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Abstract. The first part of these notes contains a sketch of the elemen-
tary parts of C*-algebra theory, culminating in the two Gelfand–Naimark
theorems. The final section is a presentation of the basic facts of the theory
of weak-* closed (possibly non-selfadjoint) unital algebras containing maxi-
mal abelian selfadjoint algebras (masas), or more generally bimodules over
masas.

The following is a brief and sketchy introduction to the rudiments of the
theory of operator algebras, particularly C*-algebras. The text consists of rough
lecture notes given by the author in the summer school in Operator Theory held
in July 2011 at the University of the Aegean in Chios.

The notion of a C*-algebra is a fascinating common abstraction of the
structure of two seemingly very different objects: on the one hand, the algebra of
continuous functions on a (locally) compact space; and on the other, an algebra
of bounded operators on Hilbert space closed in the norm and under adjoints.
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The aim of the first part of these notes (sections one to five) is to describe
as briefly and as simply as possible this process of abstraction, culminating in
the two Gelfand–Naimark theorems (3.9, 5.3). In the final section we give a brief
sketch of what one can do when the ‘adjoint’ operation is not available, at least in
the case where there exists a ‘parametrization’ in terms of ‘(possibly continuous)
coordinates’.

Many proofs are only sketched and many others are omitted altogether.

1. C*-algebras: basics.
1.1. BpHq.
In these notes, the action takes place via bounded operators on Hilbert

space – either directly, or indirectly through representations by operators of more
abstract structures (e.g. C*-algebras).

The space of all bounded linear operators T : H Ñ H on a Hilbert space
H is denoted BpHq. It is complete under the norm

}T } “ supt}Tx} : x P b1pHqu

(here b1pX q denotes the closed unit ball of a normed space X ) and is an algebra
under composition. Moreover, because it acts on a Hilbert space, it has additional
structure: an involution T Ñ T ˚ defined via

xT ˚x, yy “ xx, Tyy for all x, y P H.

This satisfies
}T ˚T } “ }T }2 the C˚ property.

These fundamental properties of BpHq (norm-completeness, involution, C˚ prop-
erty) motivate the definition of an abstract C*-algebra.

1.2. C*-algebras.

Definition 1. (a) A Banach algebra A is a complex algebra equipped
with a complete norm which is sub-multiplicative:

}ab} ď }a} }b} for all a, b P A.

(b) A C*-algebra A is a Banach algebra equipped with an involution1 a Ñ a˚

satisfying the C*-condition

}a˚a} “ }a}2 for all a P A.

1that is, a map on A such that pa ` λbq˚ “ a
˚ ` λ̄b

˚
, pabq˚ “ b

˚
a

˚
, a

˚˚ “ a for all a, b P A

and λ P C
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If A has a unit 1 then necessarily 1˚ “ 1 and }1} “ 1. If not, adjoin a
unit:

Definition 2. If A is a C*-algebra let

A„ “: A ‘ C

with pa, zqpb, wq “: pab` wa ` zb, zwq pa, zq˚ “: pa˚, z̄q
}pa, zq} “: supt}ab` zb} : b P b1Au

Thus the norm of A„ is defined by identifying each pa, zq P A„ with the operator
Lpa,zq : A Ñ A : b Ñ ab` zb acting on the Banach space A.

Definition 3. A morphism φ : A Ñ B between C*-algebras is a linear
map that preserves products and the involution. We will see later that morphisms

are automatically contractive (hence continuous), and that 1-1 morphisms are iso-
metric (this is one instance where the algebraic structure ‘forces’ the topological
behaviour).

Basic Examples:

• C, the set of complex numbers.

• CpKq, the set of all continuous functions f : K Ñ C, where K is a compact
Hausdorff space. With pointwise operations, f˚ptq “ fptq and the sup
norm, CpKq is an abelian, unital algebra.

• C0pXq, where X is a locally compact Hausdorff space. This consists of all
functions f : X Ñ C which are continuous and ‘vanish at infinity’, meaning
that given ε ą 0 there is a compact Kf,ε Ď X such that |fpxq| ă ε for all
x R Kf,ε. With the same operations and norm as above, this is an abelian
C*-algebra, which is nonunital if and only if X is non-compact.

We will see later psection 3.2q that all abelian C*-algebras can be represented
as C0pXq for suitable X.

• MnpCq, the set of all nˆnmatrices with complex entries. With matrix oper-
ations, A˚ “ conjugate transpose, and }A} “ supt}Ax}2 : x P ℓ2pnq, }x}2 “
1u, this is a non-abelian (when n ą 1), unital algebra.

• BpHq is a non-abelian, unital C*-algebra; it is infinite dimensional when H

is infinite-dimensional.

We will see later psection 5.2q that all C*-algebras can be represented as
closed selfadjoint subalgebras of BpHq for suitable H.
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• KpHq “ tA P BpHq : Apb1pHqq compact in Hu: the compact operators.
This is a closed selfadjoint subalgebra of BpHq, hence a C*-algebra. It is
nonabelian and non-unital when H is infinite-dimensional.

Non-examples:

• ApDq “ tf P CpDq : f |D holomorphicu : the disc algebra (here D “ tz P C :
|z| ă 1u).
This is a closed subalgebra of the C*-algebra CpDq but not a *-subalgebra,
because if f P ApDq then f̄ is not holomorphic unless it is constant; thus the
diagonal ApDq XApDq˚ “ C1 is trivial: ApDq is an antisymmetric algebra.

• Tn “ tpaijq P MnpCq : aij “ 0 for i ą ju: the upper-triangular matrices.

A closed subalgebra of the C*-algebra MnpCq but not a *-subalgebra. Here
the diagonal Tn X T ˚

n is Dn, the diagonal matrices: a maximal abelian
selfadjoint algebra pmasaq in Mn.

• MoopCq: infinite matrices with finite support.

To define a norm pand operationsq, consider its elements as operators acting
on ℓ2pNq with its usual basis. This is a selfadjoint algebra and its norm
satisfies the C*-condition, but it is not complete.

Its completion is K, the set of compact operators on ℓ2: a non-unital, non-
abelian C*-algebra.

2. Examples and constructions.
• If X is an index set and A is a C*-algebra, the Banach space ℓ8pX,Aq of
all bounded functions a : X Ñ A (with norm }a}8 “ supt}apxq}

A
: x P Xu)

becomes a C*-algebra with pointwise product and involution.
Its subspace c0pX,Aq consisting of all a : X Ñ A with2 lim

xÑ8
}apxq}

A
“ 0 is a

C*-algebra.
The subset c00pX,Aq consisting of all functions of finite support is a dense
*-subalgebra, which is proper when X is infinite.

• If X is a locally compact Hausdorff space then CbpX,Aq is the *-subalgebra
of ℓ8pX,Aq consisting of continuous bounded functions. It is closed, hence a
C*-algebra. (This is denoted CpX,Aq when X is compact.)

2i.e. such that for each ε ą 0 there is a finite subset Xε Ď X s.t. x R Xε ñ }apxq}
A

ă ε
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• The C*-algebra C0pX,Aq consists of those f P CbpX,Aq which ‘vanish at
infinity’, i.e. such that the function t Ñ }fptq}

A
is in C0pXq (see Basic Examples).

More generally, consider subsets of the Cartesian product
ź

Ai of a family of

C*-algebras:

Definition 4. piq The direct sum A1 ‘ ¨ ¨ ¨ ‘ An of C*-algebras is a
C*-algebra under pointwise operations and involution and the norm

}pa1, . . . , anq} “ maxt}a1} , . . . , }an}u.

piiq Let tAiu be a family of C*-algebras. Their direct product or ℓ8-direct

sum
à
ℓ8

Ai is the subset of the Cartesian product
ź

Ai consisting of all paiq P
ź

Ai such that i Ñ }ai}Ai
is bounded. It is a C*-algebra under pointwise oper-

ations and involution and the norm

}paiq} “ supt}ai}Ai
: i P Iu.

piiiq The direct sum or c0-direct sum
à
c0

Ai of a family tAiu of C*-algebras

is the closed selfadjoint subalgebra of their direct product consisting of all paiq Pź
Ai such that i Ñ }ai}Ai

vanishes at infinity.

