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ABSTRACT. Recent positive experiences applying convex feasibility algo-
rithms of Douglas—Rachford type to highly combinatorial and far from con-
vex problems are described.

1. Introduction. Douglas—Rachford iterations, as defined in Section 2,
are moderately well understood when applied to finding a point in the intersection
of two convex sets. Over the past decade, they have proven very effective in some
highly non-convex settings; even more surprisingly this is the case for some highly
discrete problems [3]. In this paper we wish to advertise the use of Douglas—
Rachford methods in such combinatorial settings. The remainder of the paper is
organized as follows.

In Section 2, we recount what is proven in the convex setting. In Section 3
we review the normal way of handling a (large) finite number of sets in a product

2010 Mathematics Subject Classification: 90C27, 90C59, 47N10.
Key words: Douglas—Rachford, projections, reflections, combinatorial optimization, mod-
elling, feasibility, satisfiability, Sudoku, Nonograms.



314  Francisco J. Aragén Artacho, Jonathan M. Borwein, Matthew K. Tam

space. In Section 4, we reprise what is known in the non-convex setting. There
is less theory but significant and often positive experience. In Section 5, we turn
to a more detailed discussion of combinatorial applications before focusing, in
Section 6, on solving Sudoku puzzles, and, in Section 7, on solving Nonograms.
More detailed numerical experience in these two cases is given in [3|. It is worth
noting that both are NP-complete as decision problems. We end the paper with
various concluding remarks in Section 8.

2. Convex Douglas—Rachford methods. We now review Douglas—
Rachford methods applied to closed and convex sets.

2.1. The classic Douglas—Rachford method. The classical Douglas—
Rachford scheme was originally introduced in connection with partial differential
equations arising in heat conduction [14|, and convergence later proven as part
of [22]. Given initial point, xo, and subsets, A and B, of a Hilbert space, H,
the scheme iterates by repeatedly setting x,41 = T4, pxy, where Ty p is the 2-set
Douglas—Rachford operator defined by

I+ RpRy

T :
'A,B 5

here I denotes the identity mapping, and R4 (z) denotes the reflection of a point
x € H in the set A. The reflection can be defined as

Ra(z) :=2Py(z) — =z,

where P4(z) is the closest point projection of the point x onto the set A, that is,

Py(x) :== {z cA: |z —z|| = ;Ielﬁl |z — aH} .

In general, the projection P4 is a set-valued mapping. If A is closed and convex,
the projection is uniquely defined for every point in H, thus yielding a single-
valued mapping (see e.g. [12, Th. 4.5.1]).

In the literature, the Douglas—Rachford scheme is also known as “reflect—
reflect-average” [10], and “averaged alternating reflections (AAR)” |8].

Applied to closed and convex sets, convergence is understood and can be
explained by using the theory of (firmly) nonexpansive mappings.

Theorem 2.1 (Douglas—Rachford [14], Lions-Mercier [22]). Let A, B C
H be closed and convex with nonempty intersection. For any xg € H, set xpy1 =
T pxn. Then (xy,) converges weakly to a point x such that Paxz € AN B.
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In an analysis of von Neumann’s alternating projection method, Bauschke
and Borwein [5] introduced the concept of the displacement vector, v, and used
the sets F and F' to generalize AN B.

v:i=Pz—(0), E:=AN(B-v), F:=(A+v)NkB.

Note, if ANB # () then E=F = AN B.
The same framework was utilized by Bauschke, Combettes and Luke [§]
to analyze the Douglas—Rachford method.

Theorem 2.2 (Convex Douglas-Rachford [8, Th. 3.13|). Let A,B CH
be closed and convex. For any xo € H, set xp41 = Ta pry. Then:

(i) @py1 — xn = PeRAx, — Paxy — v and PgPpx, — Pz, — v.
(ii) If AN B # 0 then (z,) converges weakly to a point in
Fix(Ta,p) = (AN B) + Nz=5(0);
otherwise, ||z,| — +oo.
(iii) Ezactly one of the following two alternatives holds.

(a) E =10, [|[Pazy|| — 400, and |PgPaxy,| — +oc.

(b) E # 0, the sequences (Paxy) and (PpPaxy) are bounded, and their
weak cluster points belong to E and F, respectively; in fact, the weak
cluster points of

((Pazy, PBRATy,)) and ((Paxy, PBPaxy))
are best approximation pairs relative to (A, B).

