
K (x, u) and ũ ∈ CK(x). We have to show that for all

hi → 0+, there exists a sequence wi → v + ũ such that,

x+ hiu+ h2
iwi ∈ K, ∀ i.

Fix a sequence hi → 0+. Since v ∈ T
♭(2)
K (x, u), there exist vi → v such that,

x+ hiu+ h2
i vi ∈ K, ∀ i.

Further, by the very definition of CK(x), for every sequence xi
K
→ x, there exists

ũ′i → ũ such that xi + h2
i ũ

′
i ∈ K for all i. Thus, in particular, there exists ũi → ũ

such that,

x+ hiu+ h2
i (vi + ũi) ∈ K, ∀ i.

Setting wi = vi + ũi, we end the proof. �

Let K ⊂ R
n be closed and define

K := {x ∈ C([0, 1]; Rn) | x(t) ∈ K ∀ t ∈ [0, 1]} .

Lemma 2.5. Let x, y,w, w̄ ∈ C([0, 1]; Rn) be such that w̄ ∈ T
♭(2)
K (x, y) and

for all t ∈ [0, 1], w(t) ∈ CK(x(t)) and int CK(x(t)) 6= ∅. Then w̄+w ∈ T
♭(2)
K (x, y).

P r o o f. Let x, y, w, w̄ be as above. Since w̄ ∈ T
♭(2)
K (x, y), for every h > 0

there exists w̄h such that w̄h → w̄ uniformly when h→ 0+ and for all h > 0,

(4) x+ hy + h2w̄h ∈ K.

It follows from [6, Lemma 4.1] that there exists ŵ ∈ C([0, 1]; Rn) satisfying ŵ(t) ∈
int CK(x(t)) for all t ∈ [0, 1]. Thus, by convexity of Clarke’s tangent cone, for
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every i ∈ N, wi(t) :=
1

i
ŵ(t) +

(
1 −

1

i

)
w(t) ∈ int CK(x(t)) for all t ∈ [0, 1]. We

claim that for every i ∈ N, there exists εi > 0 such that for all t ∈ [0, 1],

(5) z + [0, εi]B(wi(t); εi) ⊂ K, ∀ z ∈ B(x(t), εi) ∩K.

Indeed, from [24, Thm. 2] it follows that for all i ∈ N and all t ∈ [0, 1] there exists
εti > 0 for which (5) is satisfied with εi replaced by εti. Then one can use the
compactness of x([0, 1]) to deduce (5) for some εi and all t. Applying (4) and (5)
and using that x+ hy + h2w̄h → x uniformly when h → 0+, we find that for all
h small enough,

x(t) + hy(t) + h2 (w̄h(t) + wi(t)) ∈ K ∀ t ∈ [0, 1].

It follows that w̄ + wi ∈ T
♭(2)
K (x, y) for all i ∈ N. Finally, since w̄ + wi → w̄ + w

uniformly and the second-order adjacent set T
♭(2)
K (x, y) is closed, we deduce that

w̄ + w ∈ T
♭(2)
K (x, y). �

Lemma 2.6. Let x,w ∈ C([0, 1]; Rn) be such that for all t ∈ [0, 1],
w(t) ∈ CK(x(t)) and int CK(x(t)) 6= ∅. Then w ∈ T ♭

K(x).

P r o o f. Consider a sequence hj > 0 converging to 0+ and let ŵ, wi be as
in the proof of Lemma 2.5. Then by (5) for every i we have x+hjwi ∈ K for all j

large enough and therefore wi ∈ T ♭
K(x). Since T ♭

K(x) is closed in C([0, 1]; Rn) and
wi converge uniformly to w the proof follows. �

We shall also need the following tangent sets.

Definition. Let K be a closed subset of R
n and x ∈ K. The Dubovitskii-

Milyutin cone to K at x is the set,

DK(x) := {v ∈ R
n | ∃ ε > 0,∀ h ∈ [0, ε], x+ hB(v, ε) ⊂ K}.

For any (x, u) ∈ K × R
n, define

D2
K(x, u) := {v ∈ R

n | ∃ ε > 0,∀ h ∈ [0, ε], x+ hu+ h2B(v, ε) ⊂ K}.

Remark 2.7. The set D2
K(x, u) was introduced in [20], see also [21].

Observe that DK(x) and D2
K(x, u) are open and

int CK(x) ⊂ DK(x) ⊂ T ♭
K(x), D2

K(x, u) ⊂ T
♭(2)
K (x, u).
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Lemma 2.8. Let K be a closed subset of R
n, x ∈ K and u ∈ R

n. Then,

D2
K(x, u) + int CK(x) ⊂ D2

K(x, u).

P r o o f. Let v ∈ D2
K(x, u) and ũ ∈ int CK(x). It is enough to show that

there exists ε > 0 such that for all small h > 0

(6) x+ hu+ h2B(v + ũ, ε) ⊂ K.

Since v ∈ D2
K(x, u), for some εv > 0 and for all h ∈ [0, εv ], x+hu+h2B(v, εv) ⊂ K.

Moreover, since ũ ∈ int CK(x), there exists εũ > 0 such that for all x′ ∈ K ∩
B(x, εũ) we have x′+[0, εũ]B(ũ, εũ) ⊂ K. Thus, in particular, for ε = min{εv , εũ}
and all h ≥ 0 sufficiently small, (6) holds true. �

We define next the first and second-order directional derivatives/variations
of set-valued maps.

Definition. Let F : R
n

; R
m be a set-valued map, locally Lipschitz

around some x ∈ R
n and let y ∈ F (x). The adjacent derivative dF (x, y) is the

set-valued map defined by,

dF (x, y)(u) := Liminf
h→0+

F (x+ hu) − y

h
∀ u ∈ R

n.

For v1 ∈ dF (x, y)(u1), the second-order adjacent variation d2F (x, y, u1, v1) is the
set-valued map defined by,

d2F (x, y, u1, v1)(u2) := Liminf
h→0+

F (x+ hu1 + h2u2) − y − hv1
h2

∀ u2 ∈ R
n.

Remark 2.9. It is well-known that if F has convex images and is Lipschitz
around x, then for any y ∈ F (x), the images of dF (x, y) are convex and,

(7) dF (x, y)(0) = TF (x)(y) and dF (x, y)(u) + TF (x)(y) = dF (x, y)(u),

see for instance [1, Prop. 5.2.6].

The adjacent variations can also be expressed using the distance function:

Proposition 2.10. Let F : R
n

; R
m be Lipschitz around x, y ∈ F (x)

and v1 ∈ dF (x, y)(u1). Then for all u2 ∈ R
n, the following holds true: v2 ∈

d2F (x, y, u1, v1)(u2) if and only if,

lim
h→0+

distF (x+hu1+h2u2)(y + hv1 + h2v2)

h2
= 0.
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The next result provides a useful property of the second-order adjacent
variation.

Proposition 2.11. Let F : R
n

; R
m be a set-valued map with convex

images which is Lipschitz around x, y ∈ F (x) and v1 ∈ dF (x, y)(u1). Then for
all u2 ∈ R

n,

(8) TF (x)(y) + TdF (x,y)(u1)(v1) + d2F (x, y, u1, v1)(u2) = d2F (x, y, u1, v1)(u2).

In particular,

(9) dF (x, y)(0)+dF (x, y)(u1)+d
2F (x, y, u1, v1)(u2) = v1+d2F (x, y, u1, v1)(u2).

P r o o f. Step 1: We start by showing that,

(10) TF (x)(y) + d2F (x, y, u1, v1)(u2) = d2F (x, y, u1, v1)(u2).

Since 0 ∈ TF (x)(y), the inclusion “⊃” is obvious. To show the opposite, let w ∈

TF (x)(y), v2 ∈ d2F (x, y, u1, v1)(u2) and hi → 0+ be an arbitrary sequence. By
the very definition of the second-order adjacent derivative, there exists a sequence
vi
2 → v2 such that,

(11) y + hiv1 + h2
i v

i
2 ∈ F (x+ hiu1 + h2

i u2) ∀ i ∈ N.

Moreover, since v1 ∈ dF (x, y)(u1), by (7), w+ v1 ∈ dF (x, y)(u1). Hence for some
βi → w + v1 we have

(12) y + hiβi ∈ F (x+ hiu1) ⊂ F (x+ hiu1 + h2
i u2) + o(hi)B ∀ i ∈ N,

where o(α)/α → 0, when α→ 0+. Then, multiplying (11) by 1 − hi and (12) by
hi, and taking their sum, we obtain, thanks to the convexity of the images of F ,

y + hiv1 + h2
i

(
vi
2 + βi − v1

)
∈ F (x+ hiu1 + h2

i u2) + o(h2
i )B.

Using that βi → v1 + w when i→ ∞, we get w + v2 ∈ d2F (x, y, u1, v1)(u2).
Step 2: By (10), to prove (8) it suffices to show that,

(13) TdF (x,y)(u1)(v1) + d2F (x, y, u1, v1)(u2) = d2F (x, y, u1, v1)(u2).