In case Ai “ A for all i, the direct product is just ℓ8pI,Aq and the direct
sum is c0pX,Aq.

• IfA is a C*-algebra and n P N, the spaceMnpAq of all matrices raijs with entries

aij P A becomes a *-algebra with product raijsrbijs “ rcij s where cij “
ÿ

k

aikbkj

and involution raijs˚ “ rdijs where dij “ a˚
ji. It is of course non-commutative

when n ą 1.

But how does one define a norm on MnpAq satisfying the C*-condition?

Consider two special cases:

• Suppose A is C0pXq. Then we may identify MnpC0pXqq (as a *-algebra) with
C0pX,Mnq, i.e. Mn-valued continuous functions on X vanishing at infinity: each
matrix rfijs P MnpC0pXqq defines naturally a function F : X Ñ Mn : x Ñ rfijpxqs
which is continuous with respect to the norm on Mn.

3

3Conversely, of course, if F : X Ñ Mn is continuous, then its entries fij given by fijpxq “
xF pxqej, eiy form an n ˆ n matrix of continuous functions.
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Thus we may define

}rfijs} “ }F }8 “ supt}rfijpxqs}
Mn

: x P Xu

and it is easy to verify that this satisfies the C*-condition, because the norm on
Mn satisfies the C*-condition.
• SupposeA is BpHq for some Hilbert space H. Then we may identifyMnpBpHqq
with BpHnq: Given a matrix raijs of bounded operators aij on H, we define an
operator A on Hn by

A

»
—–
ξ1
...
ξn

fi
ffifl “

»
—————–

ÿ

j

a1jξj

...ÿ

j

anjξj

fi
ffiffiffiffiffifl

(this identification preserves the algebraic operations, including the involution).4

Hence one defines the norm }raijs} of raijs P MnpBpHqq to be the norm }A} of
the corresponding operator on Hn.

• In order to define a C*-algebra structure on MnpAq for a general C*-algebra
A, one uses the Gelfand–Naimark Theorem (see section 5.2).

3. Spectral theory.
3.1. The spectrum.

Definition 5. If A is a unital C*-algebra and GLpAq denotes the group
of invertible elements of A, the spectrum of an element a P A is

σpaq “ σApaq “ tλ P C : λ1 ´ a R GLpAqu.

If A is non-unital, the spectrum of a P A is defined by

σpaq “ σA„ paq.

In this case, necessarily 0 P σpaq.

Proposition 3.1. The spectrum σpaq is a compact nonempty subset
of C.

4Conversely any A P BpHnq defines an n ˆ n matrix of operators aij on H by xaijξ, ηy
H

“
xAξj , ηiyHn , where ξj P H

n is the column vector having ξ at the j-th entry and zeroes elsewhere
(and ηi is defined analogously).
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S k e t c h o f p r o o f. piq σpaq is bounded: In a unital C*-algebra, if

}x} ă 1 then
ÿ

ně0

xn converges to an element y such that p1´xqy “ yp1´xq “ 1,

hence p1 ´ xq P GLpAq. The proof is the same5 as the case A “ C. Hence if

a P A and λ P C satisfies |λ| ą }a} then
›››a
λ

››› ă 1 so λ R σpaq: the spectrum is

bounded by }a}.
piiq σpaq is closed: To prove this, we prove that GLpAq is open; see

Lemma 3.2 below.

piiiq σpaq is nonempty: This is proved by contradiction: one shows that
for each φ in the Banach space dual of A, the function f : λ Ñ φppλ1 ´ aq´1q
is analytic on its domain Czσpaq and lim

|λ|Ñ8
fpλq “ 0; so if σpaq were empty, this

function would be analytic on C and vanishing at infinity, hence would be zero
by Liouville’s theorem; hence φpa´1q “ fp0q “ 0 for all φ, which is absurd by
Hahn-Banach. �

Lemma 3.2. The set GLpAq is open in A and the map x Ñ x´1 is
continuous (hence a homeomorphism) on GLpAq.

P r o o f. We have seen that if }1 ´ x} ă 1 then x P GLpAq. Thus 1 is an
interior point of GLpAq. To show that every a P GLpAq is an interior point of
GLpAq, just notice that the map x Ñ ax is a homeomorphism of GLpAq (with
inverse y Ñ a´1y) and it maps 1 to a.6

To show that inversion is continuous, let a, b P GLpAq. Then
››a´1 ´ b´1

›› “
››b´1pb ´ aqa´1

›› “
››pb´1 ´ a´1qpb´ aqa´1 ` a´1pb´ aqa´1

››

ď
››b´1 ´ a´1

›› }b´ a}
››a´1

›› `
››a´1

››2 }b´ a}

hence ››a´1 ´ b´1
›› p1 ´ }b´ a}

››a´1
››q ď

››a´1
››2 }b´ a} .

It follows that
lim
bÑa

››b´1 ´ a´1
›› “ 0. l

The spectral radius of a P A is defined to be

ρpaq “ supt|λ| : λ P σpaqu.
5since

ÿ
}xn} ď

ÿ
}x}n, the series

ÿ
x
n converges absolutely, hence (completeness!) it

converges in A

6In fact, if y P GLpAq, the ball

"
x P A : }x ´ y} ă

1

}y´1}

*
is in GLpAq.
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It satisfies ρpaq ď }a}, but equality may fail.7 In fact, it can be shown that

(1) ρpaq “ lim
n

}an}1{n .

This is the Gelfand–Beurling formula.

Exercise 3.3. Any morphism φ : A Ñ B between (non-unital) C*-
algebras extends uniquely to a unital morphism φ„ : A„ Ñ B„ by φ„pa, λq “
pφpaq, λq.

If φ : A Ñ B is a morphism, then σpφpaqq Ď σpaq Y t0u for all a P A. If
A and B are unital and φp1q “ 1 then σpφpaqq Ď σpaq for all a P A.

An element a P A is said to be normal if a˚a “ aa˚, selfadjoint if a “ a˚

and unitary if (A is unital and) u˚u “ 1 “ uu˚.

Proposition 3.4.
piq a “ a˚ ùñ σpaq Ď R

piiq a “ b˚b ùñ σpaq Ď R
`

piiiq u˚u “ 1 “ uu˚ ùñ σpuq Ď T.

P r o o f o f piiiq. We have ρpuq ď }u} “ 1 so σpuq Ď D. It remains to
show that if λ P σpuq then |λ| ě 1. Now λ ‰ 0 since u is invertible; and if |λ| ă 1,
then since σpu´1q Ď D (because ρpu´1q ď }u´1} “ 1) the element x “ pλ´1´u´1q
is invertible. But then pλ ´ uqu´1 “ λpu´1 ´ λ´1q is invertible and hence so is
λ´ u, contradiction. Hence |λ| ě 1.

P r o o f o f piq. Let uptq “ exppitaq pt P Rq (defined by the power series
which converges absolutely). Note that uptq˚ “ expp´itaq because a “ a˚. As in
the case a P R, one shows that the function t Ñ uptq is norm-differentiable and
u1ptq “ auptq “ uptqa. It follows that if fptq “ uptqup´tq then f 1ptq “ 0 for all
t P R so fptq “ fp0q “ 1 hence uptquptq˚ “ uptq˚uptq “ 1. Thus by (iii) we have
σpexp itaq Ď T.

Let λ P σpaq. Then8

exppiaq ´ exppiλq1 “ eiλpexp ipa ´ λq ´ 1q “ eiλ
8ÿ

n“1

in

n!
pa ´ λqn

“ eiλpa ´ λqb

where b P A commutes with a´λ. Thus exppiaq ´ exppiλq1 cannot be invertible.
Therefore eiλ P σpexppiaqq Ď T and so λ P R.

7Consider for instance any a ‰ 0 with a
2 “ 0.

8One can show that e´iλ exppiaq “ exp ipa ´ λq because a and λ1 commute.
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Second proof of (i). Let a “ a˚. Suppose that λ ` iµ P σpaq for some λ, µ P R;

we show that µ “ 0. If µ ‰ 0, then the element a´ pλ` iµq1 “ µ

ˆ
a´ λ1

µ
´ i1

˙

would not be invertible. But then i P σpbq where b “ a´ λ1

µ
is selfadjoint. Let

n P N. Then n` 1 P σpn1 ´ ibq because pn1 ´ ibq ´ pn` 1q1 “ ´ipb´ i1q is not
invertible. Therefore |n` 1| ď }n1 ´ ib} and hence

pn` 1q2 ď }n1 ´ ib}2 pC˚q“ }pn1 ´ ibq˚pn1 ´ ibq} pb“b˚q“
››n21 ` b2

›› ď n2 `
››b2

›› .