Here, No(z) :={u € H: (¢ —z,u) <0,Vc € C} denotes the normal cone
to a convex set C C H at a point = € C.

2.2. The cyclic Douglas—Rachford method. There are many possible
generalizations of the classic Douglas—Rachford iteration. Given three sets A, B, C
and xg € H, an obvious candidate is the iteration defined by repeatedly setting
ZTnt1 = TA B cxy, Where

I+ RoRpR4y

(1) TaBc = 5
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So far, application of the above scheme has been fruitless. Some of the difficulties
are illustrated by considering an example involving three lines in R? [3, Ex. 2.1].

Instead, Borwein and Tam |[11] considered cyclic applications of 2-set
Douglas—Rachford operators. Given N sets Cy,Co,...,Cy, and zoy € H, their
cyclic Douglas—Rachford scheme iterates by repeatedly setting z,41 =
Ticy Co,....cn)Tns Where Tl oy, ) denotes the cyclic Douglas—Rachford operator
defined by

T[Cl,Cg,...,CN] =Toy,eTey o - TesoTe o,

In the consistent case, the iterations behave analogously to the classical
Douglas—Rachford scheme (cf. Theorem 2.2).

Theorem 2.3 (Cyclic Douglas—Rachford). Let Cy,Co,...,Cny C H be
closed and convex sets with a nonempty intersection. For any xqg € H, sel Tp41 =
Tic, ¢y ...cxn]Tn- Then (xy,) converges weakly to a point x such that Pc,xz = Pc;w,
for all indices i,j. Moreover, Po;x € ﬂf\il C;, for each index j.

If N =2and C; NCy = 0 (the inconsistent case), unlike the classical
Douglas—Rachford scheme, the iterates are not unbounded (cf. Theorem 2.2).
Moreover, there is evidence to suggest that the scheme can be used to produce
best approximation pairs relative to (Cy,Cy) whenever they exist.

3. Feasibility problems in the product space. Given Cy,C5, ...,
Cn C R™, the feasibility problem' asks:
N
(2) Find z € (] C; C R".
i=1
A great many optimization and reconstruction problems, both continuous

and combinatorial, can be cast within this framework.
Define two sets C, D C (R™)V by

N
C = HC"’ D :={(z,z,...,x) € RN : 2z ¢ R"}.
i=1

While the set D, the diagonal, is always a closed subspace, the properties of C
are largely inherited. For instance, when C1,Cs,...,Cy are closed and convex,
so is C'. Consider, now, the equivalent feasibility problem:

(3) Find x € CND c (RM)V,

In this context, “feasibility” and “satisfiability” can be used interchangeably.
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It is equivalent in the sense that

N
x € ﬂC’i — (z,z,...,2) €CND.
=1
Moreover, knowing the projections onto C1,Cs,...,Cy, the projections onto C

and D can be easily computed.

Proposition 3.1 (Product projections). Let C' = HZ]L C;. Then for any

x € (RMV,
L\
® P = (N zxi> ,
=1
and if P, (X1), ..., Poy (Xn) are nonempty, then
N
(5) Peox = H Pe, ().

i=1

Proof. See, for example, [3, Prop. 3.1]. O

Most projection algorithms can be applied to feasibility problems with
any finite number of sets without significant modification. An exception is the
Douglas—Rachford scheme. Before [11] it had only been successfully investigated
for two sets: making the product formulation crucial for the Douglas—Rachford
scheme.

4. Non-convex Douglas—Rachford methods. There is little the-
ory in the non-convex setting; but some useful beginnings:

4.1. Theoretical underpinnings. As a prototype, Borwein and Sims
[10] considered the Douglas—Rachford scheme for a Euclidean sphere and a line.
More precisely, for the sets

S:={zxeR":|z| =1}, L:={la+abeR":XecR},

where, without loss, ||a|| = [|b]| = 1,a L b,a > 0. We summarize their findings
(o € [0,1] represents the consistent case, and « > 1 the inconsistent).

