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Abstract. We consider the jump structure of the subordinated Lévy
processes and subordinated Markov branching processes. Subordination pro-
vides a method of constructing a large subclass of Markov or Lévy processes

Y (t) = X(T (t)),

where X(t) is a Markov or Lévy process and T (t) is a continuous time subor-
dinator independent of X(t); that is a Lévy process with positive increments
and T (0) = 0. Let X(t) be a Lévy process. Then subordination preserves
the independence and stationarity of the increments, but it changes their
amplitudes and the total mass of the Lévy measure. Let X(t) be a Markov
branching process. Then subordination (owing to the independence of X(t)
and T (t)) preserves the Markov property, but it disturbs the branching prop-
erty. The infinitesimal generator of the subordinated process Y (t) involves
the total progeny of reproduction. The intensity of the jump times depends
on the subordinator’s Bernstein function.
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1. Introduction. Branching processes and Lévy processes represent
two exceptional classes of stochastic processes. Branching processes (Markovian
or non-Markovian) describe the phenomena of multiplication (reproduction) of
particles. The main assumption is the local independence of the evolution. An-
alytically this assumption leads to the additivity by the initial condition and is
called the branching property. Lévy processes is a class of processes with sta-
tionary and independent increments starting from zero. The relation between
Poisson process and Markov branching process, due to J. Lamperti, had been
exchanged as a private communication between J. Lamperti, S. Watanabe and
D. G. Kendal, and then published as a paragraph in the book of K. B. Athreya
and P. E. Ney [1].

Nowadays, the random time change

Y (t) = X(T (t))

appears everywhere-in stochastic processes, in stochastic integrals and stochastic
equations. It is a method to introduce some additional randomness, under the as-
sumption of independence or dependence of the ground process X(t) and random
time process T (t). Subordination in the sense of Bochner is a randomization of
the time parameter, under the assumption of independence of X and T . On the
other hand, the Lamperti’s transform is based on the dependence. The random
time T (t) is defined via the additive functional of total progeny. It transforms
the Markov branching process into Poisson process.

S. Bochner introduced the concept of subordination in 1955 [6], for Markov
processes, Lévy process and corresponding semigroups. Subordination provides
a method of constructing a large subclass of Markov or Lévy processes Y (t) =
X(T (t)), where X(t) is a Markov or Lévy process and T (t) is a continuous time
subordinator; that is a Lévy process with positive increments and T (0) = 0.
There are two sources of randomness: the ground process X(t) and time process
T (t), under the assumption that X and T are independent.

The properties of the subordinated semigroups have an independent in-
terest in functional analysis and potential theory: see A. Carasso and T.
Kato [8], also, Ch. Berg and G. Forst [2].

In financial analysis, subordinators represent the business times. They
are studied in the books of: W. Schoutens [20], R. Cont and P. Tankov [9].

Our main interest is the trajectory properties of the subordinated process
Y (t). The problem is the discontinuities of Y (t) which may be caused by the
discontinuities of either X(t) or T (t).

The first part of this article concerning the Lévy process is a survey of
known results, and the results on branching processes show how does the random
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observation time, under the assumption of independence of X and T disturbs the
branching property.

Let X(t) be a Lévy process. Then subordination preserves the indepen-
dence and stationarity of the increments, but it changes their amplitudes and the
total mass of the Lévy measure. The evolution of the Lévy process is governed by
the Poisson random measure, which determines both the rate at which transitions
occur and the associated transitions probabilities.

Section 2 reviews the definition and properties of the subordinated semi-
groups, based on the independent increments properties. In Section 3 we give
the basic examples. Section 4 presents some Poisson random measures of the
processes in order to describe the discontinuity of Y .

Suppose that the subordinator T is without drift. If X(t) has continuous
paths, then it is obvious that the only discontinuity of subordinated process can
be caused by the jumps of the subordinator. If X(t) is a Lévy process with
unbounded Lévy measure, then the jump times of Y (t) are the same as the jump
times of T (t). The independence of X(t) and T (t) ensures that a.s. no jump
time of X(t) lies in the closed range of T (t). Consequently, the discontinuity of
X(t) can not influence the discontinuity of Y (t). If X(t) is a compound Poisson
process, then the jump times of Y (t) forms a subsequence of the jump times of
T (t). In this case, any randomness of T (t) before it passes the level η1 given by
the first jump time of X(t) is not reflected by Y (t) = X(T (t).

The second part of the article is devoted to the branching processes.
Let X(t), t = 0, 1, 2, . . . be a Galton-Watson branching process and T (t) be an
integer-valued subordinator independent of the ground process X(t), then Y (t)
represents a randomly indexed Galton-Watson branching process. This process
was introduced by T. Epps [10] in 1996 for modeling of daily stock price as an
alternative of the geometric Brownian motion. Assuming that T (t) is a Poisson
process, Epps obtained the asymptotic behavior of the moments. Under the
assumption of independence, the random time had been generalized and defined
by a general renewal process, see K. Mitov, I. Mitov and N. Yanev [15, 16, 17].
The authors study conditional limiting distributions. The asymptotic behavior of
the moments and the probability for non-extinction is investigated in the critical
and sub-critical branching processes.