Thus 2n ` 1 ď
››b2

›› for all n, a contradiction.

The proof of piiq is non-trivial: see Theorem 4.7.

Lemma 3.5. If aa˚ “ a˚a then ρpaq “ supt|λ| : λ P σpaqu “ }a}.
P r o o f. Since a˚a “ aa˚, we have

}a}4 “ }a˚a}2 “ }pa˚aq˚pa˚aq} “
››pa2q˚a2

›› “ }a2}2

hence }a}2 “ }a2} and inductively }a}2n “ }a2n} for all n. Thus, by the Gelfand–

Beurling formula (1), ρpaq “ lim
››a2n

››2´n

“ }a}. �

A fundamental consequence of the C˚-property combined with complete-
ness is the following:

Proposition 3.6. The norm of a C*-algebra is determined by its alge-
braic structure. Thus if A is a *-algebra, there is at most one norm }¨} on A

such that pA, }¨}q is a C*-algebra.

P r o o f. }a}2 “ }a˚a} “ ρpa˚aq. �

Corollary 3.7. Every morphism ρ : A Ñ B between C*-algebras is
automatically contractive.

Using Gelfand Theory (see the next section) one can show that an injective
morphism is in fact an isometry.

Dependence of the spectrum on the algebra. If A is a unital C*-
algebra and B is a closed subalgebra of A containing the identity of A, then every
b P B satisfies σApbq Ď σBpbq. Indeed if λ R σBpbq then λ1 ´ b has an inverse in B

hence also in A. But equality need not hold:

For example suppose A “ CpTq, the continuous functions on the unit
circle. Let B be the subalgebra consisting of all f P A having a continuous
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extension to D which is holomorphic in D.9 Let b P B be the function bpzq “ z.

The function b´1 given by b´1pzq “ 1

z
is continuous on T, but is not in B.

It is remarkable that if B is a C*-subalgebra this cannot happen:

Proposition 3.8 (Permanence of spectrum). If A is a unital C*-algebra
and B is a C*-subalgebra of A containing the identity of A pi.e. 1A P B Ď Aq,
then every b P B satisfies

σApbq “ σBpbq.
P r o o f. It is enough to show that if b P B has an inverse in A, then this

inverse is contained in B.
Suppose first that b “ b˚. Since σBpbq Ď R, for each n P N we have

i

n
R σBpbq. Thus the elements xn “ b ´ i

n
1 are invertible in B: each x´1

n

belongs to B. But since xn Ñ b and inversion is continuous on the space GLpAq,
x´1
n Ñ b´1. Since x´1

n P B and B is closed, it follows that b´1 P B as required.
For the general case, if b P B is invertible in A, so is b˚ (verify) and hence

so is x “ b˚b. But x is selfadjoint, so by the previous paragraph x P GLpBq: if
y “ x´1, then y P GLpBq. We have yb˚b “ yx “ 1 and so

b´1 “ pyb˚bqb´1 “ pyb˚qpbb´1q “ yb˚

hence b´1 P B, which completes the proof. �

3.2. Gelfand theory for commutative C*-algebras.

Theorem 3.9 (Gelfand–Naimark 1). Every commutative C*-algebra A

is isometrically *-isomorphic to C0pÂq where Â is the set of nonzero morphisms
φ : A Ñ C which, equipped with the topology of pointwise convergence, is a locally
compact Hausdorff space. For each a P A the function â : Â Ñ C : φ Ñ φpaq is
in C0pÂq. The Gelfand transform:

A Ñ C0pÂq : a Ñ â

is an isometric *-isomorphism. The algebra A is unital if and only if Â is com-
pact.

In more detail: Â is the set of all nonzero multiplicative linear forms
(characters) φ : A Ñ C. Each φ P Â necessarily satisfies }φ} ď 1 and, when A is
unital, }φ} “ φp1q “ 1. The topology on Â is10 pointwise convergence: φi Ñ φ

iff φipaq Ñ φpaq for all a P A.

9This is isomorphic to the disc algebra.
10In fact, since Â is contained in the unit ball of the (Banach space) dual A˚ of A, this

topology is just the restriction of the w*-topology of A˚ to Â.
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When A is non-abelian there may be no characters (consider M2pCq or
BpHq, for example).

When A is abelian there are ‘many’ characters: for each a P A there exists
φ P Â such that }a} “ |φpaq|.

When A is also unital, Â is compact and A is isometrically *-isomorphic
to CpÂq.

When A is abelian but non-unital every φ P Â extends uniquely to a
character φ„ P yA„ by φ„p1q “ 1, and there is exactly one φ8 P yA„ that vanishes
on A. Thus A is *-isomorphic the algebra of those continuous functions on the
‘one-point compactification’ Â Y tφ8u of Â which vanish at φ8; this algebra is
in fact isomorphic to C0pÂq.

S k e t c h o f p r o o f i n t h e u n i t a l c a s e. We assume that A is
abelian and unital.
(a) The compact space Â. Let φ : A Ñ C be a character. Then ker φ is an
ideal, so φp1q2 “ φp1q ‰ 0 (for if φp1q “ 0 then φpaq “ φpa1q “ 0 for all a, a
contradiction), hence φp1q “ 1 . Also for all a P A we have φpaq P σpaq because
φpaq1 ´ a is in ker φ which cannot contain invertible elements, being a proper
ideal. Thus |φpaq| ď ρpaq ď }a}.

In fact the equality

p:q σpaq “ tφpaq : φ P Âu

holds; we prove this in the Appendix.
Note also that each character φ is selfadjoint:

φpa˚q “ φpaq for all a P A.

Indeed, it suffices to prove that if a “ a˚ then φpaq P R; but this is clear since
φpaq P σpaq and σpaq Ď R.

The inequality |φpaq| ď }a} shows that Â is contained in the space
ΠaPADa, the Cartesian product of the compact spaces Da “ tz P C : |z| ď }a}u;
and the product topology is just the topology of pointwise convergence. But in
fact Â is closed in this product: if φi Ñ ψ pointwise, then it is clear that ψ is
linear and multiplicative, because each φi is linear and multiplicative, and ψ ‰ 0
because ψp1q “ lim

i
φip1q “ 1; thus ψ P pA.

(b) The Gelfand map G : a Ñ â. For each a P A the function

â : Â Ñ C where âpφq “ φpaq, pφ P Âq
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is continuous by the very definition of the topology on Â. This gives a well defined
map

G : A Ñ CpÂq : a Ñ â .

If a, b P A, since each φ P Â is linear, multiplicative and *-preserving, we have

{pa ` bqpφq “ φpa ` bq “ φpaq ` φpbq “ âpφq ` b̂pφq
ypabqpφq “ φpabq “ φpaqφpbq “ âpφqb̂pφq
ypa˚qpφq “ φpa˚q “ φpaq “ âpφq

therefore

Gpa ` bq “ Gpaq ` Gpbq, Gpabq “ GpaqGpbq and Gpa˚q “ pGpaqq˚

that is, the map G is a morphism of *-algebras. Hence it is automatically con-
tractive; but in fact it can be seen directly to be isometric:

}â}8 “ supt|âpφq| : φ P Âu
“ supt|φpaq| : φ P Âu “ supt|λ| : λ P σpaqu (by :q
“ }a}

by Lemma 3.5, because a is normal since A is abelian.

(c) The Gelfand map is onto CpÂq. Consider the range GpAq: it is a
*-subalgebra of CpÂq, because G is a *-homomorphism. It contains the con-
stants, because Gp1q “ 1 (:the constant function 1). It separates the points of Â,
because if φ,ψ P Â are different, they must differ at some a P A, so

Gpaqpφq “ φpaq ‰ ψpaq “ Gpaqpψq.

