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ABSTRACT. The first part of these notes contains a sketch of the elemen-
tary parts of C*-algebra theory, culminating in the two Gelfand—Naimark
theorems. The final section is a presentation of the basic facts of the theory
of weak-* closed (possibly non-selfadjoint) unital algebras containing maxi-
mal abelian selfadjoint algebras (masas), or more generally bimodules over
masas.

The following is a brief and sketchy introduction to the rudiments of the
theory of operator algebras, particularly C*-algebras. The text consists of rough
lecture notes given by the author in the summer school in Operator Theory held
in July 2011 at the University of the Aegean in Chios.

The notion of a C*-algebra is a fascinating common abstraction of the
structure of two seemingly very different objects: on the one hand, the algebra of
continuous functions on a (locally) compact space; and on the other, an algebra
of bounded operators on Hilbert space closed in the norm and under adjoints.

2010 Mathematics Subject Classification: Primary 46L05; Secondary 47L55.
Key words: C*-algebras, Gelfand Theory; masa bimodules.
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The aim of the first part of these notes (sections one to five) is to describe
as briefly and as simply as possible this process of abstraction, culminating in
the two Gelfand-Naimark theorems (3.9, 5.3). In the final section we give a brief
sketch of what one can do when the ‘adjoint’ operation is not available, at least in
the case where there exists a ‘parametrization’ in terms of ‘(possibly continuous)
coordinates’.

Many proofs are only sketched and many others are omitted altogether.

1. C*-algebras: basics.

1.1. B(H).

In these notes, the action takes place via bounded operators on Hilbert
space — either directly, or indirectly through representations by operators of more
abstract structures (e.g. C*-algebras).

The space of all bounded linear operators T : H — H on a Hilbert space
H is denoted B(H). It is complete under the norm

IT) = sup{[T] : 2 € b1 (H)}

(here by (X) denotes the closed unit ball of a normed space X) and is an algebra
under composition. Moreover, because it acts on a Hilbert space, it has additional
structure: an involution T — T* defined via

(T*z,yy ={x,Tyy forall z,y e H.
This satisfies
|T*T| = |T|*>  the C* property.

These fundamental properties of B(H) (norm-completeness, involution, C* prop-
erty) motivate the definition of an abstract C*-algebra.

1.2. C*-algebras.

Definition 1. (a) A Banach algebra A is a complex algebra equipped
with a complete norm which is sub-multiplicative:

labll < lall o] for all a,be A.

(b) A C*-algebra A is a Banach algebra equipped with an involution' a — a*
satisfying the C*-condition

la*a| = |a|®*  for all ae A.

'that is, a map on A such that (a + A\b)* = a® + Ab¥, (ab)* = b*a™*, a** = q for all a,be A
and A\ e C
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If A has a unit 1 then necessarily 1* = 1 and ||1| = 1. If not, adjoin a

Definition 2. If A is a C*-algebra let
A= ApC
with ~ (a, z)(b,w) =: (ab + wa + zb,2w) (a,2)* =: (a*, 2)
[(a, z)| =: sup{[lab + zb| : b € by A}

Thus the norm of A~ is defined by identifying each (a,z) € A~ with the operator
Ligz : A— A:b— ab+ zb acting on the Banach space A.

Definition 3. A morphism ¢ : A — B between C*-algebras is a linear

map that preserves products and the involution. We will see later that morphisms

are automatically contractive (hence continuous), and that 1-1 morphisms are iso-
metric (this is one instance where the algebraic structure ‘forces’ the topological
behaviour).

Basic Examples:

C, the set of complex numbers.

C(K), the set of all continuous functions f : K — C, where K is a compact

Hausdorff space. With pointwise operations, f*(t) = f(¢) and the sup
norm, C'(K) is an abelian, unital algebra.

Co(X), where X is a locally compact Hausdorff space. This consists of all
functions f : X — C which are continuous and ‘vanish at infinity’, meaning
that given € > 0 there is a compact Ky, < X such that |f(z)| < e for all
x ¢ Ky.. With the same operations and norm as above, this is an abelian
C*-algebra, which is nonunital if and only if X is non-compact.

We will see later (section 3.2) that all abelian C*-algebras can be represented
as Co(X) for suitable X .

M,,(C), the set of all nxn matrices with complex entries. With matrix oper-
ations, A* = conjugate transpose, and ||A| = sup{| Az, : z € (*(n),|z], =
1}, this is a non-abelian (when n > 1), unital algebra.

B(H) is a non-abelian, unital C*-algebra; it is infinite dimensional when H
is infinite-dimensional.

We will see later (section 5.2) that all C*-algebras can be represented as

closed selfadjoint subalgebras of B(H) for suitable H.
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o K(H) = {A e B(H) : A(b1(#H)) compact in H}: the compact operators.
This is a closed selfadjoint subalgebra of B(#), hence a C*-algebra. It is
nonabelian and non-unital when H is infinite-dimensional.