Theorem 4.1. Given xg € R" define x,41 := Ts px,. Then:
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1. If 0 < a < 1, (x,) is locally convergent at each of £v/'1 — a?a + ab.
2. Ifa =0 and zo(1) > 0, (xy) converges to a.
3. Ifa=1 and z¢(1) # 0, (z,) converges to yb for some § > 1.

4. If a > 1 and xo(1) #0, ||z,] — oo.

In R? with @ = 1/v/2, Aragéon and Borwein gave an explicit region of
convergence [1]. Restriction to o = 1/v/2 was made for notational simplicity.

Recently, Hesse and Luke [20] have utilized a relaxed local version of
(firm) nonexpansiveness, to quantify how “close” to being (firmly) nonexpansive a
mapping is. Within their framework, local convergence of the Douglas—Rachford
scheme, if the first reflection is performed with respect to a subspace, were ob-
tained provided a coercivity condition and appropriate regularity conditions hold.
The order of reflection is reversed, so the results of Hesse and Luke do not di-
rectly overlap with that of Aragén, Borwein and Sims. This is not a substantive
difference.

4.2. A summary of applications. We briefly list a variety of highly non-
convex, primarily combinatorial, problems where some form of Douglas—Rachford
algorithm has proven very fruitful.

1. Protein folding and graph coloring problems were first studied via Douglas—
Rachford methods in by Elser and his colleagues in [15] and [16], respectively.
Indeed Elser seems to have been the first to see the remarkable potential of
the method for non-convex problems.

2. Image retrieval and phase reconstruction problems are analyzed in some
detail in |6, 7|. The bit retrieval problem is considered in [16].

3. The N-queens problem which requests the placement of N queens on a
N x N chessboard is studied and solved in [23].

4. Boolean satisfiability is treated in [16, 19]. Note that the three variable case,
3-SAT, was the first problem to be shown NP-complete [18].

5. TetraVex, also known as McMahon Squares in honour of the great English
combinatorialist, Percy MacMahon, is an edge-matching puzzle, whose NP-
completeness is discussed in [25], was studied in [4]. Problems up to size
4 x 4 could be solved in an average of 200 iterations. There are 102"("+1)
base-10 n x n boards, with n = 3 being the most popular.
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6. Solutions of (very large) Sudoku puzzles have been studied in |23, 16]. For
a discussion of NP-completeness of determining solvability of Sudokus see
[24]. The solution of Sudoku puzzles by Douglas-Rachford methods [3] is
described in Section 6.

7. Nonograms |26, 27| are a more recent NP-complete Japanese puzzle whose
solution by Douglas—Rachford methods is discussed in Section 7.

8. Many matriz completion problems [21| can be successfully solved by Douglas—
Rachford methods [2|: convex problems include matrix completion prob-
lems with positive semi-definite matrices, doubly-stochastic matrices, and
Euclidean distance matrices; non-convex problems include matrix comple-
tion problems with low-rank constraints (in particular, low-rank Euclidean
distance problems—such as protein reconstruction from NMR data), and
Hadamard, skew-Hadamard and circulant-Hadamard matrix problems.

5. Successful combinatorial applications. The key to successful
application is two-fold. First, the iteration must converge—at least with high
probability. Our experience is when that happens, random restarts in case of
failure are very fruitful. As we shall show, often this depends on making good
decisions about how to model the problem. Second, one must be able to compute
the requisite projections in closed form—or to approximate them efficiently nu-
merically. As we shall indicate this is frequently possible for significant problems.

When these two events obtain, we are in the pleasant position of being
able to lift much of our experience as continuous optimizers to the combinatorial
milieu.

5.1. Model formulation. Within the framework of feasibility problems,
there can be numerous ways to model a given type of problem. The product space
formulation (3) gives one, even without assuming any additional knowledge of the
underlying problem.

The chosen formulation heavily influences the performance of projection
algorithms. For example, in initial numerical experiments, the cyclic Douglas—
Rachford scheme of Section 2.2, was directly applied to (2). As a serial algorithm,
it appears to outperform the classic Douglas—Rachford scheme, which must be
applied in the product space (3). For details see [11].

As an heuristic for problems involving one or more non-convex set, the
sensitivity of the Douglas—Rachford method to the formulation used must be em-
phasized. In the (continuous) convex setting, the formulation ensures success
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of the algorithm, while in the combinatorial setting, the formulation determines
whether or not the algorithm can successfully and reliably solve the problem. Di-
rect applications to feasibility problems with integer constraints have been largely
unsuccessful. On the other hand, many of the successful applications listed in Sec-
tion 4.2 use binary formulations.