First of all, since dF (x, y)(u1) is a convex set, we know that TdF (x,y)(u1)(v1) is
equal to the closure of the set R+(dF (x, y)(u1)− v1). Hence, it is enough to show



244 Hélène Frankowska, Daniel Hoehener, Daniela Tonon

that for arbitrary λ > 0, v ∈ dF (x, y)(u1) and v2 ∈ d2F (x, y, u1, v1)(u2), we have
λ(v − v1) + v2 ∈ d2F (x, y, u1, v1)(u2). Fix such λ, v, v2 and a sequence hi → 0+.
Let (vi

2)i∈N be as above and vi → v when i→ ∞, be such that,

(14) y + hiv
i ∈ F (x+ hiu1) ⊂ F (x+ hiu1 + h2

i u2) + o(hi)B ∀ i ∈ N.

Then, multiplying (11) by 1 − λhi and (14) by λhi, taking their sum and using
that for i large enough λhi < 1, we have,

y + hiv1 + h2
i

(
vi
2 + λvi − λv1

)
∈ F (x+ hiu1 + h2

i u2) + o(h2
i )B,

which allows to conclude that λ(v − v1) + v2 ∈ d2F (x, y, u1, v1)(u2). Hence the
proof of (13) is complete.

Step 3: The inclusion “⊂” in (9) follows directly from (8) and the con-
vexity of dF (x, y)(u1). The converse inclusion “⊃” is due to the fact that 0 ∈
dF (x, y)(u1) − v1. The proof is complete. �

Lemma 2.12. Let F : R
n

; R
m be a set-valued map with convex images

which is Lipschitz around x ∈ R
n, y ∈ F (x) and v1 ∈ dF (x, y)(u1), v2 ∈ TF (x)(y).

Then,

T
♭(2)
F (x)(y, v2) ⊂ TdF (x,y)(u1)(v1 + v2).

P r o o f. By (7) we have v1 + TF (x)(y) ⊂ dF (x, y)(u1). It follows (see for
instance [1, Table 4.3]) that,

TdF (x,y)(u1)(v1 + v2) ⊃ Tv1+TF (x)(y)(v1 + v2) = TTF (x)(y)(v2).

Since by [7, Prop. 3.1] it is known that T
♭(2)
F (x)(y, v2) ⊂ TTF (x)(y)(v2), the statement

follows. �

The graph of a set-valued map F : R
n

; R
m is the set Gr (F ) :=

{(x, y) ∈ R
n × R

m | y ∈ F (x)}. Let F : R
n

; R
m be a set-valued map which is

Lipschitz on a neighborhood of some x ∈ R
n and let y ∈ F (x). The circatangent

derivative CF (x, y) is the set-valued map defined by,

CF (x, y)(u) := Liminf
(x′,y′)

Gr(F )
−→ (x,y)

h→0+

F (x′ + hu) − y′

h
∀ u ∈ R

n.

It is not difficult to realize that Gr (CF (x, y)) is equal to the Clarke tan-
gent cone to Gr (F ) at (x, y). Hence CF (x, y) : R

n
; R

m is a closed convex
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process, i.e. a set-valued map whose graph is a closed convex cone. For a closed
convex process A : R

n
; R

m, its adjoint process A∗ : R
m → R

n is defined by,

A∗(p) := {q ∈ R
n | 〈q, u〉 ≤ 〈p, v〉 ∀ (u, v) ∈ Gr (A)} .

Below, for a set-valued map [0, 1] × R
n ∋ (t, x) ; F (t, x) and t0 ∈ [0, 1]

such that F (t0, ·) is Lipschitz on a neighborhood of some x0 ∈ R
n, we denote the

partial derivatives with respect to the second variable by a subscript x. That is
dxF (t0, x0, y0) is equal to the adjacent derivative of F (t0, ·) at (x0, y0) for any
y0 ∈ F (t0, x0). Similarly, CxF (t0, x0, y0) denotes the circatangent derivative of
F (t0, ·) at (x0, y0) ∈ Gr (F (t0, ·)).

3. Second-order variational inclusion. We consider the following
differential inclusion with state constraints:

(15)





ẋ(t) ∈ F̃ (t, x(t)) a.e. in [0, 1]

x(0) ∈ K0

x(t) ∈ K ∀ t ∈ [0, 1],

where the set-valued map F̃ : [0, 1] × R
n

; R
n and the closed nonempty sets

K0,K ⊂ R
n are given. Denote by F : [0, 1] × R

n
; R

n the set-valued map
defined by F (t, x) := co F̃ (t, x) for all (t, x) ∈ [0, 1] × R

n. Moreover we introduce
the following sets:

(16)

S(x0) :=
{
x ∈W 1,1([0, 1]; Rn)

∣∣∣ ẋ(t) ∈ F̃ (t, x(t)) a.e. and x(0) = x0

}

Srel(x0) :=
{
x ∈W 1,1([0, 1]; Rn)

∣∣ ẋ(t) ∈ F (t, x(t)) a.e. and x(0) = x0

}

K := {x ∈ C([0, 1]; Rn) | x(t) ∈ K ∀ t ∈ [0, 1]}

SK(x0) := S(x0) ∩ K Srel
K (x0) := Srel(x0) ∩ K.

The following regularity assumptions on the dynamics are imposed throughout
this section:

(A)





F̃ has nonempty, compact images and is locally bounded at every

(t, x) ∈ [0, 1] × ∂K;

F̃ (·, x) is Lebesgue measurable for every x ∈ R
n;

∃ a1 ∈ L1([0, 1]; R+) such that sup
v∈ eF (t,x)

|v| ≤ a1(t)(1 + |x|)

∀ (t, x) ∈ [0, 1] × R
n;

∀ R > 0,∃ kR ∈ L1([0, 1]; R+) such that F̃ (t, ·) is kR(t)-Lipschitz on

RB for a.e. t ∈ [0, 1].
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In addition, we need the following inward pointing condition:

(IPC)





∀ t ∈ [0, 1], ∀x ∈ ∂K, ∃Ωt,x ⊂ [0, 1] of zero Lebesgue measure such that

∀ v ∈ Limsup
(s,y)→(t,x)

s/∈Ωt,x

F̃ (s, y) with max
n∈N1

K(x)
〈n, v〉 ≥ 0,

∃ w ∈ Liminf
(s,y)→(t,x)

s/∈Ωt,x

F (s, y) satisfying max
n∈N1

K(x)
〈n,w − v〉 < 0.

Remark 3.1. Assumption (IPC) implies that for every x ∈ K, the in-
terior of CK(x) is nonempty. The above inward pointing condition is needed to
handle the case of F̃ merely measurable with respect to time. If moreover F̃ is
left absolutely continuous in time, then a simpler condition proposed in [3] can
be used instead of (IPC).

Consider a reference trajectory x̄ ∈ SK(x̄0) where x̄0 ∈ K0. The corre-
sponding set of admissible first-order variations V(1)(x̄) is the set of absolutely
continuous maps y ∈W 1,1([0, 1]; Rn) satisfying,

(i) ẏ(t) ∈ dxF (t, x̄(t), ˙̄x(t))(y(t)) for a.e. t ∈ [0, 1];

(ii) y(0) ∈ T ♭
K0

(x̄0);

(iii) y ∈ T ♭
K(x̄);

(iv) ∃ a2 ∈ L1([0, 1]; R+), ∃ h0 > 0 such that for all h ∈ [0, h0] and a.e. t ∈ [0, 1],

distF (t,x̄(t)+hy(t))( ˙̄x(t) + hẏ(t)) ≤ a2(t)h
2.

For a given y ∈ V(1)(x̄), we abbreviate (t, x̄(t), ˙̄x(t), y(t), ẏ(t)) by [t] and define
the set of admissible second-order variations V(2)(x̄, y) as the set of absolutely
continuous maps w ∈W 1,1([0, 1]; Rn) satisfying,

(i) ẇ(t) ∈ d2
xF [t](w(t)) for a.e. t ∈ [0, 1];

(ii) w(0) ∈ T
♭(2)
K0

(x̄(0), y(0));

(iii) w ∈ T
♭(2)
K (x̄, y).

Remark 3.2. Let K be as in Example 2.3. Then it is known that
y ∈ T ♭

K(x̄) if and only if for all t ∈ [0, 1], 〈∇bi(x̄(t)), y(t)〉 ≤ 0 for all i ∈ I(x̄(t))
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(the set of active indices at x̄(t)), see for instance [13, Remark 4.2]. The situation

is more complicated for T
♭(2)
K (x̄, y) where the condition

(17) 〈∇bi(x̄(t)), w(t)〉 +
1

2
b′′i (x̄(t))y(t)y(t) ≤ 0

∀ i ∈ I(1)(x̄(t), y(t)) ∀ t ∈ [0, 1],

in general, does not imply that w ∈ T
♭(2)
K (x̄, y). A pointwise characterization

of T
♭(2)
K (x̄, y) is given in [19] for the case when K is the cone of nonnegative

continuous functions. Further investigations of this subject can be found in [7, 20].
It turns out that a convenient pointwise condition is an appropriate strengthening
of inequality (17), see for instance [18, (TV)].

We are ready to state the main result of this section:

Theorem 3.3. Assume (A) and (IPC). Let x̄ ∈ SK(x̄0) for some x̄0 ∈
K0, y ∈ V(1)(x̄) and w ∈ V(2)(x̄, y). Consider any sequences hi → 0+, w0

i → w(0)
such that x̄(0) + hiy(0) + h2

iw
0
i ∈ K0. Then there exist

xi ∈ SK(x̄(0) + hiy(0) + h2
iw

0
i )

such that
1

h2
i

(xi − x̄− hiy) converge uniformly to w when i→ ∞.