The Sevastyanov’s model of the age dependent reproduction is defined
by the life-span u of the parent particle and the offspring number: η(u), u > 0.
In general, the integer-valued measure η depends on the age “u” of the parent-
particle at the splitting time [21]. In [14], we suppose that the life-span is rep-
resented by a subordinator. Sevastyanov’s model with motion of the particles is
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described by the family of renewal-type integral equations, where the motion of
the particles and reproduction are subordinated by the same subordinator. In the
model of spatial Markov branching processes, the subordination can be defined
by the local time of motion process at some regular point, see [4].

In Section 5 we consider the jump transition kernel of the subordinated
Markov branching processes (MBP) and Kolmogorov’s backward equation. Obvi-
ously, for the MBPX(t) the inter-arrival times are independent exponentially dis-
tributed, but with different rate depending on the state of the process. IfX(t) = k

then the next inter-arrival time is a minimum of k independent exponentially
distributed random variables. The amplitudes of the increments are all inde-
pendent identically distributed (iid). The inter-arrival times for Y (t) = X(T (t))
are exponentially distributed with parameter ψT (ka), where ψT is the Bernstein
function of subordinator and a is the intensity of branching at the MBP X(t).
The amplitudes of the increments for Y (t) are defined by averaging the transition
probability of the ground process X(t) by the Lévy measure ΠT of subordinator,
namely:

K(k, i− k) =

∫ ∞

0
Pki(u)ΠT (du).

In Section 6 we suppose that X(n), n = 1, 2, . . . is a Galton-Watson
branching process and T (t) an independent subordinator represented by the
Poisson process or by the integer-valued compound Poisson process. Obviously,
Y (t) = X(T (t) is an integer-valued Markov process starting from Y (0) = 1, but
it is not a Lévy process, i.e. it is not a compound Poisson process and it is not a
Markov branching process. The inter-arrival times are independent exponentially
distributed, but the increments of Y (t) are not independent.

2. Subordinated Lévy processes. Lévy process is an additive
process with stationary increments X = (X(t), t ≥ 0) on a probability space
(ΩX ,BX , PX), which is a right continuous process having left limits andX(0) = 0.
If (Ft, t ≥ 0) denotes the natural filtration generated by X, then the increment
(X(t + u) −X(t)) is independent of Ft and has the same law as X(u) for every
u, t ≥ 0. A general Lévy process is a mixture of a continuous Brownian motion
with drift and a pure jump process. The distributions of the increments of X are
invariant under time and state space shifts. The distribution of X is determined
by its transition probability measure pX(t, dx) and thus by its characteristic func-
tion. Let

E(exp(iλX(t))) = exp(tfX(λ)), λ ∈ R, t ≥ 0,
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where fX(λ) is the characteristic exponent, given by the Lévy-Khinchine formula

fX(λ) = idXλ− 1

2
σ2λ2 +

∫

R
(eiλx − 1 − iλx1{|x|<1})ΠX(dx).

Obviously the drift dX and variance σ2 are constant, i =
√
−1 and

∫ ∞

0+
(1 ∧ x2)ΠX(dx) <∞.

We say, that the Lévy process is defined by its triplet:

{dX , σ2,ΠX(dx)}.

The Lévy measure is the infinitesimal generator of the convolution semigroup
generated by the transition probability:

(1) ΠX(dx) = lim
t→0

pX(t, dx)

t
.

See for details [2, page 172]. The Lévy measure ΠX(dx) represents the mean
of the numbers of increments with altitude x. It is well known that any Lévy
process is of unbounded variation if

σ2 > 0

or
∫ +1

−1
|x|ΠX(dx) = ∞.

For example, Meixner process is a pure jump process with unbounded variation,
see [9]. In the particular choice of parameters, the Meixner (2, 0, t) process can
be constructed as a Brawnian motion subordinated by a series of independent
and identically distributed Gamma processes with convenient normalization, see
[5], [20, page 62].

Let T = (T (t), t ≥ 0) be a subordinator, i.e, the Lévy process with
non decreasing sample paths on the probability space (ΩT ,BT , PT ) with natural
filtration Gt. Equivalently, this means that the Gaussian coefficient σ2 is equal to
zero and the Lévy measure ΠT does not charge the interval ] −∞, 0] and fulfills

∫ ∞

0+
(1 ∧ x)ΠT (dx) <∞.
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We denote the transition probability of T by pT (t, dx), x ≥ 0, t ≥ 0, and its
Laplace transform by

E(exp(−λT (t))) = exp(−tψT (λ)), λ > 0, t > 0.

where ψT : [0,+∞[→ [0,+∞[ denotes the so-called Bernstein function verifying
the following relation

ψT (λ) = dTλ+

∫ ∞

0+

(1 − e−λx)ΠT (dx),

where dT is a constant drift. All subordinators are of bounded variation, have
positive drifts and jump measures concentrated on the interval (0,∞). The triplet
of the subordinator is

{dT , 0,ΠT (dx)}.
Natural examples of subordinators are: Gamma process, one-side stable, the
quadratic variation of any Lévy process and so on. The compound Poisson process
includes many explicitly known integer-valued Lévy processes.