We now outline the basic idea behind these reformations. If

(6) x € {c1,c9,...,¢} CR,

we reformulate x as a vector y € R™. If x = ¢;, then y is defined by

(1 =4,
Yi=1 0 otherwise.

With this interpretation (6) is equivalent to:
Yy € {61,62,... ,6n} Cc R™,

with y = e; if and only if z = ¢;.

5.2. Projection onto the set of permutations of points. In many
situations, in order to apply the Douglas—Rachford iteration, one needs to compute
the projection of a point z = (z1,...,z,) € R™ onto the set of permutations of
n given points c1,...,c, € R, a set that will be denoted by C. We will shall see
below that this is the case for the Sudoku puzzle.

Fix z € R". Denote by [C|, the set of vectors in C (which therefore have
the same components but perhaps permuted) such that y € [C], if the ith largest
entry of y has the same index in y as the ¢th largest entry of x.

Proposition 5.1. Denote by C C R™ the set of vectors whose entries are
all permutations of ¢1,co,...,c, € R. Then for any x € R™,

Pex = [Cly.

Proof. See |3, Prop. 5.1]. O

6. Solving Sudoku puzzles. We illustrate the reformulation described
in Section 5 with Sudoku, modelled first as an integer feasibility problem, and
secondly as binary feasibility. One should acknowledge the fundamental contri-
butions of Veit Elser [15, 16|, who came up with the binary formulation of Sudoku
as well as the ‘nasty’ Sudoku shown in Figure 2.
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Denote by A[i, j], the (i, j)-th entry of the matrix A. Denote by A[i:é', j:5']
the submatrix of A formed by taking rows 4 through ¢’ and columns j through j’
(inclusive). When ¢ and ¢’ are the indices of the first and last rows, we abbreviate
by A[:,j : j']. We abbreviate similarly for the column indices. The vectorization
of the matrix A by columns, is denoted by vec A. For multidimensional arrays,
the notation extends in the obvious way.

Let S denote the partially filled 9 x 9 integer matrix representing the
incomplete Sudoku. For convenience, let I = {1,2,...,9} and let J C I? be the
set of indices for which S is filled. Whilst we will formulate the problem for 9 x 9
Sudoku, we note that the same principles can be applied to larger Sudoku puzzles.

6.1. Sudoku modelled as integer program. Sudoku is modelled as
an integer feasibility problem in the obvious way. Denote by C, the set of vectors
which are permutations of 1,2,...,9. Let A € R%*?. Then A is a completion of
S if and only if

AeCinNCynNCsnNCy,

where

C1 ={A:Afi,:] € Cforeachie I},

Cy ={A: A[,j] € C for each j € I},
Cs3={A:vecA[3i+1:3(:+1),3j+1:3(j+1)] € Cfori,j=0,1,2},
Cy ={A: Ali,j] = S[i, j] for each (i,j) € J}.

The projections onto C7, Csy, Cs are given by Proposition 5.1, and can be
efficiently computed by using the algorithm outlined in [3, Remark 5.2]. The
projection onto Cy is given, pointwise, by

[ Slig) it (i) €
(Po, A)li, 5] = { Ali,j] otherwise;
for each (i,j) € I
6.2. Sudoku modelled as a zero-one program. Denote by C, the

set of all n-dimensional standard basis vectors. To model Sudoku as a binary
feasibility problem, we define B € R?*9%9 by

Bli,j. k] = { 0 otherwise.

Let S” denote the partially filled 9 X 9 x 9 zero-one array representing the
incomplete Sudoku, S, under the reformulation, and let J' C I® be the set of
indices for which S’ is filled.
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Cy Cs Cs

Fig. 1. Visualization of B showing the types of constraints encountered in Sudoku mod-
elled as a zero-one program. The entries in the shaded “blocks” are all “0”, except for a
single “1” entry

The four constraints of the previous section become
Cy ={B: Bli,:,k] € C for each i,k € I},
Cy ={B: B[, j,k| € C for each j, k € I},
C3={B:vecB[3i+1:3(i+4+1),3j+1:3(j+1),kl€C
fori,j =0,1,2 and k € I},
Cy = {B: BJi,j,k] = 1 for each (i,5,k) € J'}.