P r o o f. Let x̄, y, w be as above and fix any sequences hi → 0+, w0
i → w(0)

such that x̄(0) + hiy(0) + h2
iw

0
i ∈ K0. To simplify the notations we set y0 := y(0)

and w0 := w(0). Define for all i ∈ N,

x1
i (t) := x̄(t) + hiy(t) + h2

iw(t) + h2
i (w

0
i − w0).

Note that with this definition x1
i (0) = x̄0 + hiy

0 + h2
iw

0
i ∈ K0 and ẋ1

i (t) =
˙̄x(t) + hiẏ(t) + h2

i ẇ(t).
First, we show that there exist x2

i ∈ Srel(x̄0 + hiy
0 + h2

iw
0
i ) such that,

(18)
1

h2
i

∥∥x1
i − x2

i

∥∥
W 1,1 → 0, when i→ ∞.

For this aim define,
γi(t) := distF (t,x1

i (t))(ẋ
1
i (t)).

Let R > 0 be such that for all t ∈ [0, 1] and i ≥ 1,

|x̄(t) + hiy(t)| + |x̄(t) + hiy(t) + h2
iw(t)| + |x1

i (t)| ≤ R.
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Then it follows from the kR(t)-Lipschitz continuity of F (t, ·) that for all i large
enough,
(19)
γi(t) ≤ distF (t,x̄(t)+hiy(t)+h2

i w(t))( ˙̄x(t) + hiẏ(t) + h2
i ẇ(t)) + kR(t)h2

i

∣∣w0
i − w0

∣∣

≤ distF (t,x̄(t)+hiy(t))( ˙̄x(t) + hiẏ(t)) + h2
i

(
kR(t)

(
‖w‖∞ +

∣∣w0
i − w0

∣∣) + |ẇ(t)|
)

≤ h2
i

(
kR(t)

(
‖w‖∞ +

∣∣w0
i − w0

∣∣) + |ẇ(t)| + a2(t)
)
.

By (19), the sequence

(
γi(t)

h2
i

)

i∈N

is integrably bounded. Since w(·) ∈ V(2)(x̄, y),

1

h2
i

distF (t,x̄(t)+hiy(t)+h2
i w(t))( ˙̄x(t) + hiẏ(t) + h2

i ẇ(t)) → 0 for a.e. t ∈ [0, 1].

Hence

lim
i→∞

1

h2
i

∫ 1

0
γi(t)dt =

∫ 1

0

(
lim
i→∞

γi(t)

h2
i

)
dt = 0.

This and Filippov’s theorem, see for instance [1, Thm. 10.4.1], imply the existence
of x2

i ∈ Srel(x̄0 + hiy
0 + h2

iw
0
i ) satisfying (18).

Next, [13, Thm. 3.3] implies that for a constant L > 0 and for every i ∈ N,
there exists x3

i ∈ Srel
K (x̄0 + hiy

0 + h2
iw

0
i ) such that,

∥∥x2
i − x3

i

∥∥
W 1,1 ≤ L max

t∈[0,1]
distK(x2

i (t)).

Note that for all i,

(20) distK(x2
i (t)) ≤ distK(x̄(t)+hiy(t)+h

2
iw(t))+h2

i

∣∣w0
i − w0

∣∣+
∣∣x2

i (t) − x1
i (t)

∣∣ ,

and for every x ∈ C([0, 1]; Rn) and all t ∈ [0, 1],

distK(x(t)) = inf
k∈K

|x(t) − k| ≤ inf
κ∈K

|x(t) − κ(t)| ≤ distK(x).

Thus, max
t∈[0,1]

distK(x̄(t) + hiy(t) + h2
iw(t)) ≤ distK(x̄ + hiy + h2

iw). Since w ∈

V(2)(x̄, y), this implies by (18) and (20) that,

(21)
1

h2
i

∥∥x2
i − x3

i

∥∥
W 1,1 → 0, when i→ +∞.

Furthermore, by [13, Cor. 3.4], for every i ∈ N, there exists xi ∈ SK(x̄0 + hiy
0 +

h2
iw

0
i ) such that,

(22)
∥∥x3

i − xi

∥∥
∞

≤ h3
i .
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Finally, by the very definition of x1
i , we find that,

∥∥x̄+ hiy + h2
iw − xi

∥∥
∞

≤ h2
i

∣∣w0
i − w0

∣∣ +
∥∥x1

i − x2
i

∥∥
W 1,1

+
∥∥x2

i − x3
i

∥∥
W 1,1 +

∥∥x3
i − xi

∥∥
∞
.

Thus, from (18), (21) and (22) it follows that,

lim
i→∞

∥∥x̄+ hiy + h2
iw − xi

∥∥
∞

h2
i

= 0. 2

4. Second-order optimality conditions: differential inclu-

sions. We study here necessary optimality conditions for a Mayer optimiza-
tion problem involving the differential inclusion (15). Throughout this section we
associate with any x̄ ∈ SK(x0) the linearized differential inclusion:

(23)

{
ẏ(t) ∈ dxF (t, x̄(t), ˙̄x(t))(y(t)) a.e.

y(0) ∈ T ♭
K0

(x̄(0)).

Our first goal is to define subsets of the sets of admissible variations that are
convenient for the expression of necessary optimality conditions. For every t ∈
[0, 1] such that ˙̄x(t) ∈ F (t, x̄(t)) define the closed convex process

A(t) := CxF (t, x̄(t), ˙̄x(t))

and the closed convex cone

L(t) := TF (t,x̄(t))( ˙̄x(t)).

Moreover, for every trajectory y(·) of (23) and t ∈ [0, 1] such that ẏ(t) ∈
dxF (t, x̄(t), ˙̄x(t))(y(t)) we write

E(y; t) := TdxF (t,x̄(t), ˙̄x(t))(y(t))(ẏ(t)).

Since dxF (t, x̄(t), ˙̄x(t))(y(t)) = dxF (t, x̄(t), ˙̄x(t))(y(t)) + L(t) we have

(24) E(y; t) + L(t) = E(y; t).

For a fixed solution y of (23), we introduce the set-valued map FI(y; ·) : [0, 1] ; R
n

given by

FI(y; t) := Liminf
h→0+

F (t, x̄(t) + hy(t)) − hẏ(t) − ˙̄x(t)

h2
∀ t ∈ [0, 1],
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and define the second-order approximation of the differential inclusion from (15)
as follows:

(25)

{
ẇ(t) ∈ A(t)w(t) + FI(y; t) + E(y; t) a.e.

w(0) ∈ T
♭(2)
K0

(x̄(0), y(0)).

This definition is motivated by (8) and the following fact:

Proposition 4.1. Assume (A) and let x̄ ∈ S(x0), y ∈W 1,1([0, 1]; Rn) be
a solution of (23). Then for a.e. t ∈ [0, 1],

A(t)w + FI(y; t) ⊂ d2
xF [t](w) ∀ w ∈ R

n.

P r o o f. Let R := ‖x‖∞ + 1, kR ∈ L1([0, 1]; R+) be as in (A) and t ∈
[0, 1] be such that F (t, ·) is kR(t)-Lipschitz on RB, ˙̄x(t) ∈ F (t, x̄(t)), ẏ(t) ∈
dxF (t, x̄(t), ˙̄x(t))(y(t)). If A(t)w or FI(y; t) is empty, then there is nothing to
prove.

Fix w ∈ R
n, v ∈ FI(y; t), α ∈ A(t)w and a sequence hi → 0+. By the

very definition of FI(y; t), there exists a sequence vi → v such that,

˙̄x(t) + hiẏ(t) + h2
i vi ∈ F (t, x̄(t) + hiy(t)) ∀ i ∈ N.

On the other hand, since Gr (A(t)) is equal to the Clarke tangent cone to Gr (F (t, ·))
at (x̄(t), ˙̄x(t)), there exist sequences (wi, αi) → (w,α) satisfying,

Gr (F (t, ·)) ∋
(
x̄(t) + hiy(t), ˙̄x(t) + hiẏ(t) + h2

i vi

)
+ h2

i (wi, αi)

=
(
x̄+ hiy(t) + h2

iwi, ˙̄x(t) + hiẏ(t) + h2
i (vi + αi)

)
,

which implies, by the Lipschitz continuity of F (t, ·), that v+α ∈ d2
xF [t](w). The

proof is complete. �

Thanks to Propositions 2.11 and 4.1, for any y ∈ V(1)(x̄) we can define
the following subset of second-order admissible variations:

V
(2)
I (x̄, y) :=

{
w ∈ V(2)(x̄, y)

∣∣∣ w solves (25)
}
.

Consider now the Mayer problem

(26) Minimize {ϕ(x(1)) | x(·) ∈ SK(x0), x0 ∈ K0} ,

where ϕ : R
n → R is a given twice differentiable function.
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A trajectory x̄(·) ∈ SK(K0) is called a strong local minimizer of the above
Mayer problem if there exists ε > 0 such that for every x(·) ∈ SK(K0) satisfying
‖x− x̄‖∞ < ε we have ϕ(x̄(1)) ≤ ϕ(x(1)).

Let us start by recalling the first-order necessary optimality conditions of
[6, Corollary 3.8] in the form of a maximum principle. We need the following
additional assumption:

(Ã) ∃ ℓ ≥ 0 such that A(t) : R
n

; R
n is ℓ− Lipschitz for a.e. t ∈ [0, 1].