Definition 2.1. Let X and T be independent Lévy processes and suppose

T is a subordinator. The subordinated process Y = (Y (t), t ≥ 0) is defined by

Y (t) = X(T (t))

on the probability space

(ΩY ,BY , PY ),

where ΩY is the cartesian product ΩX × ΩT . The Borelien σ-algebra and proba-

bility are defined by the tensor product:

BY = BX ⊗BT , PY = PX ⊗ PT .

The transition probability is given by

pY (t, dy) =

∫ ∞

0
pX(u, dy)pT (t, du).

The main analytical properties of the subordinated Lévy processes are
summarized in the following theorem.

Theorem 2.1. The subordinated process Y has stationary independent

increments and characteristic exponent given by

fY (λ) = −ψT (−fX(λ), λ ∈ R, t ≥ 0.
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The Lévy measure of the subordinated process is

ΠY (dy) = dTΠX(dy) +

∫ ∞

0
pX(u, dy)ΠT (du).

The drift of the subordinated process is:

dY = dXdT +

∫ ∞

0

(

∫

|x|<1
xpX(u, dx)

)

ΠT (du).

The continuous part of the subordinated process has the coefficient σ2
Y = dTσ

2.

The triplet of the subordinated process is

{dY , dTσ2,ΠY (dx)}.

P r o o f. The proof is based on the following conditional expectations:

E[exp(iλY (t))] = E[E[exp(iλX(t)|T (t)]] =

E[exp(T (t)fX(λ))] = exp(−tψT (−fX(λ))).

See for details: [2, page 172], [9, page 197], [19]. �

Definition 2.2. The process L representing the first passage time of the

subordinator T is defined by the following:

(2) L(u) = inf{t ≥ 0 : T (t) > u, u ≥ 0}.

The process L = (L(u), u ≥ 0) takes values in the interval (t ≥ 0) and it
is the right-continuous inverse of the process T = (T (t), t ≥ 0) taking values in
the interval (u ≥ 0). The passage time above any fixed level is a.s. realized by
a jump when the subordinator has no drift, see [3, page 77]. More precisely, the
function u −→ L(u) is non decreasing and hence L(u−) exists. Since the event

{T (t) > u} =
⋃

ǫ>0

{T (t) > u+ ǫ}

we have that the function u −→ L(u) is right continuous and

L(u) = lim
ǫ↓0

L(u+ ǫ).
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The process (L(u), u ≥ 0) is right continuous (always) as (T (t), t ≥ 0) is right
continuous, [18, page 190]. The process (L(u), u ≥ 0) is of continuous path if
(T (t), t ≥ 0) has strictly increasing path, i.e. if the total mass of the Lévy
measure is unbounded. For example, if T (t) is a Gamma process then L(u) is a
continuous process. The probability distributions of T and L are related by the
following

tP (L(u) ∈ dt)du = uP (T (t) ∈ du)dt,

see, V. M. Zolotarev [23].

Several filtrations are considered on the space ΩY . The natural filtration
is denoted by

Ht = σ(Yτ , τ ≤ t).

The Markov property of the subordinated process had been described by N.
Bouleau, see [7], with the following filtration. Let us consider the family of
events

At = A1 ⊗ {A2 ∩ (T (t) ≥ u)}, t ≥ 0,

with

A1 ∈ Fu, A2 ∈ Gt, u ∈ [0,∞],

where Fu and Gt are the natural filtrations of the processes (X(u), u ≥ 0) and
(T (t), t ≥ 0), respectively. Then we construct the σ-algebra of this events. Denote
it by H∗

t = σ(At). The natural filtration Ht ⊂ H∗
t . The subordinated process

Y (t) = X(T (t)) is strongly Markov process with respect to the filtration H∗
t , see

[7, page 67].

In order to study the stoping times, we consider the following filtration,
define by

Fu+ =
⋂

θ>u

Fθ,

and in the same way Gt+, Ht+, H∗
t+.

The process (L(u), u ≥ 0) defined by (2) as the first passage time of the
subordinator T (t) across the level u is a (Gt+) – stopping time and the following
identity holds true a.s. for all t > 0 and u > 0:

(3) {T (t) < u} = {L(u) > t}.
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3. Examples. Compound Poisson process is a Lévy process with bound-
ed total mass of the Lévy measure. Consequently, if one of X or T is a compound
Poisson process, then the subordinated process is a compound Poisson process
also.

Example 3.1 (Brownian motion subordinated by Poisson process, or
by Gamma process, or by ε-stable process). Brownian motion subordinated by
Poisson process with intensity b is a compound Poisson process with the same
intensity parameter b. The jumps time of Y are the same as the jumps time of
T and the Lévy measure ΠY (dx) = bpX(1, dx).

Brownian motion subordinated by Gamma process is the so called Vari-
ance-Gamma process, see [9, Chapter 4] and [20, page 57].

Brownian motion subordinated by ε-stable process has the characteris-

tic exponent fY (λ) = −(λ2)ε. In the particular case: ε =
1

2
, the subordinated

Brownian motion is a Cauchy process.