Non-examples:

e A(D) = {f € C(D) : f|p holomorphic} : the disc algebra (here D = {z € C :
2| < 1}).
This is a closed subalgebra of the C*-algebra C(D) but not a *-subalgebra,

because if f € A(D) then f is not holomorphic unless it is constant; thus the
diagonal A(D) n A(D)* = C1 is trivial: A(D) is an antisymmetric algebra.

o T, = {(aij) € M,(C) : aj; = 0 for i > j}: the upper-triangular matrices.

A closed subalgebra of the C*-algebra M, (C) but not a *-subalgebra. Here
the diagonal T,, n T, is Dy, the diagonal matrices: a mazimal abelian
selfadjoint algebra (masa) in M,.

e M,,(C): infinite matrices with finite support.

To define a norm (and operations), consider its elements as operators acting
on 62(N) with its usual basis. This is a selfadjoint algebra and its norm
satisfies the C*-condition, but it is not complete.

Its completion is K, the set of compact operators on €*: a non-unital, non-
abelian C*-algebra.

2. Examples and constructions.
e If X is an index set and A is a C*-algebra, the Banach space (*(X, A) of
all bounded functions a : X — A (with norm |a|, = sup{[a(z)|, : = € X})
becomes a C*-algebra with pointwise product and involution.
Its subspace co(X,.A) consisting of all a : X — A with? xh_rgo la(z)]| 4 = 0 is a
C*-algebra.
The subset cgp(X,.A) consisting of all functions of finite support is a dense
*_subalgebra, which is proper when X is infinite.

e If X is a locally compact Hausdorff space then Cy(X,.A) is the *-subalgebra
of {*(X,A) consisting of continuous bounded functions. It is closed, hence a
C*-algebra. (This is denoted C'(X,.A) when X is compact.)

*i.e. such that for each € > 0 there is a finite subset X. € X s.t. v ¢ X. = [a(z)|, <e
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e The C*-algebra Cy(X,.A) consists of those f € Cp(X,.A) which ‘vanish at
infinity’, i.e. such that the function ¢t — | f(t)| 4 is in Co(X) (see Basic Ezamples).

More generally, consider subsets of the Cartesian product H‘Ai of a family of
C*-algebras:

Definition 4. (i) The direct sum Ay @ --- ® A, of C*-algebras is a
C*-algebra under pointwise operations and involution and the norm

(@1, an)| = max{la] ... Jaa}.

(11) Let {A;} be a family of C*-algebras. Their direct product or (*-direct

sum @Ai 1s the subset of the Cartesian product H‘Ai consisting of all (a;) €
e

H‘Ai such that i — [a;| 4, is bounded. It is a C*-algebra under pointwise oper-

ations and involution and the norm

[(ai)l| = sup{flaill 4, = i € I},

(#i1) The direct sum or cp-direct sum @Ai of a family {A;} of C*-algebras
co
is the closed selfadjoint subalgebra of their direct product consisting of all (a;) €

H‘Ai such that i — ||a;| 4, vanishes at infinity.

In case A; = A for all i, the direct product is just £*(I,.A) and the direct
sum is ¢g(X, . A).

o If Aisa C*-algebra and n € N, the space M, (A) of all matrices [a;;] with entries
a;j € A becomes a *-algebra with product [a;;][bi;] = [ci;] where ¢;; = Z ;b

k

* It is of course non-commutative

and involution [a;;]* = [di;] where dij = aj;.

when n > 1.
But how does one define a norm on M, (.A) satisfying the C*-condition?
Consider two special cases:
e Suppose A is Cyp(X). Then we may identify M, (Co(X)) (as a *-algebra) with
Co(X, M,), i.e. M,-valued continuous functions on X vanishing at infinity: each
matrix [ fi;] € M, (Co(X)) defines naturally a function F' : X — M, : x — [fi;(x)]
which is continuous with respect to the norm on M,,.3

3Conversely, of course, if F': X — M, is continuous, then its entries fij given by fi;(z) =
(F(x)ej,e;y form an n x n matrix of continuous functions.
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Thus we may define

Ifidll = 1Fll, = supdllLfi; ()]l 5y, = 2 € X3

and it is easy to verify that this satisfies the C*-condition, because the norm on
M, satisfies the C*-condition.
e Suppose A is B(H) for some Hilbert space H. Then we may identify M, (B(H))
with B(H"): Given a matrix [a;;] of bounded operators a;; on H, we define an
operator A on H" by .

20156

&1 J
Al =]
Zanjfj

| J |

&n
(this identification preserves the algebraic operations, including the involution).4
Hence one defines the norm ||[ai;]| of [a;j] € M, (B(H)) to be the norm |A| of
the corresponding operator on H".

e In order to define a C*-algebra structure on M, (A) for a general C*-algebra
A, one uses the Gelfand-Naimark Theorem (see section 5.2).

3. Spectral theory.
3.1. The spectrum.

Definition 5. If A is a unital C*-algebra and GL(A) denotes the group
of invertible elements of A, the spectrum of an element a € A is

o(a) =c4(a) ={ e C: A1 —a¢ GL(A)}.
If A is non-unital, the spectrum of a € A is defined by
o(a) = o4~(a).
In this case, necessarily 0 € o(a).