Remark 4.2. Assumption (Ã) concerns a reference trajectory x̄. It was
imposed in [6] to apply the duality theory of convex analysis to closed convex
processes. In the next section, when dealing with control systems, we do not
need such assumption, because in this case a more direct approach not involving
abstract duality theorems is used.

Recall that the domain of A(t) is equal to R
n if and ony if A(t) is Lipschitz

with a constant c(t) ≥ 0. Assumption (Ã) requires c(·) to be essentially bounded.
If for almost every t ∈ [0, 1], the set Gr(F (t, ·)) is sleek and kR(·) in (A)

is essentially bounded for every R > 0, then (Ã) is satisfied for any reference
trajectory x̄.

Theorem 4.3 (Maximum Principle). Let x̄ be a strong local minimizer
of Problem (26) and for all t ∈ [0, 1], int CK(x̄(t)) 6= ∅. Assume (Ã) and that
(A) holds true with a bounded a1(·). If int CK0(x̄(0)) ∩ int CK(x̄(0)) 6= ∅, then
there exist λ ∈ {0, 1}, ψ ∈ NBV ([0, 1]; Rn) and p ∈ W 1,1([0, 1]; Rn) such that
λ+ ‖ψ‖TV 6= 0 and

(i) ṗ(t) ∈ A(t)∗(−p(t) − ψ(t)) a.e. in [0, 1]

(ii) p(0) ∈ λ (NK0(x̄(0)) +NK(x̄(0)))

(iii) p(1) = −λ∇ϕ(x̄(1)) − ψ(1)

(iv) 〈p(t) + ψ(t), ˙̄x(t)〉 = max
z∈F (t,x̄(t))

〈p(t) + ψ(t), z〉 a.e. in [0, 1].

Furthermore,

ψ(0+) ∈ NK(x̄(0)), ψ(t) − ψ(t−) ∈ NK(x̄(t)), ψ(t) =

∫

[0,t]
ν(s)dµ(s) ∀ t ∈ ]0, 1],

for a non-negative (scalar) Borel measure µ on [0, 1] and a Borel measurable
mapping ν : [0, 1] → R

n satisfying

ν(s) ∈ NK(x̄(s)) ∩B µ-a.e.
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Moreover, the following non degeneracy conditions hold true

λ+ sup
t∈]0,1[

|p(t) + ψ(t)| 6= 0 and λ+ var(ψ, ]0, 1]) 6= 0,

where var(ψ, ]0, 1]) denotes the total variation of ψ on ]0, 1]. Finally, if there
exists a solution to the constrained differential inclusion

(27)





ẏ(t) ∈ A(t)y(t) + L(t) a.e.

y(t) ∈ int CK(x̄(t)) ∀ t ∈ [0, 1]

y(0) ∈ int CK0(x̄(0)),

then the above holds true with λ = 1.

An extremal is a tuple (x̄, p, ψ, µ, ν, λ), where x̄ is a feasible trajectory
of (15) and p, ψ, µ, ν, λ are as in the maximum principle (Theorem 4.3). An
extremal is normal if λ = 1.

Note that (iv) of Theorem 4.3 is equivalent to 〈p(t) + ψ(t), z − ˙̄x(t)〉 ≤ 0
for all z ∈ F (t, x̄(t)) and a.e. t ∈ [0, 1]. In other words,

(28) p(t) + ψ(t) ∈ NF (t,x̄(t))( ˙̄x(t)) for a.e. t ∈ [0, 1].

Corollary 4.4. Under all the assumptions of Theorem 4.3 consider λ, p, ψ
as in its conclusions. Then for almost every t ∈ [0, 1] and all v ∈ L(t) satisfying
〈p(t) + ψ(t), v〉 = 0 we have

(29) 〈p(t) + ψ(t), w〉 ≤ 0 ∀ w ∈ T
♭(2)
F (t,x̄(t))( ˙̄x(t), v).

P r o o f. Indeed, let t ∈ [0, 1] be such that (iv) of Theorem 4.3 holds true

and w ∈ T
♭(2)
F (t,x̄(t))( ˙̄x(t), v) for some v ∈ L(t) satisfying 〈p(t) + ψ(t), v〉 = 0. By

the very definition of the second-order adjacent set, for every h > 0 there exists
wh such that wh → w when h → 0+ and ˙̄x(t) + hv + h2wh ∈ F (t, x̄(t)) for all
h. Since 〈p(t) + ψ(t), v〉 = 0 it follows from (28) that h2 〈p(t) + ψ(t), wh〉 ≤ 0.
Dividing by h2 and passing to the limit, we get (29). �

Consider the following linearization of the differential inclusion in (15):

(30)

{
ẏ(t) ∈ A(t)y(t) + F (t, x̄(t)) − ˙̄x(t) a.e.

y(0) ∈ T ♭
K0

(x̄(0)).
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Remark 4.5. It is clear that Gr (A(t)) ⊂ Gr (dxF (t, x̄(t), ˙̄x(t))). Hence,
by (7), for any y(·) solving (30) we have ẏ(t) ∈ dxF (t, x̄(t), ˙̄x(t))(y(t)) a.e.

Remark 4.6. Let (x̄, p, ψ, µ, ν) be a normal extremal. Consider y ∈
V(1)(x̄) satisfying (30) with y(0) ∈ CK0(x̄(0)), y(t) ∈ CK(x̄(t)) for all t ∈ [0, 1]
and integrable selections γ(t) ∈ A(t)y(t), v(t) ∈ F (t, x̄(t)) such that ẏ(t) =
γ(t) + v(t) − ˙̄x(t) a.e. Then we have,

〈∇ϕ(x̄(1)), y(1)〉 = 〈−p(1) − ψ(1), y(1)〉

= 〈−ψ(1), y(1)〉 + 〈−p(0), y(0)〉

+

∫ 1

0

(
〈−p(t), ẏ(t)〉 + 〈−ṗ(t), y(t)〉

)
dt

≥ 〈−ψ(1), y(1)〉 +

∫

[0,1]
〈ν(t), y(t)〉 dµ(t)

+

∫ 1

0

(
〈−p(t), ẏ(t)〉 + 〈−ṗ(t), y(t)〉

)
dt

=

∫ 1

0

(
〈−p(t) − ψ(t), ẏ(t)〉 + 〈−ṗ(t), y(t)〉

)
dt

≥

∫ 1

0
〈−p(t) − ψ(t), ẏ(t)〉 dt+

∫ 1

0
〈p(t) + ψ(t), γ(t)〉 dt

=

∫ 1

0
〈−p(t) − ψ(t), v(t) − ˙̄x(t)〉 dt ≥ 0.

Therefore if 〈∇ϕ(x̄(1)), y(1)〉 = 0, then (iv) of Theorem 4.3 yields
〈p(t) + ψ(t), v(t) − ˙̄x(t)〉 = 0 a.e. This and Corollary 4.4 imply that for almost
every t ∈ [0, 1],

(31) 〈p(t) + ψ(t), w〉 ≤ 0 ∀ w ∈ T
♭(2)
F (t,x̄(t))( ˙̄x(t), v(t) − ˙̄x(t)).

Consider the sets

Λ(t) := {v ∈ F (t, x̄(t)) | 〈p(t) + ψ(t), ˙̄x(t)〉 = 〈p(t) + ψ(t), v〉} ,

and the constrained differential inclusion

(32)





ẏ(t) ∈ A(t)y(t) + v(t) − ˙̄x(t), v(t) ∈ F (t, x̄(t)) a.e.

y(0) ∈ CK0(x̄(0))

y(t) ∈ CK(x̄(t)) ∀ t ∈ [0, 1].
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Therefore we have derived the following alternative: If F (t, x̄(t)) 6= { ˙̄x(t)} on
a set of positive measure, then either for every y(·) ∈ V(1)(x̄) satisfying (32)
with v(·) 6= ˙̄x(·) on a set of positive measure we have 〈∇ϕ(x̄(1)), y(1)〉 > 0,
or Λ(t) 6= { ˙̄x(t)} on a set of positive measure. In this later case, such normal
extremals can then be considered as singular.

Using the second-order variational equation from Section 3, we find the
following necessary optimality conditions for problem (26):

Theorem 4.7. Assume (A), (IPC) and let x̄ be a strong local minimizer
of problem (26). Then,

(33) 〈∇ϕ(x̄(1)), y(1)〉 ≥ 0 ∀ y ∈ V(1)(x̄).

Moreover, for all y ∈ V(1)(x̄) such that 〈∇ϕ(x̄(1)), y(1)〉 = 0, we have

(34) 〈∇ϕ(x̄(1)), w(1)〉 +
1

2
ϕ′′(x̄(1))y(1)y(1) ≥ 0 ∀ w ∈ V(2)(x̄, y).

P r o o f. To show (33), let y ∈ V(1)(x̄) and fix a sequence hi → 0+. Since
y(0) ∈ T ♭

K0
(x̄(0)), there exists a sequence y0

i → y(0) such that x̄(0) + hiy
0
i ∈ K0

for all i. Thus, by [13, Thm. 4.3], we can find a sequence (yi)i∈N converging
uniformly to y, such that x̄+ hiyi ∈ SK(x̄(0) + hiy

0
i ) for all i. Since x̄ is a strong

local minimizer, for all large i,

0 ≤ ϕ(x̄(1) + hiyi(1)) − ϕ(x̄(1)) = hi 〈∇ϕ(x̄(1)), y(1)〉 + o(hi),

where o(hi)/hi → 0+ when i → ∞. Dividing by hi and passing to the limit, we
find (33).