Example 3.2. (Poisson process with intensity a subordinated by Gamma
(t, β) process). We have the probability P{X(s) = k} given by

pX(s, {k}) =
(as)k

k!
e−as, k = 0, 1, 2 . . .

and Laplace transformEe−λX(s) = e−as(1−e
−λ). Probability density of the Gamma

(t, β) subordinator is

pT (t, dx) =
1

Γ(t)

dx

β

(

x

β

)t−1

e−x/β,

where the well known function Γ(t) =

∫ ∞

0
xt−1e−xdx, tΓ(t) = Γ(t + 1) and

Γ(n+ 1) = n! for n integer. The Bernstein function ψT (λ) = log(1 +βλ) and the
Lévy measure

ΠT (dx) = x−1e−x/βdx, x > 0.

It is easy to calculate ΠT (dx) by (1) as the following limit, namely

ΠT (dx) = lim
t↓0

1

tΓ(t)

dx

β

(

x

β

)t−1

e−x/β .
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The subordinated process (Y (t), t ≥ 0) is exactly Negative binomial process, with
Laplace transform given by

Ee−λY (t) =

(

p

1 − qe−λ

)t

,

where p = 1 − q =
1

1 + βa
. We have the transition probability:

P (Y (t) = k) = ptqk
Γ(k + t)

k!Γ(t)
.

The Lévy measure of the subordinated process Y is supported by the integers as
follows

ΠY ({k}) =

∫ ∞

0

e−xa(xa)k

k!

e−x/β

x
dx =

1

k
qk, k = 1, 2, . . . .

This is the well known logarithmic probability distribution. The Bernstein func-
tion of the subordinated process is

ψY (λ) = log
(

1 + aβ(1 − e−λ)
)

.

As we are looking for the transmission of discontinuity, the most signifi-
cant example for us the following Neyman process.

Example 3.3. (Poisson process subordinated by Poisson process). Let
X and T be two Poisson processes with intensity a and b respectively. Then the
subordinated process Y is a compound Poisson process with intensity equal to
the total mass of the Lévy measure ΠY defined by:

ψY (∞) = b(1 − e−a).

We see that the intensity of Y is less than the intensity of T . The Lévy measure
is a zero truncated Poisson probability measure:

ΠY ({k}) =

∫ ∞

0
pX(s, {k})bδ(s − 1)ds = b

ak

k!
e−a, k = 1, 2, . . . .

Obviously, δ(s − 1) signifies the delta function: δ(s − 1) = 1, iff s = 1. The
transition probability of the Neyman process is:

pY (t, {k}) =
ake−bt

k!

∞
∑

j=0

jk(bte−a)j

j!
, k = 0, 1, 2, . . . .
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This probability distribution had been introduced by Neyman in 1939, see [11,
page 368].

Example 3.4 (Gamma (t, β) process subordinated by Poisson process
with intensity b). Gamma process X subordinated by Poisson process is a com-
pound Poisson process, with transition probability distribution characterized by
the Bessel function. The jumps times of the subordinated process are the same
as the jumps times of the subordinator. Namely, the Bernstein function

ψY (λ) = b

(

1 − 1

1 + βλ

)

=
bβλ

1 + βλ
,

the Lévy measure is equal to

ΠY (dx) = b
e−x/β

β
dx

and has the total mass b. The transition probability:

pY (t, dx) = e
−
�
bt+ x

β

�
1

x

∞
∑

k=0

(

xbt

β

)k 1

k!Γ(k)
dx.

Bessel function of the first kind with parameter α denoted by Jα(z) is a solution
of the equation:

x2y′′ + xy′ + (x2 − α2)y = 0

and has the following series expression

Jα(z) =
∞
∑

k=0

(−1)k

k!Γ(k + α+ 1)
(
z

2
)2k+α,

absolutely convergent in the whole complex plane. In our example α = −1,
e.i. is a negative integer, the first term of the series is vanished and J−n(x) =

(−1)nJn(x), z = 2i

{
√

xbt

β

}

and the transition probability is represented by:

pY (t, dx) = e
−
�
bt+ x

β

�(
i

x

)

(
√

xbt

β

)

J−1

(

2i

(
√

xbt

β

))

.
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Example 3.5 (Poisson process with intensity a subordinated by ε-stable
process). Bernstein function of the stable subordinator is given by:

ψT (λ) = λε, 0 < ε < 1,

and the Lévy measure

ΠT (dx) =
ε

Γ(1 − ε)
x−(1+ε)dx.

Then the Laplace transform of the subordinated process is

Ee−λY (t) = exp (−taε(1 − e−λ)ε).

The Lévy measure of the subordinated process is supported by the integers as
follows

ΠY ({k}) =

∫ ∞

0

e−ua(ua)k

k!

du

uε+1

ε

Γ(1 − ε)
=
εakΓ(k − ε)

Γ(1 − ε)k!
, k = 1, 2, . . . .

The process Y is a particular case of the so called discrete stable process.

The properties of the discrete stable infinitely divisible distribution had
been developed by F. W. Stetel and K. Van Harn [22] and N. L. Johnson, A. W.
Kemp and S. Kotz [11].

Example 3.6 (ε-stable process subordinated by a Poisson process). Ob-
viously, stable process subordinated by Poisson process with intensity b is a com-
pound Poisson with Bernstein function

ψY (λ) = b(1 − exp(−λε))

and total mass of the Lévy measure equal to b.