In addition, since each Sudoku square has precisely one entry, we require
Cs ={B: Bli,j,:] € C for each i,j € I}.

A visualization of the constraints is provided in Figure 1. Clearly there is a
one-to-one correspondence between completed integer Sudokus, and zero-one ar-
rays contained in the intersection of the five constraint sets. Moreover, B is a
completion of S’ if and only if

Be(CinCyNnC3nNCynChs.

The projections onto C4,C,Cs,C5 are again given by Proposition 5.1.
The projection onto Cy is given, pointwise, by
[ STk i (i k) € T,
(Po,B)li, 3, k] = { Bli,j, k] otherwise;
for each (i, 4, k) € I®.

6.3. Models that succeeded. The Douglas—Rachford iteration applied
to the binary formulation of Section 6.2 has been used to solve to Sudoku puzzles
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fairly reliably. In [3], the present authors bench-marked the Douglas—Rachford
implementation against three more specialized Sudoku solvers: a binary program
solved using Gurobi Optimizer, an exact cover formulation solved using a Dancing
Links implementation of Knuth’s Algorithm X, and a hybrid method which com-
bines a reasoning algorithm with a recursive search. These other solvers employ
either back-tracking or branch-and-bound at some stage.

The above methods were compared on various libraries of 9 x 9 Sudoku
problems including Gordon Royle’s minimum Sudoku, and Dukuso’s top95 and
top1465. These are frequently used by programmers to test their solvers. A
number of larger 16 x 16 and 25 x 25 Sudoku puzzles were also generated for
comparison, although only the performance of the binary program model could
be compared. This is because, almost all available solvers are designed to handle
only the standard 9 x 9 puzzle.

We summarize the results of the comparison. The binary program out-
performed all the methods considered, regardless of the test library. The Gurobi
optimizer is, of course, the most sophisticated in terms of its implementation
and code optimization. The appeal of the Douglas—Rachford method is, in part,
the simplicity of its implementation. It would be interesting to compare a more
sophisticated implementation of the scheme with Gurobi, especially on larger
problems. Excluding the binary program, our Douglas—Rachford implementation
was at least competitive with methods examined, and for some test libraries it
was better. Typically puzzles were solved within the first 2000 iterations, and for
a given test library, the method successfully solved puzzles at worst 85% of the
time. Typically the success rate was much better.

In his MSc thesis |23], Jason Schaad created a web-based Douglas-Rach-
ford Sudoku solver.? Recently, Sudoku puzzles which, as set, would not be solved
by Schaad’s solver were found. One is given in Figure 2, which is based on an
example due to Veit Elser [17], who found the first puzzle which could not be
solved using Douglas—Rachford methods. This ‘nasty’ Sudoku has also proven
hard for our implementation, having a success rate of only 20%. As a first step to
explaining this difficulty, the ‘nasty’ Sudoku was compared to each of the puzzles
obtained by removing any one of its entries. With the top-left “7” removed, the
puzzle was just as difficult — a success rate of 24% which is comparable to the
original puzzle. If any other entry was removed, the puzzle was relatively easy —
a success rate of 99%.

When entries are removed from a Sudoku, the puzzle no longer necessar-
ily has unique solution. To our surprise, the puzzle obtained by removing the

2Schaad’s web-based solver: https://people.ok.ubc.ca/bauschke/Jason/
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7 9 5 7141318[2]9]1|5]|6
1 3 5111816471932
213 7 916|2|3[5]1]7/4]8

415 7 612(4]15|9|8]13|7|1

8 2 8[719]11|3]4]2|6]|5
64 3/5|112[7]6]4|8]9

9 1 4191617151823

8 21871963514
514 7 113]5]14|8|2]|6]9]|7

Fig. 2. The ‘nasty’ Sudoku (left), and its unique® solution (right)

top-left “7” had only five solutions, while the puzzles obtained by removing any
other single entry had anywhere from a few hundred to a few thousand solutions.
In comparison, the puzzles obtained by removing entries from Arto Inkala’s Al
escargot had at most a few hundred solutions. Al escargot is a Sudoku puzzle
purposely designed to be really difficult, but nevertheless can be solved by the
Douglas—Rachford with a success rate of 99%. Perhaps, applied to the ‘nasty’ Su-
doku, the Douglas—Rachford algorithm is overwhelmed by an abundance of ‘near’
solutions.