Next, let y ∈ V(1)(x̄) be such that 〈∇ϕ(x̄(1)), y(1)〉 = 0, w ∈ V(2)(x̄, y)
and hi → 0+. By Theorem 3.3 there exists a sequence wi → w uniformly, when
i → ∞ such that x̄ + hiy + h2

iwi ∈ SK(K0) for all i. Since x̄ is a strong local
minimizer, it follows that for all i ∈ N large enough,

0 ≤ ϕ(x̄(1) + hiy(1) + h2
iwi(1)) − ϕ(x̄(1))

= h2
i 〈∇ϕ(x̄(1)), w(1)〉 +

h2
i

2
ϕ′′(x̄(1))y(1)y(1) + o(h2

i ),

where o(h2
i )/h

2
i → 0, when i → ∞. Dividing by h2

i and passing to the limit, we
get (34). �
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Consider the following “second-order linearization” of (15):

(35)





ẇ(t) ∈ A(t)w(t) + E(y; t) for a.e. t ∈ [0, 1]

w(0) ∈ CK0(x̄(0))

w(t) ∈ CK(x̄(t)) for all t ∈ [0, 1].

Theorem 4.8 (Second Order Maximum Principle). Let x̄ be a strong local
minimizer of Problem (26) and (Ã), (IPC), (A) hold true with a bounded a1(·).

Assume that y ∈ V(1)(x̄) is such that V
(2)
I (x̄, y) 6= ∅ and 〈∇ϕ(x̄(1)), y(1)〉 = 0.

Then for every solution w of (35) we have 〈∇ϕ(x̄(1)), w(1)〉 ≥ 0.
Furthermore, if int CK0(x̄(0)) ∩ int CK(x̄(0)) 6= ∅, then there exist λ ∈

{0, 1}, ψ ∈ NBV ([0, 1]; Rn) and p ∈W 1,1([0, 1]; Rn) satisfying all the conclusions
of Theorem 4.3 such that in addition

max
v∈dxF (t,x̄(t), ˙̄x(t))(y(t))

〈p(t) + ψ(t), v〉 = 〈p(t) + ψ(t), ẏ(t)〉 a.e. in [0, 1].

Finally, if the constrained differential inclusion

(36)





ż(t) ∈ A(t)z(t) + E(y; t) a.e.

z(t) ∈ int CK(x̄(t)) ∀ t ∈ [0, 1]

z(0) ∈ int CK0(x̄(0))

has a solution, then the above holds true with λ = 1.

P r o o f. Let w̄ ∈ V
(2)
I (x̄, y) and w be a solution of (35). Since A(t) is

a closed convex process and E(y; t) is a closed convex cone for a.e. t ∈ [0, 1], it

follows from Lemmas 2.4, 2.5 and Propositions 2.11, 4.1 that w̄ + w ∈ V
(2)
I (x̄, y).

Therefore, by Theorem 4.7,

(37) 〈∇ϕ(x̄(1)), w(1)〉 + 〈∇ϕ(x̄(1)), w̄(1)〉 +
1

2
ϕ′′(x̄(1))y(1)y(1) ≥ 0.

The first conclusion follows from the fact that the set of solutions to (35) is a cone
and the last two terms of the above inequality do not depend on w. Therefore
w ≡ 0 is an optimal solution of the problem

Minimize 〈∇ϕ(x̄(1)), w(1)〉 ,

over solutions w of (35). For all t ∈ [0, 1] consider the closed convex process
A1(t) : R

n
; R

n defined by

A1(t)x = A(t)x+ E(y; t) ∀ x ∈ R
n.
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The same arguments as in [6, pp. 687, 693-697] applied to the closed convex
process A1(t) instead of B(t, ·) introduced in [6, p. 693] and (24) lead to the
desired result. �

5. Second-order optimality conditions: control systems. We
investigate here the following constrained control system:

(38)





ẋ(t) = f(t, x(t), u(t)), u(t) ∈ U(t) for a.e. t ∈ [0, 1],

x(0) ∈ K0

x(t) ∈ K ∀ t ∈ [0, 1],

where f : [0, 1] × R
n × R

m → R
n, K0,K ⊂ R

n are nonempty closed sets and
U : [0, 1] ; R

m is a set-valued map. Throughout this section (x̄, ū) denotes a tra-
jectory control pair of the control system (38). In order to simplify the notations,
we will abbreviate (t, x̄(t), ū(t)) by [t], so for instance f [t] = f(t, x̄(t), ū(t)). We
assume that

(H1) (a) ∀ x ∈ R
n, ∀ u ∈ R

m, f(·, x, u) is measurable and for almost all t ∈ [0, 1],
f(t, ·, ·) is continuous, and f(t, x, U(t)) is closed for all t, x. Moreover,
(t, x) ; f(t, x, U(t)) is locally bounded on [0, 1] × ∂K;

(b) ∀ R > 0, there exists kR ∈ L1([0, 1]; R+) such that for a.e. t ∈ [0, 1],
f(t, ·, u) is kR(t)-Lipschitz on RB for all u ∈ U(t);

(c) There exists a1 ∈ L1([0, 1]; R+) such that for a.e. t ∈ [0, 1] and all
x ∈ R

n,
sup

u∈U(t)
|f(t, x, u)| ≤ a1(t)(1 + |x|);

(d) The set-valued map U : [0, 1] ; R
m is measurable with closed, non-

empty images.

Given a trajectory control pair (x̄, ū), in some results below we assume that

(39) fx(t, ·, ·) exists and is continuous on a neighborhood of (x̄(t), ū(t))

for almost all t ∈ [0, 1].

One readily checks that (H1) implies that the set-valued map (t, x) ; f(t, x, U(t))
satisfies (A). Thus (38) is a special case of (15). The set-valued map x0 ;

SK(x0), defined in (16), is in this section understood with respect to F̃ (t, x) :=
f(t, x, U(t)). As before, consider the set-valued map

(t, x) ; F (t, x) := co {f(t, x, u) | u ∈ U(t)} .
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Let us now fix a solution y of (23) and introduce the sets FC(y; t) ⊂ R
n defined

for all t ∈ [0, 1] such that ẏ(t) does exist by,

FC(y; t) :={v ∈ R
n | ∀ h > 0, ∃ uh ∈ U(t), vh ∈ R

n, (uh, vh) → (ū(t), v)

when h→ 0 + such that f(t, x̄(t) + hy(t), uh) = f [t] + hẏ(t) + h2vh},

and consider the following second-order approximation of the control system from
(38):

(40)

{
ẇ(t) ∈ fx[t]w(t) + FC(y; t) + E(y; t) for a.e. t ∈ [0, 1]

w(0) ∈ T
♭(2)
K0

(x̄(0), y(0)).

This definition is motivated by the following observation:

Proposition 5.1. Let (x̄, ū) be a trajectory control pair of the control
system (38) and y be a solution of (23). If (39) holds true, then for almost all
t ∈ [0, 1] and all w ∈ R

n,

fx[t]w + FC(y; t) + E(y; t) ⊂ d2
xF [t](w).

P r o o f. By Proposition 2.11 it is enough to show that for a.e. t ∈ [0, 1]
and for all w ∈ R

n we have

fx[t]w + FC(y; t) ⊂ d2
xF [t](w).

Fix t ∈ [0, 1] such that ˙̄x(t) = f(t, x̄(t), ū(t)) and ẏ(t) ∈ dxF (t, x̄(t), ˙̄x(t))(y(t)).
Let w ∈ R

n, v ∈ FC(y; t) and hi → 0+. By the very definition of FC(y; t), there

exist ui
U(t)
−→ ū(t) and vi → v such that,

f(t, x̄(t) + hiy(t), ui) = f [t] + hiẏ(t) + h2
i vi ∀ i ∈ N.

Moreover, using the continuity of fx(t, ·, ·) on a neighborhood of (x̄(t), ū(t)), for
all sufficiently large i,

F (t, x̄(t) + hiy(t) + h2
iw) ∋ f(t, x̄(t) + hiy(t) + h2

iw, ui)

= f(t, x̄(t) + hiy(t), ui)

+

∫ 1

0
fx(t, x̄(t) + hiy(t) + θh2

iw, ui)h
2
iwdθ

= f(t, x̄(t) + hiy(t), ui) + fx[t]h2
iw

+

∫ 1

0

(
fx(t, x̄(t) + hiy(t) + θh2

iw, ui) − fx[t]
)
h2

iwdθ

= f [t] + hiẏ(t) + h2
i (vi + fx[t]w) + o(h2

i ),
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where o(h2
i )/h

2
i → 0 when i→ ∞, completing the proof. �

Consider the following classical linearization of control system (38):

(41)

{
ẏ(t) = fx[t]y(t) + v(t) − ˙̄x(t), v(t) ∈ F (t, x̄(t)) for a.e. t ∈ [0, 1]

y(0) ∈ T ♭
K0

(x̄(0)).

Remark 5.2. It is not difficult to check that for a.e. t ∈ [0, 1], fx[t]y(t) ∈
dxF (t, x̄(t), ˙̄x(t))(y(t)). Thus by (7), any solution y ∈ W 1,1([0, 1]; Rn) of (41)
satisfies ẏ(t) ∈ dxF (t, x̄(t), ˙̄x(t))(y(t)) a.e.