By the Stone – Weierstrass Theorem, GpAq must be dense in CpÂq. But it is
closed, since A is complete and G is isometric. Hence GpAq “ CpÂq. �

Appendix: A note on characters. Let A be an abelian unital
Banach algebra, and let pA be the set of all nonzero morphisms φ : A Ñ C.

In Section 3.2, we saw that

tφpaq : φ P pAu Ď σpaq.

We wish to show that equality in fact holds.
So fix a λ0 P σpaq and let J0 “ txpa ´ λ01q : x P Au. One easily sees that J0 is
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an ideal of A, and it is proper since a´λ01 is not invertible. It is enough to find
φ P pA such that the ideal ker φ contains J0.

We will show that J0 is contained in a maximal proper ideal of A.
Remark 3.10. If J is a proper ideal of A, then }1 ´ x} ě 1 for all x P

J . In particular, the closure of a proper ideal is a proper ideal.

Indeed, if }1 ´ x} ă 1 then, as we know, x P GLpAq, so x cannot belong
to a proper ideal.

Remark 3.11. J0 is contained in a maximal proper ideal M of A,
which is therefore closed.

P r o o f. Let F be the family of all ideals J of A which contain J0 but do
not contain 1; order F by inclusion. If G Ď F is a totally ordered subset of F ,
let JG be the union of all elements of G. Of course JG contains J0 and does not
contain 1; it is easy to verify that JG is an ideal, hence it is an upper bound for
G.

Zorn’s lemma shows that there exists M P F which is maximal in the
partially ordered set pF,Ďq. Thus M is an ideal containing J0 and it is proper
because 1 R M. In fact it is a maximal proper ideal; for if N is a proper ideal
of A containing M, then it contains J0 and, since it is proper, cannot contain 1;
thus N P F , hence N “ M because M is a maximal member of F .

In particular M is closed, because its closure M is an ideal and does not
contain 1 by Remark 3.10, hence M “ M by maximality. �

Note the essential use of 1 in the above argument: in fact the conclusion
may fail in non-unital algebras: If for example A “ c0, the Banach algebra of
null sequences, then it can be shown that the ideal J “ c00 (the set of sequences
of finite support) is contained in no maximal ideal.

Now let B “ A{M. It is well known that (since M is a closed subspace)
B is a Banach space with respect to the quotient norm

}a` M} “ inft}a ` x} : x P Mu “ distpa,Mq.

Remark 3.12. A{M is a Banach algebra.

P r o o f. Of course A{M is an algebra. We have to prove that

}ab` M} ď }a ` M} }b ` M} , a, b P A.

If x, y P M then

}a` x} }b` y} ě }pa` xqpb ` yq} “ }ab` xb` ay ` xy} .
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But xb` ay ` xy P M, so }ab` xb` ay ` xy} ě }ab` M}. Thus

}a ` x} }b ` y} ě }ab ` M}

and the required inequality follows by taking the inf over x and y in M. �

Remark 3.13. B “ A{M is a division algebra with identity 1 ` M:
that is, if a` M is not the zero element 0 ` M of B, then a` M is invertible.

P r o o f. We need to find b P A so that pa ` Mqpb ` Mq “ 1 ` M,
equivalently ab` M “ 1 ` M, i.e. ab ´ 1 P M. Set

J “ aA ` M “ tab ` x : b P A, x P Mu.

This is easily seen to be an ideal of A and it clearly contains M. But it also
contains a which is not in M; hence, by maximality of M, we must have J “ A.
Thus there exists b P A and x P M so that ab ` x “ 1, in other words ab ´ 1 “
´x P M. �

Remark 3.14. If B is a division Banach algebra, there is an isomorphism
a Ñ λpaq : B Ñ C.

P r o o f. The spectrum σpaq of each a P B is nonempty. Thus there exists
λpaq P C such that a´λpaq1 is not invertible. By the last remark, a´λpaq1 “ 0,
i.e. a “ λpaq1. Now if µ P σpaq then a ´ µ1 is not invertible, hence a “ µ1 and
so µ “ λpaq.

Thus σpaq “ tλpaqu is a singleton. Therefore we have a well defined map

a Ñ λpaq : B Ñ C.

It is easy to verify that this is an injective algebra morphism: for example, a “
λpaq1 and b “ λpbq1 gives ab “ λpaqλpbq1, but then λpaqλpbq P σpabq “ tλpabqu
and so λpaqλpbq “ λpabq. �

Con c l u s i o n o f t h e p r o o f. To show that tφpaq : φ P pAu “ σpaq, we
need a character φ of A such that φpaq “ λ0. Consider a maximal ideal M of A
containing J0 and define φ : A Ñ C as follows:

φ : A Ñ B Ñ C

x Ñ x` M Ñ λpx` Mq

where λ : B Ñ C is the isomorphism of the last Remark. This is a composition
of morphisms, hence a morphism. Its kernel is precisely M, so φ ‰ 0 and, since
a´ λ01 P J0 Ď M, we have φpa ´ λ01q “ 0 i.e. φpaq “ λ0. �
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3.3. Functional calculus and spectral theorem.
3.3.1. The continuous functional calculus for selfadjoint opera-

tors. Let A be a selfadjoint11 element of the unital C*-algebra BpHq.

For any (complex) polynomial ppλq “
nÿ

k“0

ckλ
k we have a (normal) element

ppAq “
nÿ

k“0

ckA
k of BpHq. We wish to extend the map

Φ0 : p Ñ ppAq

to a map f Ñ fpAq defined on all continuous functions f : σpAq Ñ C. Since the
polynomials are dense in CpσpAqq, it is enough to prove that Φ0 is continuous in
the norm of CpσpAqq.

Theorem 3.15. If A P BpHq is selfadjoint and p is a polynomial,

}ppAq} “ supt|ppλq| : λ P σpAqu ” }p}σpAq.

In particular Φ0ppq only depends on the values of p on σpAq; thus Φ0 is
well defined on the subspace of CpσpAqq consisting of polynomial functions.

The proof of Theorem 3.15 is an immediate consequence of the fact that
the spectral radius of a normal element (ppAq is normal) equals its norm, together
with the following entirely algebraic fact:

Lemma 3.16 (Spectral mapping lemma). If A P BpHq is selfadjoint and
p is a polynomial,

σpppAqq “ tppλq : λ P σpAqu.

Definition 6. Let A “ A˚ P BpHq. The continuous functional cal-

culus for A is the unique continuous extension

Φc : pCpσpAqq, }.}σpAqq Ñ pBpHq, }.}q : f Ñ fpAq

of the map Φo : p Ñ ppAq. Thus if f is continuous on σpAq, the operator fpAq P
BpHq is defined by the limit

fpAq “ lim pnpAq
11The functional calculus can be defined for normal operators as well. We restrict to the

selfadjoint case for simplicity.
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where ppnq is any sequence of polynomials such that }pn ´ f}σpAq Ñ 0.

It is easily verified that Φc is an isometric *-homomorphism, which is
uniquely determined by the conditions Φcp1q “ I and Φcpidq “ A (where idpλq “
λ is the identity function on σpAq).

3.3.2. Connection with Gelfand theory. Keeping the notations of the
last section, let A Ď BpHq be the C*-algebra generated by A and the identity. It
is a unital, abelian C*-algebra, the norm closure of tppAq : p a polynomialu. But
this closure is precisely the set

tfpAq : f P CpσpAqqu.

We determine pA:

Given any λ P σpAq, the map φλ : A Ñ C given by

φλpfpAqq “ fpλq

is obviously a nonzero multiplicative linear functional.

Conversely, let φ P pA. Then the number λ “ φpAq is in σApAq “ σpAq

(Proposition 3.8). For any polynomial pptq “
nÿ

k“0

ckt
k, we have, since φ is linear

and multiplicative,

φpppAqq “
nÿ

k“0

ckφpAqk “ ppλq “ φλpppAqq.

But φ and φλ are continuous on A and the set tppAq : p a polynomialu is dense
in A; therefore φ “ φλ.

Thus we have a bijection

λ Ñ φλ : σpAq Ñ pA.