Example 3.7 (ε-stable process subordinated by a Gamma process). The
one sided stable processX subordinated by Gamma process with parameter β = 1
is called the Mittag-Leffler process. The Bernstein function of the subordinated
process is given by

ψY (λ) = log(1 + λε).

The Mittag-Leffler function is defined by:

Eε(z) =
∞
∑

n=0

zn

Γ(1 + εn)
.
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It is well known that

1 − Eε(−xε)

is a probability distribution function on x ≥ 0 for ε ∈ (0, 1], Eε(0) = 1 and

P (Y (1) ≤ x) = 1 − Eε(−xε).

The transition probability pY (t, dx) can be expressed by the following series

P (Y (t) ≤ x) =
∞
∑

k=0

(−1)kΓ(t+ k)xε(t+k)

k!Γ(t)Γ(1 + ε(t+ k))
.

It is easy to verify that the Laplace transform of Y (t) is equal to the following

1

λεt

∞
∑

k=0

(−1)kΓ(t+ k)

λεkk!Γ(t)
.

Obviously, the last sum represents the Taylor expansion of the following

1

λεt

[

∞
∑

k=0

[−1

λε

]k
]t

=

[

1

1 + λε

]t

.

see K. Sato [19, page 234 and page 439].

4. Poisson random measure. Poisson random measure describes the
jump structure embedded in any Lévy process.

Definition 4.1. (Poisson random measure). Suppose that (E, E , ν) is

un arbitrary σ-finite measure space. Let N : E → (0, 1, 2, . . . ) in such a way that

the family (N (A) : A ∈ E) are random variables defined on the probability space

(Ω,B, P ). Then N is called a Poisson random measure on (E, E , ν) with intensity

ν if

• for mutually disjoint A1, . . . , An in E, the variables N (A1), . . . ,N (An) are

independent,

• for each A ∈ E, N (A) is Poisson distributed with parameter ν(A),

• P -almost surely N is a measure.
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It is well known that if N is a Poisson random measure on (E, E , ν) then
the support of N is P -almost surely countable. If in addition, the intensity
measure ν is a finite measure, then the support is P -almost surely finite. Let
E = Bb(R2

∗) be the class of all bounded Borel subsets of

R2
∗ = R2\ {(t, 0) : t ∈ R}

away from the t-axis. Let Π(dx) be the Lévy measure of any Lévy process. Define
the product measure

dν(t, x) = dt ⊗ Π(dx)

on B(R2
∗). For A ∈ Bb(R2

∗), let N (A) be a random variable on (E, E) defined by

N (A) = Card{(t, x) ∈ A : X(t) −X(t−) = x}.

Then N (A) is Poisson distributed with the intensity measure ν(A). The system
of random variables

N (A) − ν(A) : A ∈ Bb(R2
∗)

forms an independent random measure with zero mean called compensated Pois-
son random measure denoted by

N 0(A) = N (A) − ν(A).

Then the mean

E(N 0(A)N 0(B)) = ν(A ∩B) for any A,B ∈ Bb(R2
∗).

Note that unlike N the compensated measure N 0 is neither integer valued nor
positive, it is a signed measure. We have the following martingales and martin-
gales measures, respectively for X(u), T (t) and Y (t):

X0(u) = X(u) − uEX(1), N 0
X(A) = NX(A) − νX(A),

where νX(du, dx) = du⊗ ΠX(dx), and in the same way, for T (t) and Y (t).

Theorem 4.1. The Lévy-Ito decomposition for the processes X(u), T (t)
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and Y (t) is as follows

X(u) = dXu+ σB(u) +

∫ t

0

∫

R
x1{|x|<1}N 0

X(du, dx) +

∫ t

0

∫

R
x1|x|≥1NX(du, dx),

T (t) = dT t+

∫ t

0

∫ ∞

0+

xNT (du, dx),

Y (t) = dY t+ dTσB(t) +

∫ t

0

∫

R
x1{|x|<1}N 0

Y (du, dx) +

∫ t

0

∫

R
x1|x|≥1NY (du, dx),

where B = (B(t), t ≥ 0) is a 1-dimensional Wiener process, independent of the

system of Poisson random measure

{NX(E) : E ∈ Bb(R2
∗)}.

See [9], [12, page 236].

Now, consider the Poisson random measure of the processes T = (T (t),
t ≥ 0), X = (X(u), u ≥ 0) and Y = (Y (t), t ≥ 0) described by the families of
delta functions:

NT (A) =
∑

i:(θi,γi)∈A

δ(t − θi, u− γi), A ∈ Bb(R2
∗(t, u)), t > 0.(4)

NX(E) =
∑

i:(ηi,ξi)∈E

δ(u− ηi, x− ξi), E ∈ Bb(R2
∗(u, x)), u > 0.(5)

NY (F ) =
∑

i:(zi,ζi)∈F

δ(t − zi, x− ζi), F ∈ Bb(R2
∗(t, x)), t > 0.(6)

Theorem 4.2. Suppose that X = (X(u), u ≥ 0) is a Lévy process but

not a compound Poisson process. Let T (t) be a pure jump subordinator without

drift with Poisson random measure given by (4). Then the subordinated Lévy

process Y (t) has jumps at the random points zi = θi, i = 1, 2, . . . with altitudes

ζi = X(γi) and the Poisson random measure of Y (t) is given by (6).