Proposition 5.3. Assume (H1) and that for some ε > 0, a0 ∈ L1([0, 1]; R+)
and for a.e. t ∈ [0, 1], fx(t, ·, ū(t)) is Lipschitz on B(x̄(t), ε) with Lipschitz con-
stant a0(t). Then for any solution y of (41), there exists h0 > 0 such that for
R := ‖x̄‖∞ + ‖y‖∞ and for every h ∈ [0, h0] the following inequality holds true:

distF (t,x̄(t)+hy(t))( ˙̄x(t) + hẏ(t)) ≤ (2kR(t)R+ a0(t)R
2)h2 a.e.

Moreover, if for all t ∈ [0, 1], y(t) ∈ CK(x̄(t)) and int CK(x̄(t)) 6= ∅, then y ∈
V(1)(x̄).

P r o o f. There exists 0 < h0 < 1 such that for a.e. t ∈ [0, 1] and for all
h ∈ [0, h0],

(42) ˙̄x(t) + hfx[t]y(t) ∈ f(t, x̄(t) + hy(t), ū(t)) + a0(t)h
2|y(t)|2B

⊂ F (t, x̄(t) + hy(t)) + a0(t)h
2R2B

and

(43) ˙̄x(t) + v(t) − ˙̄x(t) ∈ F (t, x̄(t)) ⊂ F (t, x̄(t) + hy(t)) + hkR(t)|y(t)|B

⊂ F (t, x̄(t) + hy(t)) + hkR(t)RB.

Multiplying (42) by 1− h and (43) by h, adding them and using the convexity of
F (t, x̄(t) + hy(t)), we obtain

˙̄x(t) + hfx[t]y(t) + h(v(t) − ˙̄x(t)) ∈ h2fx[t]y(t) + F (t, x̄(t) + hy(t))

+ a0(t)h
2R2B + kR(t)h2RB,

and the first statement of our proposition follows. Lemma 2.6 completes the
proof. �
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Corollary 5.4. Under all the assumptions of Proposition 5.3, suppose
that K is sleek and that int T ♭

K(x̄(t)) 6= ∅ for every t ∈ [0, 1]. Then every solution
y of

(44)





ẏ(t) = fx[t]y(t) + v(t) − ˙̄x(t), v(t) ∈ F (t, x̄(t)) for a.e. t ∈ [0, 1]

y(t) ∈ T ♭
K(x̄(t)) ∀ t ∈ [0, 1]

y(0) ∈ T ♭
K0

(x̄(0))

satisfies y ∈ V(1)(x̄).

For every y ∈ V(1)(x̄) define the following subset of the set of admissible
second-order variations:

V
(2)
C (x̄, y) :=

{
w ∈ V(2)(x̄, y)

∣∣∣ w is solution of (40)
}
.

Let us consider the following Mayer optimal control problem:

(45) Minimize {ϕ(x(1)) | x(·) ∈ SK(x0), x0 ∈ K0} ,

where ϕ : R
n → R is a given twice differentiable function. Next, we recall the

celebrated maximum principle, see for instance [26, Thm. 9.5.1]:

Theorem 5.5 (Maximum Principle). Assume (H1) and let (x̄, ū) be a
strong local minimizer of problem (45) such that int CK(x̄(t)) 6= ∅ for every
t ∈ [0, 1]. If (39) holds true, then there exist p ∈ W 1,1([0, 1]; Rn), λ ∈ {0, 1},
a non-negative Borel measure µ on [0, 1] and a Borel measurable ν : [0, 1] → R

n

satisfying,

(46) ν(t) ∈ NK(x̄(t)) ∩B µ-a.e.,

such that for ψ : [0, 1] → R
n defined by ψ(t) :=

∫

[0,t]
ν(s)dµ(s) if t ∈ ]0, 1] and

ψ(0) = 0 we have (p, ψ, λ) 6= 0,

(i) −ṗ(t) = fx(t, x̄(t), ū(t))∗(p(t) + ψ(t)) a.e.

(ii) p(0) ∈ NK0(x̄(0))

(iii) −p(1) = λ∇ϕ(x̄(1)) + ψ(1)

(iv) 〈p(t) + ψ(t), f(t, x̄(t), ū(t))〉 = max
u∈U(t)

〈p(t) + ψ(t), f(t, x̄(t), u)〉 a.e.
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Remark 5.6. Note that in [26, Thm. 9.5.1] integrals are taken over [0, t[
in the definition of ψ. However, since ψ is of bounded total variation, it has only
a countable number of jumps, thus (i) and (iv) remain both valid a.e. Moreover,
(46) follows from [26, Thm. 9.5.1] since K = {ξ ∈ R

n | distK(ξ) ≤ 0} and by [26,
Prop. 4.7.6, Thm. 4.8.5] we always have ∂distK(ξ) ⊂ NK(ξ) for all ξ ∈ K. Here
∂ denotes the Clarke subdifferential.

A tuple (x̄, ū, p, ψ, µ, ν, λ) such that (x̄, ū) is a trajectory control pair of
(38) and (p, ψ, µ, ν, λ) is as in the maximum principle, is called an extremal. An ex-
tremal is normal if λ = 1. There are several results on normality of the maximum
principle for optimal control problems, see for instance [2, 10, 11, 12, 13, 14, 15, 23]
and the references therein. We provide next second-order necessary optimality
conditions for problem (45):

Theorem 5.7. Assume (H1) and (IPC) and let (x̄, ū) be a strong local
minimizer. Then

〈∇ϕ(x̄(1)), y(1)〉 ≥ 0 ∀ y ∈ V(1)(x̄).

If the maximum principle of Theorem 5.5 holds true with λ = 1 and some (p, ψ, µ, ν)

and y ∈ V(1)(x̄) is such that 〈∇ϕ(x̄(1)), y(1)〉 = 0, then for every w ∈ V
(2)
C (x̄, y),

1

2
ϕ′′(x̄(1))y(1)y(1) − 〈p(0), w(0)〉 −

∫

[0,1]
〈ν(t), w(t)〉 dµ(t)

−

∫ 1

0
〈p(t) + ψ(t), v̂(t)〉 dt ≥ 0,

where v̂(t) := ẇ(t) − fx[t]w(t) ∈ FC(y; t) + E(y; t) a.e.

P r o o f. Theorem 4.7 implies the first statement. Let y ∈ V(1)(x̄) be such
that 〈∇ϕ(x̄(1)), y(1)〉 = 0. Then, by Theorem 4.7, for all w ∈ V(2)(x̄, y) we have

(47) 〈∇ϕ(x̄(1)), w(1)〉 +
1

2
ϕ′′(x̄(1))y(1)y(1) ≥ 0.

If w ∈ V
(2)
C (x̄, y), then ẇ(t) = fx[t]w(t) + v̂(t) for some v̂(t) ∈ FC(y; t) +
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E(y; t) and

〈∇ϕ(x̄(1)), w(1)〉 = 〈−p(1) − ψ(1), w(1)〉

=

∫ 1

0

(
〈−p(t) − ψ(t), ẇ(t)〉 + 〈−ṗ(t), w(t)〉

)
dt

−

∫

[0,1]
〈ν(t), w(t)〉 dµ(t) − 〈p(0), w(0)〉

= −

∫ 1

0
〈p(t) + ψ(t), v̂(t)〉 dt

−

∫

[0,1]
〈ν(t), w(t)〉 dµ(t) − 〈p(0), w(0)〉 .

This and (47) complete the proof. �

Remark 5.8. Let (x̄, ū, p, ψ, µ, ν) be a normal extremal, y ∈ V(1)(x̄)
satisfy (41), y(t) ∈ CK(x̄(t)) for all t ∈ [0, 1] and y(0) ∈ CK0(x̄(0)). Then
ẏ(t) = fx[t]y(t) + v(t) − ˙̄x(t) for some integrable selection v(t) ∈ F (t, x̄(t)) a.e.
By (iv) of Theorem 5.5 we have that for a.e. t ∈ [0, 1],

(48) 〈p(t) + ψ(t), f(t, x̄(t), u) − f [t]〉 ≤ 0 ∀ u ∈ U(t),

which implies that p(t) + ψ(t) ∈ L(t)− for almost every t. This in turn yields,
(49)

0 ≤

∫ 1

0
−〈p(t) + ψ(t), v(t) − f [t]〉 dt

=

∫ 1

0

(
− 〈ṗ(t), y(t)〉 − 〈p(t) + ψ(t), ẏ(t)〉

)
dt

=

∫ 1

0

(
− 〈ṗ(t), y(t)〉 − 〈p(t), ẏ(t)〉

)
dt+

∫

[0,1]
〈ν(t), y(t)〉 dµ(t) − 〈ψ(1), y(1)〉

≤ 〈−p(1) − ψ(1), y(1)〉 + 〈p(0), y(0)〉 ≤ 〈∇ϕ(x̄(1)), y(1)〉 .

If 〈∇ϕ(x̄(1)), y(1)〉 = 0, then it follows from (49) and (iv) of Theorem
5.5 that 〈p(t) + ψ(t), v(t) − f [t]〉 = 0 a.e. In the same way as in Remark 4.6 we
deduce that in this case for almost every t ∈ [0, 1],

〈p(t) + ψ(t), w〉 ≤ 0 ∀ w ∈ T
♭(2)
F (t,x̄(t))( ˙̄x(t), v(t) − f [t]).