In fact this bijection is continuous and hence, since σpAq is compact, a homeo-
morphism. For this we have to show that if λn Ñ λ then φλnpBq Ñ φλpBq for
all B P A. Indeed, each B P A is of the form B “ fpAq for some f P CpσpAqq;
and the definition of φλ gives

φλnpBq “ φλnpfpAqq “ fpλnq Ñ fpλq “ φλpfpAqq “ φλpBq

since f is a continuous function. We summarize
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Theorem 3.17. If A is a selfadjoint operator and A “ tfpAq : f P
CpσpAqqu is the unital C*-algebra generated by A, then the map

λ Ñ φλ : σpAq Ñ pA,

where φλpfpAqq “ fpλq, is a homeomorphism. If pA is identified with σpAq via
this homeomorphism, then the functional calculus

f Ñ fpAq : CpσpAqq Ñ A

is the inverse of the Gelfand transform.

To prove the last sentence, take any B “ fpAq P A and, for any φ “ φλ P
pA, consider

B̂pφλq “ φλpBq “ φλpfpAqq “ fpλq.
So, if we identify each λ with φλ, then B̂ is identified with f .

3.3.3. The spectral theorem. If A P BpHq is selfadjoint andK “ σpAq,
the continuous functional calculus Φc : CpKq Ñ BpHq is a representation of the
(abelian) C*-algebra CpKq on H.

We will construct a ‘measure’ Ep¨q whose values are not numbers, but
projections on H, satisfying

Φcpfq “
ż

K

fpλqdEλ

for each f P CpKq and in particular

A “ Φcpidq “
ż

K

λdEλ.

In fact, this construction works for any (automatically contractive) *-representation
π : CpKq Ñ BpHq:

S k e t c h o f t h e c o n s t r u c t i o n. Fix x, y P H and consider the map

CpKq ÝÑ C : f ÝÑ xπpfqx, yy.

This is a linear functional, bounded by }x}.}y}, because

|xπpfqx, yy| ď }πpfq}.}x}.}y} ď }f}8.}x}.}y} .

By the Riesz representation theorem, there is a unique complex regular Borel
measure µx,y on K so that

(2)

ż

K

fdµx,y “ xπpfqx, yy for each f P CpKq
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satisfying12

}µx,y} ď }x}.}y}.
Now fix a Borel set Ω Ď K and consider the map

H ˆ H ÝÑ C : px, yq ÝÑ µx,ypΩq.

One shows that this is sesquilinear and bounded by 1, that is

|µx,ypΩq| ď }µx,y} ď }x}.}y}.

Therefore there is a unique bounded operator EpΩq P BpHq satisfying

xEpΩqx, yy “ µx,ypΩq for all x, y P BpHq
and }EpΩq} ď 1 for all Borel Ω Ď K.

One shows that Ep¨q is a ‘spectral measure’, that is:

1. EpΩq˚ “ EpΩq

2. EpΩ1 X Ω2q “ EpΩ1q.EpΩ2q

3. EpHq “ 0 and EpKq “ I

4. for x, y P H, the map µxy : Ω Ñ xEpΩqx, yy is a σ-additive complex-valued
set function on the Borel σ-algebra of K.

We now define integration with respect to the ‘measure’ Ep¨q: If

f “
ÿ

i

λiχΩi

is a simple Borel function (with λi P C and Ωi Ď K pairwise disjoint Borel sets
such that YΩi “ K), define

ż

K

fpλqdEλ “
ÿ

i

λiEpΩiq P BpHq.

Observe that Bˆż

K

fpλqdEλ
˙
x, y

F
“

ż

K

fdµx,y

12}µx,y} is the total variation of the measure µx,y ; it equals the norm of the corresponding
functional on CpKq.
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for all x, y P H.
One shows that the mapping f Ñ

ż
fdE is linear, and also a *-homomorphism,

that is
ż
f̄dE “

ˆż
fdE

˙˚

and

ż
fgdE “

ˆż
fdE

˙ ˆż
gdE

˙

for all simple Borel functions f, g.
One shows that

››››
ż
fdE

›››› ď supt|fpλq| : λ P Ku.

Hence the map f Ñ
ż
fdE extends uniquely to a contractive linear mapping

L8pKq Ñ BpHq, where L8pKq is the C*-algebra of all bounded Borel functions
on K. This extension is also a *-homomorphism. Finally, if f : K Ñ C is
continuous, then

Bˆż

K

fpλqdEλ
˙
x, y

F
“

ż

K

fdµx,y

“ xπpfqx, yy for all x, y P H,

and so

ż

K

fpλqdEλ “ πpfq.

This concludes the (sketch of the) construction of the spectral measure corre-
sponding to the representation π. Notice that Ep¨q is ‘regular’ in the sense that
µx,x is (by construction) a regular Borel (positive) measure for each x P H.
Uniqueness of Ep¨q follows by the uniqueness part of the Riesz representation
theorem.

We summarize:

Theorem 3.18. Every representation π of CpKq on a Hilbert space H

determines a unique regular Borel spectral measure Ep¨q on K so that
ż

K

fdE “ πpfq pf P CpKqq.

Applying this to the representation given by the continuous functional
calculus
Φc : CpσpAqq Ñ BpHq, we obtain
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Theorem 3.19. If A P BpHq is a selfadjoint operator, there exists a
unique regular Borel spectral measure Ep.q on σpAq so that

ż

σpAq
fdE “ fpAq pf P CpKqq and in particular A “

ż

σpAq
λdEλ.

Notice that in the course of the construction leading to Theorem 3.18

we have defined the operator-valued integral

ż
fdE for every bounded Borel

function. This leads to an extension of the functional calculus:

Proposition 3.20 (Borel Functional calculus). The map Φc : CpσpAq Ñ
BpHq extends uniquely to a contractive *-representation f Ñ fpAq :“

ż

σpAq
fdE

of the C*-algebra L8pσpAqq of all bounded Borel functions on σpAq. In particular,
if Ω Ď σpAq is a Borel set, χΩpAq “ EpΩq.

Remark 3.21. The spectral Theorem and the Borel functional calculus
are also valid for a normal operator A P BpHq. The proof is the same as the self-
adjoint case, provided one extends the continuous functional calculus to normal
operators.

4. Positivity.

Definition 7. An element a P A is positive (written a ě 0) if a “ a˚

and σpaq Ď R`. We write A` “ ta P A : a ě 0u.
If a, b are selfadjoint, we define a ď b by b´ a P A`.

Examples 4.1. In CpXq: f ě 0 iff fptq P R` for all t P X because
σpfq “ fpXq.

In BpHq: T ě 0 iff xTξ, ξy ě 0 for all ξ P H.

Remark 4.2. Any morphism π : A Ñ B between C*-algebras preserves
order:

a ě 0 ñ πpaq ě 0.

P r o o f. If a “ a˚ and σpaq Ď r0,`8q then πpaq˚ “ πpa˚q and

σpπpaqq Ď σpaq Y t0u Ď r0,`8q

so πpaq ě 0. �
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Remark 4.3. In a unital C*-algebra, if a “ a˚ then ´ }a}1 ď a ď }a}1.
P r o o f. Observe that }a}1 ´ a is selfadjoint and

σp}a}1 ´ aq “ t}a} ´ λ : λ P σpaqu Ď R`

because λ P R and λ ď }a} for λ P σpaq. Hence }a}1´a ě 0; the other inequality
is proved similarly. �

Proposition 4.4. Every positive element of a C*-algebra has a unique
positive square root. In fact

a P A` if and only if there exists b P A` such that a “ b2.

P r o o f. If a “ b2 where b P A`, then a “ a˚ and σpaq “ tλ2 : λ P σpbqu
by the Spectral mapping Lemma 3.16; thus σpaq Ď R` since b ě 0 and therefore
a ě 0.

Conversely, suppose a ě 0 and consider the C*-subalgebra C “ C˚paq
of A generated by a; it is *-isomorphic to the algebra CopXq for some space X
via the Gelfand transform x Ñ x̂. Note that a P C` since σCpaq “ σApaq. The
Gelfand transform and its inverse preserve order. Since a ě 0, we have â ě 0.
Look at the function

?
â P CopXq. This is the image of some b P A, which must

be positive because
?
â ě 0; also pb̂q2 “ â, so b2 “ a.