P r o o f. If X(t) has continuous paths, then it is obvious that the only
discontinuity of subordinated process can be caused by the jumps times of the
subordinator. Otherwise, the both X(u) and T (t) have countable number of
jumps. Since T (t) is purely discontinuous, its range has zero Lebesgue measure.
The independence of X(u) and T (t) ensures that a.s. no jump time of X(u) lies



198 Penka Mayster

in the closed range of T (t). This way, the discontinuity of X(u) can not influence
discontinuity of Y (t). If X(u) has an unbounded Lévy measure then X(u) is
strictly increasing or decreasing. Consequently, the jumps altitude is equal to
ζi = X(γi). Namely, by the strong Markov property and right continuity of the
paths, we have:

ζi = Y (zi) − Y (zi−) = X(T (θi)) −X(T (θi−)) =

X(T (θi−) + γi) −X(T (θi−)) = X(γi). 2

Theorem 4.3. Suppose that X = (X(u), u ≥ 0) is a compound Poisson

process without drift taking the form

X(u) =
∑

ηi≤u

ξi1[ηi,∞),

defined by its Poisson random measure (5). Let T (t) be a pure jump subordinator

without drift with Poisson random measure given by (4). Then the subordinated

Lévy process (Y (t), t ≥ 0) is a compound Poisson process defined by its Poisson

random measure (6). The random variables representing the inter-arrival times

(z1, zi+1 − zi, i = 1, 2, . . . )

are iid with exponential distribution and z1 is a first passage time of T (t) the

random level η1, i.e. z1 = L(η1). The sequence (zi, i = 1, 2, . . . ) is a subsequence

of the sequence (θi, i = 1, 2, . . . ). The random variables (ζi, i = 1, 2, . . . ) are iid

and the amplitude ζ1 = X(T (z1)).

P r o o f. Let the total mass of the Lévy measure ΠX(−∞,∞) = m. Ob-
viously, in this case, the total mass of the Lévy measure ΠY (−∞,∞) = ψT (m).
When (X(u), u ≥ 0) is a compound Poisson process, then

P (X(u) = 0) = e−um > 0.

Since X and T are independent, there is a positive probability that (Y (t) = 0,
t > 0), namely:

P (Y (t) = 0) = E[P (X(T (t)) = 0|T (t))] = E[e−mT (t)] = e−tψT (m).

Consequently, any randomness of T (t) before it passes the level η1 given by the
first jump time of X(u) is not reflected by Y (t) = X(T (t). The jump amplitude
of Y (t) is determined by its Lévy measure:

ΠY (dy) =

∫ ∞

0
pX(u, dy)ΠT (du). 2
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See our significant example of Neyman process in the previous section.

5. Subordinated Markov branching processes. Subordinated
Markov branching processes (Y (t), t ≥ 0) and the ground MBP (X(u), u ≥ 0)
are described by the general pure jump Markov processes, [12, page 193] and
[13, page 249]. They are right-continuous, piece-wise constant. All pure jump
Markov processes with parameters {c(x),K(x, y)} are defined by the sequence
of the jump times τ1, τ2, . . . and the jumps amplitude Υ(x). The jump Υ(x)
is independent of the past and has distribution that depends only on x. If the
process is in the state x then it stays there for an exponential length of time τx

with mean
1

c(x)
after which it jumps from x to a new state x+ Υ(x), where

P (Υ(x) ≤ y) = K(x, y).

The jump transition kernel is defined by:

c(x)Px(X(τx) ≤ y) = c(x)P (x+ Υ(x) ≤ y) = c(x)K(x, y − x).

The rate function c(x) is always non-negative. If c(x) is constant, c(x) = c, the
process is called pseudo Poisson process, see [12, page 191]. For the integer-valued
pure jump Markov processes the kernels may be specified by

K(k, j) = P (Υ(k) = j).

The transition probabilities verify the following Kolmogorov backward equation:

(7)
d

dt
Pkj(t) = c(k)

{

∞
∑

i=0

P (k + Υ(k) = i)Pij(t) − Pkj(t)

}

.

Let X = (X(t), t ≥ 0), X(0) = 1, be a Markov branching process. Any Markov
branching process is an integer-valued Markov chain determined by the random
variable τ exponentially distributed representing the life-time of particles and
the integer-valued random variable ξ representing the number of the off-springs
particles with probability law

p(B) = P (ξ ∈ B), pk = P (ξ = k)

and probability generating function

h(s) = Esξ, |s| ≤ 1.
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Let

P (τ > t) = exp(−at).

Then the jump transition kernel of the MBP (X(t), t ≥ 0) is given by

cX(k) = ka,KX (k,B) = p(B + 1).

Obviously, the inter-arrival times are independent exponentially distributed, but
with different rate depending on the state of the process. If X(t) = k, then
the next inter-arrival time is a minimum of k independent exponentially distrib-
uted random variables. In a growing population the rate at which jumps occur
increases with time. The amplitudes of the increments are all independent iden-
tically distributed represented by the random variable ξ − 1, i.e.