Consider the sets

U(t) := {u ∈ U(t) | 〈p(t) + ψ(t), f(t, x̄(t), u)〉 = 〈p(t) + ψ(t), f(t, x̄(t), ū(t))〉} ,
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and the constrained control system

(50)





ẏ(t) = fx[t]y(t) + f(t, x̄(t), u(t)) − f [t], u(t) ∈ U(t) a.e.

y(0) ∈ CK0(x̄(0))

y(t) ∈ CK(x̄(t)) ∀ t ∈ [0, 1].

We deduce that if f(t, x̄(t), U(t)) 6= f(t, x̄(t), ū(t)) on a set of positive mea-
sure, then the following alternative holds true: either for every y(·) ∈ V(1)(x̄)
satisfying (50) with f(·, x̄(·), u(·)) 6= f [·] on a set of positive measure we have
〈∇ϕ(x̄(1)), y(1)〉 > 0, or f(t, x̄(t), U (t)) 6= {f(t, x̄(t), ū(t))} on a set of positive
measure. Consequently, also U(t) 6= {ū(t)} on a set of positive measure. We can
consider then such normal extremals as singular.

Example 5.9. Let f(t, ·, ·) be twice differentiable for all t ∈ [0, 1] and
f ′(t, ·, ·), f ′′(t, ·, ·) denote the derivative, respectively the Hessian of the map
(x, u) 7→ f(t, x, u). Assume that for some ε > 0, a3 ∈ L1([0, 1]; Rn) and for a.e.
t ∈ [0, 1], the mappings f ′(t, ·, ·), f ′′(t, ·, ·) are Lipschitz on B(x̄(t), ε)×B(ū(t), ε)
with the Lipschitz constant a3(t). Let u ∈ L∞([0, 1]; Rm) be such that u(t) ∈
T ♭

U(t)(ū(t)) a.e. and for some c, h0 > 0, distU(t)(x̄(t) + hu(t)) ≤ ch2 for every
h ∈ [0, h0] and a.e. t ∈ [0, 1]. Then, by [18, Prop. 4.1], for all h > 0, there exists
uh ∈ L∞([0, 1]; Rm) such that uh(·) → u(·) a.e. when h → 0+, ‖uh‖∞ ≤ 2 ‖u‖∞
and ū(t) + huh(t) ∈ U(t) a.e. Using this fact, it is not difficult to check that
fu[t]u(t) ∈ L(t) a.e. Consider a solution y ∈W 1,1([0, 1]; Rn) of

(51)





ẏ(t) = fx[t]y(t) + fu[t]u(t) for a.e. t ∈ [0, 1]

y(0) ∈ T ♭
K0

(x̄(0))

y ∈ T ♭
K(x̄),

and assume that there exists v̄ ∈ L∞([0, 1]; Rm) such that v̄(t) ∈ T
♭(2)
U(t)(x̄(t), u(t))

a.e. Then [18, Prop. 4.2] states that for every h > 0 there exists v̄h ∈ L∞([0, 1]; Rm)
satisfying v̄h(·) → v̄(·) a.e. when h→ 0+, ‖v̄h‖∞ ≤ 2 ‖v̄‖∞ + c and ū(t)+hu(t)+

h2v̄h(t) ∈ U(t) a.e. It is not difficult to verify then that y ∈ V(1)(x̄).

By the Taylor formula we find that

fu[t]v̄(t) +
1

2
fxx[t]y(t)y(t) + fxu[t]y(t)u(t) +

1

2
fuu[t]u(t)u(t) ∈ FC(y; t) a.e.

Hence the second-order approximation obtained in [18] is a special case of
the second-order approximation (40) introduced in this section. Consequently, in
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the case of strong local minimizers, the second-order necessary optimality condi-
tions of Theorem 5.7 generalize those of [18, Thm. 3.5].

Next we deduce from the above results a pointwise second-order neces-
sary condition for optimality. Consider the following “second-order linearization”
of (38):

(52)





ẇ(t) ∈ fx[t]w(t) + E(y; t) for a.e. t ∈ [0, 1]

w(0) ∈ CK0(x̄(0))

w(t) ∈ CK(x̄(t)) for all t ∈ [0, 1].

Theorem 5.10 (Second-Order Maximum Principle). Let (x̄, ū) be a
strong local minimizer of problem (45) and (H1), (IPC), (39) hold true. If y ∈

V(1)(x̄) is such that 〈∇ϕ(x̄(1)), y(1)〉 = 0 and V
(2)
C (x̄, y) 6= ∅, then for every solu-

tion w of (52) we have 〈∇ϕ(x̄(1)), w(1)〉 ≥ 0.
Furthermore, there exist λ ∈ {0, 1}, ψ ∈ NBV ([0, 1]; Rn) and

p ∈ W 1,1([0, 1]; Rn) satisfying all the conclusions of Theorem 5.5 such that in
addition

(53) max
v∈dxF (t,x̄(t), ˙̄x(t))(y(t))

〈p(t) + ψ(t), v〉 = 〈p(t) + ψ(t), ẏ(t)〉 a.e. in [0, 1].

Finally, if the following linear system under state constraint has a solution:

(54)





ż(t) ∈ fx[t]z(t) + E(y; t) a.e.

z(0) ∈ CK0(x̄(0)))

z(t) ∈ int CK(x̄(t)) for all t ∈ [0, 1],

then the above holds true with λ = 1.

P r o o f. Let w̄ ∈ V
(2)
C (x̄, y) and w be a solution of (52). Then it follows

from Lemmas 2.4, 2.5 and Proposition 5.1 that w̄+w ∈ V
(2)
C (x̄, y). Therefore, by

Theorem 4.7 we have (37). In the same way as in the proof of Theorem 4.8 we
deduce that 〈∇ϕ(x̄(1)), w(1)〉 ≥ 0 for every solution w of (52). To complete the
proof it is enough to apply the same arguments as in [25, pp. 358-361] with V (t)
defined in [25, pp. 356] replaced by E(y; t). �

Corollary 5.11. Let (x̄, ū) be a strong local minimizer of Problem (45)
and (H1), (IPC), (39) hold true. Let a solution y of (41) satisfy y ∈ V(1)(x̄),

〈∇ϕ(x̄(1)), y(1)〉 = 0, V
(2)
C (x̄, y) 6= ∅ and consider p, ψ as in the conclusions of

Theorem 5.10. Then for a.e. t ∈ [0, 1],
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〈p(t) + ψ(t), fx[t]y(t)〉 =

max

{
〈p(t) + ψ(t),

k∑

i=1

cifx(t, x̄(t), ui)y(t)〉 | ci ≥ 0,

k∑

i=1

ci = 1, ui ∈ U(t), f [t] =

k∑

i=1

cif(t, x̄(t), ui)

}
.

P r o o f. Let v(t) ∈ F (t, x̄(t)) be such that ẏ(t) = fx[t]y(t)+v(t)− ˙̄x(t) a.e.
Fix t ∈ [0, 1] such that (53) is satisfied. Consider an integer k > 0, ui ∈ U(t) and

ci ≥ 0, i = 1, . . . , k such that
k∑

i=1

ci = 1 and f(t, x̄(t), ū(t)) =
k∑

i=1

cif(t, x̄(t), ui).

Then
k∑

i=1

cifx(t, x̄(t), ui)y(t) ∈ dxF (t, x̄(t), ˙̄x(t))(y(t))

and therefore

k∑

i=1

cifx(t, x̄(t), ui)y(t) + v(t) − ˙̄x(t) ∈ dxF (t, x̄(t), ˙̄x(t))(y(t)).

Consequently, for a.e. t ∈ [0, 1],

〈
p(t) + ψ(t),

k∑

i=1

cifx(t, x̄(t), ui)y(t)

〉
≤ 〈p(t) + ψ(t), fx[t]y(t)〉. 2

Remark 5.12. The above corollary can be stated in a much more general
way. Namely let p, ψ be as in the conclusions of Theorem 5.10 and t be such that
(53) is satisfied. Consider any mappings ci : R

n → R+, i = 1, . . . , k that are

continuously differentiable on a neighborhood of x̄(t) and such that

k∑

i=1

ci(x) = 1

for every x sufficiently close to x̄(t). Then for all ui ∈ U(t) satisfying f [t] =
k∑

i=1

ci(x̄(t))f(t, x̄(t), ui) the following inequality holds true:

〈p(t) + ψ(t), fx[t]y(t)〉

≥

〈
p(t) + ψ(t),

k∑

i=1

ci(x̄(t))fx(t, x̄(t), ui)y(t) +
k∑

i=1

(c′i(x̄(t))y(t))f(t, x̄(t), ui)

〉
.
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6. Optimality conditions in the presence of endpoint con-

straints. In this section we impose an additional endpoint constraint:

(55) x(1) ∈ K1,

where K1 ⊂ R
n is nonempty and closed. Consider again the differential inclusion

(15). As before, F (t, x) := co F̃ (t, x) for all (t, x) ∈ [0, 1] × R
n.