Uniqueness: Let b P A` be as in the last paragraph and suppose there
exists c P A` which also satisfies c2 “ a. Observe that ac “ ca. Since b is in
C˚paq, it is a limit of polynomials in a, so it follows that bc “ cb. Now consider
the C*-algebra C˚pb, cq: it is abelian and contains a, so we may view b, c, a as
continuous functions on the same space and then it is clear that b “ c. �

Proposition 4.5. For any C*-algebra the set A` is a cone:

a, b P A`, λ ě 0 ùñ λa P A`, a ` b P A`.

P r o o f. The first assertion is immediate from the definition of positivity.
Hence, for the second one, passing to the unitisation if necessary, it is enough to

assume that 0 ď a ď 1 and 0 ď b ď 1 and prove that
a` b

2
ě 0.

But we have the following characterization:

Lemma 4.6. In a unital C*-algebra, if x “ x˚ and }x} ď 1, then

x ě 0 ðñ }1 ´ x} ď 1.
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Thus if a and b are positive contractions then
a ` b

2
is a selfadjoint con-

traction and

››››1 ´ a ` b

2

›››› “ 1

2
}p1 ´ aq ` p1 ´ bq} ď 1

2
p}1 ´ a} ` }1 ´ b}q ď 1 so

that
a` b

2
ě 0, completing the proof of the Proposition.

P r o o f o f t h e L emma. Considering the C*-algebra generated by x
and 1, there is no loss in assuming that x is a continuous function on a compact
set. Then the Lemma is just an application of the triangle inequality: The
assumption is that ´1 ď xptq ď 1 for all t and we need to conclude that

xptq ě 0 ðñ |1 ´ xptq| ď 1.

But this is obvious!

We now have the machinery to complete the proof of Proposition 3.4:

Theorem 4.7. In any C*-algebra, any element of the form a˚a is posi-
tive.

P r o o f. Of course a˚a is selfadjoint.13 So it can be written

a˚a “ b´ c where b, c ě 0, bc “ 0

(to see this, consider a˚a as a function and let b and c be its positive and negative
parts).
We will show that c “ 0.

Let x “ ca˚. Observe that

xx˚ “ ca˚ac “ cpb´ cqc “ ´c3

and so, since c ě 0,
´xx˚ P A`.

On the other hand, if we write x “ u` iv with u, v selfadjoint, we find

xx˚ ` x˚x “ 2u2 ` 2v2 P A`

since A` is a cone. Again using the fact that A` is a cone, we conclude that

x˚x “ ´xx˚ ` pxx˚ ` x˚xq P A`.

13If a were normal, we could consider it as a function â on a locally compact space, and then
we could conclude that a

˚
a corresponds to the function â

˚
â “ |â|2 which is nonnegative; the

difficulty is that a need not lie in an abelian C*-algebra.
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Thus we have

σpx˚xq Ď R` and σpxx˚q Ď R´.

But in any unital algebra we have σpkhq Ď σphkq Y t0u.14
It follows that σpxx˚q “ t0u. Thus }xx˚} “ 0 (xx˚ is selfadjoint) showing

that ´c3 “ xx˚ “ 0 and so c “ 0. �

5. The Gelfand–Naimark theorem.
5.1. The GNS construction.

Definition 8. A state on a C*-algebra A is a positive linear map φ :
A Ñ C of norm 1, i.e. such that φpa˚aq ě 0 for all a P A and }φ} “ 1. A state
is called faithful if φpa˚aq ą 0 whenever a ‰ 0.

Note. When A is unital and φ is positive, }φ} “ φp1q.

Examples 5.1. On BpHq,
‚ the map φpT q “ xTξ, ξy (where ξ P H is a unit vector)

‚ the map ψpT q “
ÿ

i

xTξi, ξiy where
ÿ

}ξi}2 “ 1 (called a ‘density matrix’

in physics).

On CpKq,
‚ the map φpfq “ fptq for t P K
‚ the map ψpfq “

ż
fdµ for a probability measure µ.

For a C*-algebra A, if π : A Ñ BpHq is a representation and ξ P H a unit vector,
the map φpaq “ xπpaqξ, ξy.

In fact, every state on a C*-algebra arises as in the last example.

Theorem 5.2 (Gelfand, Naimark, Segal). For every state φ on a C*-
algebra A there is a triple pπφ,Hφ, ξφq where πφ is a representation of A on a
Hilbert space Hφ and ξφ P Hφ a cyclic15 unit vector such that

φpaq “ xπφpaqξφ, ξφy for all a P A.

The GNS triple pπφ,Hφ, ξφq is uniquely determined by this relation up to unitary
equivalence.

14Indeed if λ R σphkq is nonzero then the element y “ λ
´1

1`λ
´1

kpλ1´ hkq´1
h satisfies

ypλ1 ´ khq “ pλ1 ´ khqy “ 1 and so λ R σpkhq.
15i.e. such that πφpAqξφ is dense in Hφ.
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Motivation: the abelian case. Consider a state φ on A “ CpKq. By
the Riesz representation theorem, there is a unique positive Borel measure µ on
K so that

φpfq “
ż

K

fdµ for all f P CpKq.

Define the seminorm

~f~ “
ˆż

K

|f |2dµ
˙1{2

“ φp|f |2q1{2, f P CpKq.

The set Nφ “
"
f P CpKq :

ż
|f |2dµ “ 0

*
is a subspace of CpKq (it consists of

all f P CpKq that vanish µ-a.e.) and the seminorm ~ ¨ ~ induces a norm, }¨}2 on
H0 :“ CpKq{Nφ. The completion is of course just the Hilbert space L2pK,µq.

We may represent the C*-algebra A on this Hilbert space by observing
that for each f P A the map CpKq Ñ CpKq : g Ñ fg preserves Nφ (it is a (left)
ideal of A) and hence induces a map

π0pfq : H0 Ñ H0 : rgs Ñ rfgs

(here rgs denotes the coset g `Nφ). But this map is bounded in the norm }¨}2:

}π0pfqrgs}22 “ }rfgs}22 “
ż

|fg|2dµ ď sup |f |2
ż

|g|2dµ “ }f}28 }rgs}22

and hence extends to a bounded operator πpfq on L2pK,µq (: the operator of
multiplication by f). It is now easy to check that π : A Ñ BpL2pK,µqq is a
representation. Note finally that the vector ξφ :“ r1s is cyclic for π (indeed
πpAqξφ “ trf1s : f P Au “ H0) and satisfies

xπpfqξf , ξf y “
ż

pf1q1dµ “
ż
fdµ “ φpfq

for all f P A.

P r o o f o f t h e Th e o r em (s k e t c h). Assume for simplicity that A

is unital. Define the sesquilinear form

xa, byφ “ φpb˚aq, a, b P A.

The set
Nφ “ ta P A : φpa˚aq “ 0u
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is a left ideal of A. This follows from the Cauchy–Schwarz inequality

|φpb˚aq|2 ď φpa˚aqφpb˚bq, a, b P A.

In particular
(a) Nφ is a linear subspace of A and the quotient H0 “ A{Nφ acquires

the scalar product
xras, rbsy “ φpb˚aq, a, b P A.

(b) For each a P A the map b Ñ ab leaves Nφ invariant, so it induces a
linear map

π0paq : H0 Ñ H0 : rbs Ñ rabs.
Now observe that the map π0paq is bounded on pH0, }¨}q (where }rbs}2 “ xrbs, rbsy “
φpb˚bq). Indeed, if rbs, rcs are in H0,

| xπ0paqrbs, rcsy |2 “ | xrabs, rcsy |2 “ |φpc˚abq|2

ď φpc˚cqφppabq˚abq “ φpc˚cqφpb˚a˚abq
“ φpc˚cqφbpa˚aq where φbpxq “ φpb˚xbq
ď φpc˚cq }φb} }a˚a} “ φpc˚cqφbp1q }a}2

“ φpc˚cqφpb˚bq }a}2 “ }rcs}2 }rbs}2 }a}2

(where we have used the fact that φb is a positive linear form and its norm is
φbp1q).