KX(k, i) = pi+1

does not depend on k. The jumps arrive, when one particle dies and gives birth
of ξ off-springs, i.e. the increment is ξ − 1. The infinitesimal generator ∆X is
defined by the probability pi−k+1:

P (k + Υ(k) = i) = P (ξ = i+ 1 − k).

The transition probabilities

Pkj(t) = P (X(t) = j|X(0) = k)

satisfy the Kolmogorov backward equation:

(8)
d

dt
Pkj(t) = ka

(

∞
∑

i=k−1

pi−k+1Pij(t) − Pkj(t)

)

.

The branching property is manifested by the convolution relation

Pkj(t) = P ∗k
1j (t),

see [1, page 106], [21, page 27].

Theorem 5.1 (Lamperti). Let X(t) be a supercritical MBP having in-

finitesimal generating function fX(s) = a(h(s) − s), with 0 < a < ∞, h(0) =
h′(0) = 0, and h′(1) <∞. Define the additive functional

S(t) =

∫ t

0
X(u)du,
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and its inverse

T (t) = S−1(t) = inf(u : S(u) = t).

Then the time scale process Y (t) = X(T (t)) is a compound Poisson process with

Bernstein function given by:

a

(

h(λ)

λ
− 1

)

.

See [1, page 125].
In the following we suppose that the random time change process T =

(T (t), t ≥ 0) is an independent subordinator without drift defined by its Bern-
stein function

(9) ψT (λ) =

∫ ∞

0+

(1 − e−λx)ΠT (dx).

Then (owing to the independence of X and T ) the subordination in the sense
of Bochner preserves the Markov properties but it disturbs the branching prop-
erties. Taking into consideration of Theorem 4.3 describing the jump-times of
the subordinated Lévy processes, we must realize that the subordinated MBP
even in the case of Poisson subordinator is not a pseudo Poisson process, see [12,
page 191]. The jump times zn of Y (t) are a subsequence of the jump times θn of
the subordinator T (t). But the inter-arrival times of Y are not iid, because the
ground process is not a Lévy process. The jump times τn of the ground process
X(t) influence the trajectories of (Y (t), t ≥ 0) by the first passage time of T the
successive random levels τn. For this reason, we need the following result:

Theorem 5.2. Let T (t) be a subordintor with Bernstein function ψT (λ)
given by (9). Consider the random variable τ exponentially distributed with pa-

rameter a. Then the first passage time the random level τ is a random variable

θ exponentially distributed with parameter ψT (a).

P r o o f. Subordinator without drift does not hit any fixed level, it just
overshoot. Following the definition (2) of the first passage time and its properties
(3) we can calculate the probability of the event (θ > t).

P (θ > t) = P (L(τ) > t) =

∫ ∞

s=0
P (L(s) > t)P (τ ∈ ds).

Integration by parts transforms the last integral into the Laplace transform of T .
∫ ∞

s=0
P (T (t) < s)ae−asds = −

∫ ∞

s=0

∫ s

x=0
pT (t, dx)d(e−as) =

∫ ∞

s=0
e−aspT (t, ds).
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Obviously,

lim
s↓0

e−as
∫ s

x=0
pT (t, dx) = 0. 2

Denote the main characteristics of Y (t) by:

KY (k, i) = K(k, i),

cY (k) = C(k),

and the transition probability of Y (t)

Pki(t) = P (Y (t) = i|Y (0) = k).

Theorem 5.3. Let X(t) be a MBP with transition probabilities Pkj(t)
satisfying the equation (8). Let T (t) be an independent subordinator with a

Bernstein function ψT (λ) given by (9). Then the subordinated Markov process

Y (t) = X(T (t)) has a jump transition kernel C(k)K(k, j) given by:

(10) C(k) = ψT (ka),K(k, i − k) =

∫ ∞

0
Pki(u)ΠT (du).

The transition probabilities Pkj(t) satisfy the following Kolmogorov back-

ward equation:

(11)
d

dt
Pkj(t) = ψT (ka)

{

∞
∑

i=0

∫ ∞

0
Pki(u)ΠT (du)Pij(t) − Pkj(t)

}

.

P r o o f. Let T (t) = u ∈ [τm, τm+1), then u is a stoping time. The length
of the interval [u, τm+1) is exponentially distributed with the same parameter
as the length of the interval [τm, τm+1). Let X(u) = k then the length of the
interval [τm, τm+1) is exponentially distributed with parameter ka. Following
the previous theorem the process Y (t) will stay at the point k a random time
exponentially distributed with parameter ψT (ka). Suppose, the first passage time
of T across the random level τm+1 is realize by the jump γlδ(t − θl). Then the
random point θl belongs to the sequence {z1, z2, . . . }, representing the jump times
of the subordinated process Y (t). Denote the values of the subordinator at the
successive points by: T (θl−1) = ul−1 and T (θl) = ul. The subordinator is right
continuous, consequently:

T (θl−) = T (θl−1), T (θl) = ul = ul−1 + γl.
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Let X(ul) = i, knowing that X(ul−1) = k. The jumps amplitude is given
by

Υ(k) = X(ul) −X(ul−1) = i− k

and is determined by the evolution of the MBP X(t) during the time interval
with length γl, starting from the point k. Owing to the stationarity of the sub-
ordinator’s increments, we have:

K(k, i− k) =

∫ ∞

0
Pki(u)ΠT (du). 2

Remark 5.1 (The semigroup approach). Denote by

Gtf(x) = Exf(X(t)),Gtf(x) = Exf(Y (t))

for any measurable function f(x). The infinitesimal generator ∆X of the pure
jump Markov processes is given by the following

∆Xf(x) = c(x)E{f(x + Υ(x)) − f(x)}.