Theorem 6.1. Assume (A), (IPC) and let x̄ ∈ SK(x̄0) for some x̄0 ∈ K0

satisfy x̄(1) ∈ K1. Suppose that y ∈ V(1)(x̄) and w ∈ V(2)(x̄, y) are such that
w(1) ∈ D2

K1
(x̄(1), y(1)). Consider any sequences hi → 0+, w0

i → w(0) with
x̄(0) + hiy(0) + h2

iw
0
i ∈ K0. Then there exist xi ∈ SK(x̄(0) + hiy(0) + h2

iw
0
i )

satisfying xi(1) ∈ K1 and such that
1

h2
i

(xi − x̄ − hiy) converge uniformly to w

when i→ ∞.

P r o o f. Let xi be as in Theorem 3.3. It is enough to observe that since

w(1) ∈ D2
K1

(x̄(1), y(1)) and
1

h2
i

(xi(1)− x̄(1)−hiy(1)) converge to w(1) for i→ ∞,

we have xi(1) ∈ K1, for i sufficiently large. �

For any y ∈ V(1)(x̄) define the following subset of second-order admissible
variations:

V
(2)
I (x̄, y,K1) :=

{
w ∈ V

(2)
I (x̄, y)

∣∣∣ w(1) ∈ D2
K1

(x̄(1), y(1))
}
.

Consider now the Mayer problem

(56) Minimize {ϕ(x(1)) | x(·) ∈ SK(x0), x0 ∈ K0, x(1) ∈ K1} ,

where ϕ : R
n → R is a given twice differentiable function. Let us start by recalling

the first-order necessary optimality conditions from [6, Corollary 3.8] in this more
general case.

Theorem 6.2. Let x̄ be a strong local minimizer of Problem (56) and
for all t ∈ [0, 1], int CK(x̄(t)) 6= ∅. Assume (Ã) and that (A) holds true with a
bounded a1(·). If int CK0(x̄(0)) ∩ int CK(x̄(0)) 6= ∅ and int CK1(x̄(1)) 6= ∅, then
there exist λ, ψ, p as in Theorem 4.3 with (iii) replaced by

p(1) ∈ −λ∇ϕ(x̄(1)) − ψ(1) −NK1(x̄(1)).

Moreover, if CK1(x̄(1)) ∩ int CK(x̄(1)) 6= ∅, then λ + sup
t∈]0,1[

|p(t) + ψ(t)| 6= 0.

Finally, if there exists a solution y of (27) satisfying y(1) ∈ int CK1(x̄(1)), then
the above holds true with λ = 1.
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The very same proof as the one of Corollary 4.4 implies the following
result.

Corollary 6.3. Under all the assumptions of Theorem 6.2 consider any
λ, p, ψ as in its conclusions. Then for almost every t ∈ [0, 1] and all v ∈ R

m

satisfying 〈p(t) + ψ(t), v〉 = 0 we have

〈p(t) + ψ(t), w〉 ≤ 0 ∀ w ∈ T
♭(2)
F (t,x̄(t))( ˙̄x(t), v).

Remark 6.4. Let (x̄, p, ψ, µ, ν) be a normal extremal. Consider y ∈
V(1)(x̄) satisfying (30) with y(0) ∈ CK0(x̄(0)), y(1) ∈ CK1(x̄(1)), y(t) ∈ CK(x̄(t))
for all t ∈ [0, 1]. Then conclusions similar to those of Remark 4.6 hold true.

Using Theorem 6.1 and the same proof strategy as for Theorem 4.7 we
find the following necessary optimality conditions for problem (56):

Theorem 6.5. Assume (A), (IPC) and let x̄ be a strong local minimizer
of problem (56). Then,

(57) 〈∇ϕ(x̄(1)), y(1)〉 ≥ 0 ∀ y ∈ V(1)(x̄) satisfying y(1) ∈ DK1(x̄(1)).

Moreover, for all y ∈ V(1)(x̄) such that 〈∇ϕ(x̄(1)), y(1)〉 = 0, we have

(58) 〈∇ϕ(x̄(1)), w(1)〉 +
1

2
ϕ′′(x̄(1))y(1)y(1) ≥ 0 ∀ w ∈ V(2)(x̄, y)

satisfying w(1) ∈ D2
K1

(x̄(1), y(1)).

As in Section 4, we can prove the following second-order maximum prin-
ciple.

Theorem 6.6. Let x̄ be a strong local minimizer of problem (56), (Ã),
(IPC), (A) hold with a bounded a1(·) and int CK1(x̄(1)) 6= ∅. Let y ∈ V(1)(x̄) be

such that 〈∇ϕ(x̄(1)), y(1)〉 = 0 and V
(2)
I (x̄, y,K1) 6= ∅. Then for every solution w

of (35) such that w(1) ∈ int CK1(x̄(1)), we have 〈∇ϕ(x̄(1)), w(1)〉 ≥ 0.
Furthermore, if int CK0(x̄(0))∩ int CK(x̄(0)) 6= ∅, then there exist λ, ψ, p

as in the conclusions of Theorem 6.2 such that in addition

max
v∈dxF (t,x̄(t), ˙̄x(t))(y(t))

〈p(t) + ψ(t), v〉 = 〈p(t) + ψ(t), ẏ(t)〉 a.e. in [0, 1].

Finally, if the constrained differential inclusion (36) has a solution z satisfying
z(1) ∈ int CK1(x̄(1)), then the above holds true with λ = 1.
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P r o o f. Let w̄ ∈ V
(2)
I (x̄, y,K1) and w be a solution of (35) such that

w(1) ∈ int CK1(x̄(1)). By Lemma 2.8, w̄(1)+w(1) ∈ D2
K1

(x̄(1), y(1)). Arguments
similar to those of the proof of Theorem 4.8 imply the result. �

Consider the constrained control system (38) under an additional endpoint
constraint (55) and define the set-valued maps F̃ , F as in Section 5. For a solution
y of (23) let the sets FC(y; t) ⊂ R

n be as in Section 5. For every y ∈ V(1)(x̄) we
introduce the following subset of the set of admissible second-order variations:

V
(2)
C (x̄, y,K1) :=

{
w ∈ V

(2)
C (x̄, y)

∣∣∣ w(1) ∈ D2
K1

(x̄(1), y(1))
}
.

We investigate next the Mayer optimal control problem (56) where x0 ; SK(x0)
is understood with respect to the control system (38).

Theorem 6.7 ([26]). Let (x̄, ū) be a strong local minimizer of prob-
lem (56) such that int CK(x̄(t)) 6= ∅ for every t ∈ [0, 1]. If (H1) and (39) hold
true, then there exist λ, ψ, p, µ, ν as in Theorem 5.5, with (iii) replaced by
−p(1) ∈ λ∇ϕ(x̄(1)) + ψ(1) +NK1(x̄(1)).

The second-order necessary optimality conditions for problem (56) are
similar to those derived in Section 5.

Theorem 6.8. Let (x̄, ū) be a strong local minimizer of problem (56) and
(H1), (IPC) be satisfied. Then,

〈∇ϕ(x̄(1)), y(1)〉 ≥ 0 ∀ y ∈ V(1)(x̄) satisfying y(1) ∈ DK1(x̄(1)).

Moreover, if the maximum principle of Theorem 6.7 holds true with λ = 1 and
some (p, ψ, µ, ν) and y ∈ V(1)(x̄) is such that 〈∇ϕ(x̄(1)), y(1)〉 = 0, then for every

w ∈ V
(2)
C (x̄, y,K1),

1

2
ϕ′′(x̄(1))y(1)y(1) − 〈p(0), w(0)〉 − 〈n̄, w(1)〉

−

∫

[0,1]
〈ν(t), w(t)〉 dµ(t) −

∫ 1

0
〈p(t) + ψ(t), v̂(t)〉 dt ≥ 0,

where n̄ = −p(1) −∇ϕ(x̄(1)) − ψ(1) ∈ NK1(x̄(1)) and v̂(t) := ẇ(t) − fx[t]w(t) ∈
FC(y; t) + E(y; t) a.e.

Theorem 6.9. Let (x̄, ū) be a strong local minimizer of problem (56)
and (H1), (IPC), (39) hold true. If y ∈ V(1)(x̄) is such that 〈∇ϕ(x̄(1), y(1)〉 =

0 and V
(2)
C (x̄, y,K1) 6= ∅, then for every solution w of (52) satisfying w(1) ∈

int CK1(x̄(1)), we have 〈∇ϕ(x̄(1)), w(1)〉 ≥ 0.
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Furthermore, there exist λ, ψ, p as in Theorem 6.7 such that in addition

(59) max
v∈dxF (t,x̄(t), ˙̄x(t))(y(t))

〈p(t) + ψ(t), v〉 = 〈p(t) + ψ(t), ẏ(t)〉 a.e. in [0, 1].

Finally, if (54) has a solution z with z(1) ∈ int CK1(x̄(1)), then the above holds
true with λ = 1.

Corollary 6.10. Let (x̄, ū) be a strong local minimizer of problem (56)
and (H1), (IPC), (39) hold true. If y is a solution of (41) such that y ∈ V(1)(x̄),

〈∇ϕ(x̄(1)), y(1)〉 = 0, V
(2)
C (x̄, y,K1) 6= ∅ and λ, p, ψ are as in the conclusions of

Theorem 6.9, then for a.e. t ∈ [0, 1],

〈p(t) + ψ(t), fx[t]y(t)〉 =

max

{
〈p(t) + ψ(t),

k∑

i=1

cifx(t, x̄(t), ui)y(t)〉 | ci ≥ 0,

k∑

i=1

ci = 1, ui ∈ U(t), f [t] =

k∑

i=1

cif(t, x̄(t), ui)

}
.
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