So π0paq extends to a bounded operator πpaq on the completion Hφ of
H0. It is easy to see that the map

π : A Ñ BpHφq : a Ñ πpaq

is a *-representation (it suffices to verify that π0 is a *-homomorphism). Finally,
setting ξφ “ r1s P Hφ (a unit vector), we have πpAqξφ “ tπpaqr1s : a P Au “
tras : a P Au “ H0, which is dense in Hφ and

xπpaqξφ, ξφy “ xras, r1sy “ φp1˚aq “ φpaq. l

5.2. The universal representation.

Theorem 5.3 (Gelfand, Naimark). For every C*-algebra A there exists
a representation pπ,Hq which is one to one pcalled faithful).

The i d e a o f t h e p r o o f. We may adjoin an identity, if necessary;
so we may assume A unital. Let SpAq be the set of all states. For each φ P SpAq
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consider the triple pπφ,Hφ, ξφq; ‘adding up’ all these representations, we obtain
a representation pπ,Hq.

More precisely:

The space H consists of all families pxφqφPSpAq of vectors xφ P Hφ such

that
ÿ

φ

}xφ}2
Hφ

ă 8.16 Given a family pAφqφPSpAq of operators where Aφ P BpHφq

such that sup
φ

}Aφ} ă 8, the map A “: ‘Aφ given by Appxφqq “ pAφxφq is a well

defined bounded operator on H. Thus for each a P A, since sup
φ

}πφpaq} ď }a},

we may define the operator πpaq :“
ÿ

φ

πφpaq P BpHq; one can readily verify that

the map A Ñ BpHq : a Ñ πpaq is a *-representation of A.

It remains to prove that it is faithful. This follows from the fact (see the
following lemma) that for each nonzero a P A there exists ψ P SpAq such that
ψpa˚aq ą 0. Denoting by xψ P H the family pxφqφ with xψ “ ξψ and xφ “ 0 for
all φ ‰ ψ we have

}πpaqxφ}2
H

“ }πψpaqξψ}2 “ xπψpa˚aqξψ, ξψy “ ψapa˚aq ą 0

which proves that πpaq ‰ 0, as required.

It remains to prove the following

Lemma 5.4. For each nonzero a P A there exists ψ P SpAq such that
ψpa˚aq ą 0.

P r o o f. Consider the real Banach space Ah of all selfadjoint elements of
A. The set A` is a closed convex cone in Ah and the element b :“ ´a˚a P Ah

is not in A`. By the Hahn - Banach separation theorem, there is a (real-linear)
functional ω : Ah Ñ R and a c P R such that ωpbq ă c and ωpxq ě c for all
x P A`. Note that c ď 0 because 0 “ ωp0q ě c since 0 P A`.

We claim that ωpA`q Ď R`. Indeed, if ωpyq ă 0 for some y P A` then
ωpnyq “ nωpyq ă c for large enough n P N, contradicting the fact that ωpxq ě c

for all x P A`.

We extend ω to a complex linear map ωc : A Ñ C by setting

ωcpx ` iyq “ ωpxq ` iωpyq, x, y P Ah.

16that is, such that sup
F

ÿ

φPF

}xφ}2
Hφ

ă 8, where the supremum ranges over all finite subsets

F of SpAq
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Then ωc|Ah
“ ω, hence ωc is positive and so ψ :“ ωc

}ωc}
is a state; finally

}ωc}ψpbq “ ωpbq ă c and so ψpa˚aq “ ´ψpbq ą 0 since c ď 0. �

6. Bimodules over masas.
6.1. Von Neumann algebras. Apart from the norm, BpHq is equipped

with other natural topologies.

We will concentrate on the weak* topology that BpHq has as a dual Ba-
nach space:

For ξ, η P H, we denote by ωξ,η the linear form on BpHq given by

ωξ,ηpT q “ xTξ, ηy , T P BpHq.

This is clearly bounded (by }ξ} }η}). We denote by BpHq„ the linear space
spanned by these linear forms, and by BpHq̊ its closure in the dual Banach space
of BpHq.

Each T P BpHq defines a bounded linear form φT on BpHq„ by evaluation:
φT pωq “ ωpT q, and in particular, φT pωξ,ηq “ xTξ, ηy. Conversely, each bounded
linear form φ on BpHq„ defines an operator Tφ P BpHq such that xTφξ, ηy “
φpωξ,ηq for all ξ, η P H.17

Proposition 6.1. The map T Ñ φT is an isometric isomorphism from
BpHq onto the Banach space dual of BpHq„ (and hence of its closure BpHq̊ ) with
inverse φ Ñ Tφ.

Thus BpHq acquires a weak* topology, as the dual of the Banach space
BpHq̊ : a net Ti converges to 0 in this topology if and only if ωpTiq Ñ 0 for
all ω P BpHq̊ . For norm bounded nets (in particular, for sequences), this is
equivalent to the requirement that xTiξ, ηy Ñ 0 for all ξ, η P H.

A von Neumann algebra M is a selfadjoint unital subalgebra of BpHq
which is closed in the weak* topology.

Theorem 6.2 (von Neumann’s bicommutant theorem). If A Ď BpHq is
a selfadjoint unital algebra and T P BpHq, the following are equivalent:

paq T P A2.

pbq For each ξ P H, the operator T is in the closed linear span of tAx :
A P Au.

pcq T is in the weak*-closure of A.

17because the map pξ, ηq Ñ φpωξ,ηq is a bounded sesquilinear form on H ˆ H
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For later use, note that the equivalence of (b) and (c) says that a selfad-
joint unital algebra is weak*-closed if and only if it is equal to the annihilator of
a set of vector (or rank one) functionals, i.e. functionals of the form ωξ,η.

Of course every von Neumann algebra is a C*-algebra but not conversely.
For example the algebra of compact operators on an infinite dimensional Hilbert
space is a C*-algebra, but is not weak*-closed in BpHq, hence it is not a von
Neumann algebra.

Similarly, the set of all multiplication operators tMf : f P Cpr0, 1squ is a
C*-algebra C of operators on L2pr0, 1sq, but is not weak*-closed. It is not hard
to see that the bicommutant C2 is the set M “ tMf : f P L8pr0, 1squ, and this is
a von Neumann algebra.18

Abelian von Neumann algebras. It can be shown that any abelian
von Neumann algebra M is *-isomorphic (isometrically, of course) to the algebra
L8pX,µq for a suitable measure space pX,µq, where X may be taken locally
compact Hausdorff and µ a regular Borel measure. In fact the *-isomorphism is
bicontinuous for the weak* topology on M and the weak* topology on L8pX,µq
as the dual of L1pX,µq. For this reason, the theory of von Neumann algebras is
sometimes described as “non-commutative measure theory”, while the theory of
C*-algebras is thought of as “non-commutative topology”.

A maximal abelian selfadjoint algebra (masa for short) M is an abelian
selfadjoint subalgebra of some BpHq which is maximal among abelian selfadjoint
subalgebras of BpHq. It is not hard to see that maximality is equivalent to
the requirement that M “ M1; hence a masa is automatically a von Neumann
algebra.

A masa M is not only *-isomorphic, it is spatially isomorphic (that is,
unitarily equivalent) to a multiplication algebra

Mµ :“ tMf : f P L8pX,µqu Ď BpL2pµqq.

In fact whenM acts on a separable space, then it is spatially isomorphic to one of
the following: L8pr0, 1sq (with Lebesgue measure), ℓ8pnq, or L8pr0, 1sq ‘ ℓ8pnq,
for some n P N or n “ ℵ0.

The first case arises whenM has no minimal projections, the second when
each projection in M dominates a minimal projection in M, and the third when
there are n minimal projections whose sum is not the identity operator.

In this last case M is unitarily equivalent to the von Neumann algebra
Mµ ‘ Dn acting on L2pr0, 1s, µq ‘ ℓ2pnq (here µ denotes Lebesgue measure and

18In fact M “ C
1.



Operator algebras: an introduction 77

Dn denotes the set of all bounded operators on ℓ2pnq which are diagonal with
respect to the usual orthonormal basis of ℓ2pnq).

6.2. The support of an operator. In the sequel we shall assume that
all Hilbert spaces are separable. In particular the predual of BpHq, and of every
von Neumann algebra, will be separable. The material that follows is based on
[1, 7, 22] and [23].