The infinitesimal generator ∆Y of the subordinated Markov processes is given by
the following

∆Y f(x) =

∫ ∞

0
(Guf(x) − f(x))ΠT (du).

The integral

∫ ∞

0
is defined by the strong limit of

∫ v

u
as u ↓ 0 and v → ∞. See

[19, page 212, Theorem 32.1].

6. Randomly indexed Galton-Watson branching processes.

We consider a Galton-Watson process, [1, 21], defined by the sequence

(X(n), n = 1, 2, . . . ),X(0) = 1,

as a ground process and integer valued subordinator defined by the Poisson or
compound Poisson process (T (t), t ≥ 0), T (0) = 0. For example: (T (t), t ≥ 0) is
a Neyman process, Pascal process or discrete stable subordinator.

Obviously, (Y (t) = X(T (t)), t ≥ 0) is an integer-valued Markov process
starting from Y (0) = 1. We shall prove that, it is not a Lévy process, i.e. it
is not a compound Poisson process and it is not a MBP. It is a pseudo Poisson
process.
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Denote by ξ the integer-valued random variable representing the number
of the off-springs particles with probability law

p(B) = P (ξ ∈ B), pk = P (ξ = k)

and probability generating function

h(s) = Esξ, |s| ≤ 1.

Then the Galton-Watson process

X(n) =

X(n−1)
∑

i=1

ξi,

where ξi are independent identically distributed (iid) random variable with the
same law as ξ. The probability generating function of X(n), denoted by

EsX(n) = Hn(s)

is the n-fold composition of h(s), namely:

H1(s) = h(s),Hn = Hn−1(h(s)).

Suppose the total mass of the Lévy measure to the compound Poisson process is
equal to m, then the subordinator can be represented by

T (t) =
∑

θi≤t

γi1[θi,∞),

where the inter-arrival times θi+1 − θi are iid random variables exponentially
distributed with parameter m and the increments are iid integer-valued random
variables γi = γ, i = 1, 2, . . . with probability law

P (γ ∈ B) =
ΠT (B)

m
.

Particular case, the homogeneous Poisson process: the increments

γi = 1, i = 1, 2, . . . .

Randomly indexed Galton-Watson process realize the exceptional case of the
subordinated processes when the range of subordinator coincides with the set
of jump-times of the ground process, if T is a Poisson process. We shall con-
sider separately the case: subordinator is a Poisson process or compound Poisson
process.
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Theorem 6.1. Let X(n) be a Galton-Watson process and T (t) an in-

dependent subordinator represented by the Poisson process, then the subordinated

process Y (t) is a pseudo Poisson process with the following jump transition kernel:

cY (k) = m,KY (k,B) = p∗k(B + 1).

The probability generating function of the increments

Y (θn+1) − Y (θn+1−) = X(n + 1) −X(n)

is given by

Hn

(

h(s)

s

)

.

P r o o f. Obviously, in the case of Poisson subordinator, we have the
following situation: If t ∈ [θn, θn+1) then Y (t) = X(n). Let Y (t) = k, then

Υ(k) =

k
∑

i=1

(ξi − 1). 2

Theorem 6.2. Let X(n) be a Galton-Watson process and T (t) an inde-

pendent subordinator represented by the integer-valued compound Poisson process,

then the subordinated process Y (t) is a pseudo Poisson process with the following

jump transition kernel:

cY (k) = m,KY (k,B) = P ∗k(X(γ) ∈ (B + 1)).

P r o o f. In the case of compound Poisson subordinator, the range of
subordinator is included in the set of jump-times of X. The increments of Y can
be calculate as follows: If t ∈ [θn, θn+1) and Y (t) = k, then

Υ(k) =
k
∑

i=1

(Xi(γ) − 1),

whereXi are independent copies of the Galton-Watson process X starting
with one particle and integer valued random variables γi = γ, i = 1, 2, . . . are iid
with probability

P (γ = j) =
ΠT ({j})

m
.
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Consequently, the probability generating function of Υ(k), k-fixed, is










∞
∑

j=1
Hj(s)ΠT ({j})

ms











k

.

Denote by F (t, s) the probability generating function of Y (t), i.e.

F (t, s) = EsY (t).

The process Y (t) is right continuous, i.e. Y (θn+1−) = Y (θn). The probability
generating function of the increments

Υ(k) = Y (θn+1) − Y (θn), t ∈ [θn, θn+1), Y (t) = k,

is given by

F











t,

∞
∑

j=1
Hj(s)ΠT ({j})

ms











. 2
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