6.4. Models that failed. To our consternation, the integer formulation
of Section 6.1 was ineffective, except for 4 x 4 Sudoku, while the binary reformu-
lation of the cyclic Douglas—Rachford method described in Section 2.2 also failed
in both the original space and the product space.

Clearly we have a lot of work to do to understand the model characteristics
which lead to success and those which lead to failure. We should also like to
understand how to diagnose infeasibility in Sudoku via the binary model. This
would give a full treatment of Sudoku as an NP-complete problem.

7. Solving nonograms. A nonogram puzzle consists of a blank m x n
grid of pixels (the canvas) together with (m + n) cluster-size sequences, one for

3The number of distinct solutions was determined using SudokuSolver, see http://infohost.
nmt . edu/tcc/help/lang/python/examples/sudoku/



Recent results on Douglas—Rachford methods 325

each row and each column [13]. The goal is to paint the canvas with a picture
that satisfies the following constraints:

e Fach pixel must be black or white.

e If a row (resp. column) has cluster-size sequence si, sa, ..., s then it must
contain k clusters of black pixels, separated by at least one white pixel,
while the ith leftmost (resp. uppermost) cluster contains s; black pixels.

An example of a nonogram puzzle is given in Figure 3.

NN o| ot
N[ =
—_
e
| ot
—
|-

=] =
N
N

=] e
|| ==
-

10{ 8|2

= | = = N o o | =

%)

-

—
N[ N[N ==
NI N

[y
(=]

[uy

I I N R R R R
G| W NN R R RSN =N
O | = b=t [ = [ CO[CO DN DN DN = | bt | N[ bt | =

=R o

[y
=

Fig. 3. A special nonogram. Cluster-size sequences for each row and column are shown.
Its solution, found by the Douglas—Rachford algorithm, is shown in Figure 5

We model nonograms as binary feasibility problems. The m x n grid is
represented as a matrix A € R™*™. We define
Ali, j] = 0 if the (4,7)-th entry of the grid is white,
T 1 if the (i,7)-th entry of the grid is black.

Let R; C R™ (resp. C; C R™) denote the set of vectors having cluster-size
sequences matching row 4 (resp. column j).

Ci={A:Ali,:]eR;fori=1,...,m},
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(a) A spaceman (¢) A moose

(d) A turtle (e) A parrot (f) The number 7

Fig. 4. Solutions to six nonograms found by Douglas—Rachford

Co={A: Al jleCjforj=1,...,n}.
Given an incomplete nonogram puzzle, A is a solution if and only if
AeCindCy.
In [3], the present authors investigated viability of the Douglas—Rachford

method applied to nonogram puzzles. Seven puzzles were examined: the puzzle
in Figure 3, and the six puzzles shown in Figure 4. Appropriately modified, the
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I-'-1

Fig. 5. Solution to the special nonogram from Figure 3 found by the Douglas—Rachford
algorithm in only three iterations. We show here the projection onto C; of these three
Douglas—Rachford iterations

method is the same as that of Section 6.3. This Douglas—Rachford application
was highly successful.

From 1000 random initializations, all puzzles considered were solved with
a 100% success rate. However, a difficulty within the above model, is that the
projections onto C] and C5 seem to have no simple form, unlike the Sudoku model
in Section 6. So far, attempts to find an efficient method to compute them have
been unsuccessful. The implementation described in [3| pre-computes R; and Cj,
for all indices 7, j, and at each iteration chooses the nearest point by computing
the distance to each point in the appropriate set. While the Douglas—Rachford
iterations themselves are fast, for very large nonograms, such enumeration of R;
and C; becomes intractable.

8. Conclusion. The message of the list in Section 4.2 and of the pre-
vious two sections is the following. When presented with a new combinatorial
feasibility problem it is well worth seeing if Douglas—Rachford can deal with it—it
1s conceptually very simple and is usually relatively easy to implement.

Finally, many resources can be found at the paper’s companion website:

http://carma.newcastle.edu.au/DRmethods/comb-opt/
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