An operator T P Bpℓ2q is said to vanish on a rectangle A ˆ B Ď N ˆ
N if P pBqTP pAq “ 0, where P pAq is the projection onto the space spanned
by the basis elements tej : j P Au. Notice that these projections belong to
the masa D Ď Bpℓ2q of all diagonal operators. Thus D codifies the ‘coordinate
system’ induced by the usual basis of ℓ2. More generally, every masa M Ď BpHq
can be said to introduce a ‘coordinate system’: After a unitary equivalence,
we may identify H with L2pX,µq and M with the multiplication masa Mµ of
L8pX,µq; the ‘coordinate system’ is indexed by X. In this representation, we
say that an operator T P BpHq vanishes on a Borel rectangle A ˆB Ď X ˆ X if
P pBqTP pAq “ 0, where P pAq is the projection onto the space of all f P L2pX,µq
that vanish almost everywhere on Ac; thus P pAq is an element of M, namely the
multiplication operator corresponding to χA.

Definition 9. We say that a set of operators T Ď BpHq is supported in
a set Ω Ď X ˆX if P pBqTP pAq “ 0 for all T P T whenever Ω X pAˆBq “ H.

If Ω is a measurable set of positive product measure, then it supports
nonzero operators, for example any Hilbert-Schmidt operator whose kernel van-
ishes almost everywhere (with respect to product measure) on Ωc. However even
sets of product measure zero can support nonzero operators: for example the
diagonal ∆ “ tpx, xq : x P r0, 1su supports the identity operator, as well as any
multiplication operator Mf with f P L8pr0, 1sq.

A set Ω Ď XˆX is said to be marginally null if it is contained in a union
pNˆXqYpXˆMq, where µpNq “ µpMq “ 0. Such a set cannot support a nonzero
operator T , because pN c ˆM cq X Ω “ H whereas P pM cqTP pN cq “ T ‰ 0.

One would like to define ‘the support’ of a set T of operators to be the
complement of the union of the family E all Borel rectangles on which T vanishes.
However this union is in general non-measurable. The way around this difficulty is
the following: there exists a countable set tEnu Ď E whose union E (a measurable
set) ‘almost contains’ every Borel rectangle AˆB P E , in the sense that pAˆBqzE
ismarginally null. Thus Ec ‘almost contains’ every subset of XˆX supporting T .

Definition 10. The complement Ec of the union of the rectangles in
tEnu is defined to be the support of T and is denoted suppT .
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Let us call two subsets E,F of X ˆ X marginally equivalent (written
E » F ) if their symmetric difference is marginally null; let us call a subset E
of X ˆ X ω-open if it is marginally equivalent to a countable union of Borel
rectangles; the complements of ω-open sets are of course called ω-closed sets.
Thus suppT is ω-closed; it is uniquely determined (up to marginal equivalence)
and is the smallest ω-closed set supporting T .

6.3. Masa bimodules, reflexivity and operator synthesis. Fix any
set Ω Ď X ˆ Y . The set of all operators which are supported in Ω is denoted
MmaxpΩq.

This is easily seen to be a weak-* closed linear space. Also, it is a bimodule
over the masa M: indeed if T is supported in Ω, then so is MfTMg, for every
Mf ,Mg in the masa M.

It is not hard to see that MmaxpΩq is reflexive in the sense of Loginov-
Shulman [17]; that is, MmaxpΩq is equal to the annihilator of a set of rank one
functionals.19 The support of MmaxpΩq is an ω-closed set, it contains Ω and is,
up to marginally null sets, the smallest ω-closed set containing Ω; it is called the
ω-closure of Ω.

It can be shown conversely that if an M-bimodule T is reflexive, then it
is necessarily of the form T “ MmaxpΩq, where Ω can be chosen ω-closed; in fact,
Ω is the support of T .

Thus there is a bijective correspondence between reflexive M-bimodules
and ω-closed subsets of X ˆX.

Note that, in case X comes equipped with a topology, the support of a
masa bimodule cannot always be chosen to be topologically closed. For exam-
ple, there is a reflexive M-bimodule U Ă BpL2pr0, 1sq (where M is the masa of
L8pr0, 1sq) such that the smallest closed subset of r0, 1s ˆ r0, 1s supporting U is
the whole of r0, 1s ˆ r0, 1s, although U ‰ BpL2pr0, 1sq.20

We have seen that for unital and selfadjoint operator algebras, closure
in the weak-* topology automatically implies reflexivity (von Neumann’s bicom-
mutant theorem, 6.2). For non-selfadjoint algebras this is no longer true: the
simplest example is the algebra of all 2 ˆ 2 complex matrices of the form

“
a b
0 a

‰
;

but this algebra is not a masa bimodule. What happens in the masa bimodule
case?

19Indeed, MmaxpΩq is the annihilator of the set of all functionals ωP pAqf,P pBqg , where f, g P
L

2pX,µq are arbitrary and A,B are Borel subsets of X satisfying pA ˆ Bq X Ω “ H.
20One can take U “ tM ` PXP : M P M, X P BpHqu where P “ P pAq and A Ď r0, 1s is

chosen so that both A and A
c intersect every open set in a set of nonzero Lebesgue measure.
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If U Ď BpHq is a weak-* closed subspace which is a bimodule over a
discrete masa D (so that H may be realized as ℓ2 and D as the algebra of all
diagonal matrices), then it is automatically (and trivially) reflexive: its support
Ω is the complement of the set of all pairs pm,nq P N ˆ N such that um,n “ 0
for every U “ rum,ns in U ; hence, since ωen,empUq “ um,n, U is the annihilator of
all rank one functionals tωen,em : pm,nq P Ωcu; equivalently, every matrix which
vanishes in Ωc must be in U , and so U “ MmaxpΩq.

When the masa M is not generated by its minimal projections, the situ-
ation is more complex. Arveson [1] was the first to exhibit a weak-* closed masa
bimodule U with support Ω for which U ‰ MmaxpΩq. He called this phenomenon
failure of operator synthesis, as his example was based on the failure of spectral
synthesis in the group algebra L1pR3q.

He proved21 that any weak-* closed masa bimodule U with support Ω lies
between two extremal weak-* closed masa bimodules: MminpΩq Ď U Ď MmaxpΩq.

The predual approach [22]. When the masa M is identified with the
multiplication algebra of L8pX,µq acting on H “ L2pX,µq, every element ω P

BpHq„ is identified with a function on X ˆX; indeed ω “
nÿ

k“1

ωfk,gk corresponds

to the function

Fωps, tq “
nÿ

k“1

fkpsqḡkptq, ps, tq P X ˆX.

In fact every element ω P BpHq˚ admits a representation ω “
8ÿ

k“1

ωfk,gk with

ÿ

k

}fk} }gk} “ }ω} ă 8 and hence defines the function

Fωps, tq “
8ÿ

k“1

fkpsqḡkptq, ps, tq P X ˆX

where the series converges marginally almost everywhere on X ˆ X, that is for
all ps, tq P X ˆ X outside a marginally null set. Two functions define the same
element of BpHq˚ if and only if they agree marginally almost everywhere.

The space T pXq of all (marginal equivalence classes of) functions onXˆX
of the above form, equipped with the norm }¨}t inherited from BpHq˚ coincides

21for the separably acting unital algebra case



80 Aristides Katavolos

with the projective tensor product L1pX,µqpbL1pX,µq. Given any ω-closed set
Ω Ď X ˆX we consider the subspaces

ΦpΩq “ th P T pXq : h “ 0 marginally a.e. on Ωu
Ψ0pΩq “ th P T pXq : h “ 0 marginally a.e. in an ω-open neighbourhood of Ωu

where an ω-open neighbourhood of Ω is a countable cover of Ω by Borel rectan-
gles. It can be shown that the annihilator of Ψ0pΩq in BpHq is MmaxpΩq, while
the annihilator of ΦpΩq is the minimal weak-* closed bimodule MminpΩq having
support Ω. This leads to the

Definition 11. An ω-closed set Ω is said to satisfy operator synthesis if
MminpΩq “ MmaxpΩq, equivalently is every h P T pXq that vanishes (marginally
a.e.) on Ω can be approximated (in the norm }¨}t) by elements of T pXq vanishing
in an ω-open neighbourhood of Ω.

The investigation of conditions that imply operator synthesis is an active
area of research, with close connections to harmonic analysis. We refer the reader
to the contribution of I. G. Todorov [27] in these proceedings.
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