Proposition 3.1. The spectrum o(a) is a compact nonempty subset

of C.

“Conversely any A € B(H") defines an n x n matrix of operators a;; on H by {aij&,m)qy =
(A&;,MiYqn, where & € H™ is the column vector having & at the j-th entry and zeroes elsewhere
(and 7; is defined analogously).
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Sketch of proof. (i) o(a) is bounded: In a unital C*-algebra, if
[z| <1 then Z x" converges to an element y such that (1 —z)y =y(1—z) =1,

n=0

hence (1 — ) € GL(A). The proof is the same® as the case A = C. Hence if
a € Aand X € C satisfies |A\| > ||a| then H%H < 1so A ¢ o(a): the spectrum is
bounded by |al.

(i1) o(a) is closed: To prove this, we prove that GL(A) is open; see
Lemma 3.2 below.

(7i1) o(a) is nonempty: This is proved by contradiction: one shows that
for each ¢ in the Banach space dual of A, the function f : A — ¢((A\1 —a)™1)
is analytic on its domain C\o(a) and /\lllm f(A) = 0; so if o(a) were empty, this

—00

function would be analytic on C and vanishing at infinity, hence would be zero
by Liouville’s theorem; hence ¢(a™') = f(0) = 0 for all ¢, which is absurd by
Hahn-Banach. 0O

Lemma 3.2. The set GL(A) is open in A and the map x — x~ ' is
continuous (hence a homeomorphism) on GL(A).

Proof. We have seen that if |1 — z| < 1 then x € GL(A). Thus 1 is an
interior point of GL(A). To show that every a € GL(A) is an interior point of
GL(A), just notice that the map z — ax is a homeomorphism of GL(A) (with
inverse y — a_ly) and it maps 1 to a.%

To show that inversion is continuous, let a,b € GL(.A). Then

Ha_l — b_lﬂ = Hb_l(b — a)a_lu = H(b_1 —a HYOb—-aat+at(b- a)a_lﬂ
<[ot =a b —al ] + o |b—al
hence )
Ja™ =o7 (= [b—al o= ) < a7 b - al.

It follows that
lim Hlfl — a_1H = 0. O

b—a

The spectral radius of a € A is defined to be

p(a) = sup{|\| : A€ o(a)}.
Psince Z "] < Z |z|™, the series Zx” converges absolutely, hence (completeness!) it
converges in A

®In fact, if y € GL(A), the ball {ac eA: |z —y| < HZJ—EIH} is in GL(A).
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It satisfies p(a) < |a/, but equality may fail.” In fact, it can be shown that
(1) pla) = lim |a"| /"
n

This is the Gelfand—Beurling formula.

Exercise 3.3. Any morphism ¢ : A — B between (non-unital) C*-
algebras extends uniquely to a unital morphism ¢~ : A~ — B~ by ¢~ (a,\) =
(6(a), V).

If  : A — B is a morphism, then o(¢(a)) < o(a) u {0} for all a € A. If
A and B are unital and ¢(1) = 1 then o(¢(a)) < o(a) for all a € A.

An element a € A is said to be normal if a*a = aa®, selfadjoint if a = a*
and unitary if (A is unital and) v*u = 1 = uu™.

Proposition 3.4.

(i)a=a"= o(a) =R

(ii) a = b*b = o(a) S R

(i4i) uw*u =1 =uwu* = o(u) = T.

Proof of (#ii). We have p(u) < |ul| = 1 so o(u) < D. It remains to
show that if A € o(u) then |A| = 1. Now A # 0 since u is invertible; and if |A\| < 1,
then since o(u™1) € D (because p(u') < |u™!| = 1) the element 2z = (A\™!—u™1)
is invertible. But then (A — u)u~! = A(u~! — A7) is invertible and hence so is
A — u, contradiction. Hence |A| > 1

Proof of (i). Let u(t) = exp(ita) (t € R) (defined by the power series
which converges absolutely). Note that u(t)* = exp(—ita) because a = a*. As in
the case a € R, one shows that the function ¢ — u(t) is norm-differentiable and
W' (t) = au(t) = u(t)a. It follows that if f(¢) = u(t)u(—t) then f’(t) = 0 for all
teRso f(t) = f(0) =1 hence u(t)u(t)* = u(t)*u(t) = 1. Thus by (iii) we have
o(expita) < T.

Let A € 0(a). Then®

3|*3'

0
exp(ia) — exp(iX)1 = e (expi(a — \) — 1) Z
= ei/\(a — )b

where b € A commutes with a — A. Thus exp(ia) — exp(iA)1 cannot be invertible.
Therefore ¢* € o(exp(ia)) € T and so A € R,

"Consider for instance any a # 0 with a® = 0.
80ne can show that e~ ** exp(ia) = expi(a — \) because a and A1 commute.



Operator algebras: an introduction 57

Second proof of (i). Let a = a*. Suppose that A\ + iu € o(a) for some \, u € R;
-1

we show that p = 0. If o # 0, then the element a — (A +ip)1 = p (a — il)
i

would not be invertible. But then i € o(b) where b = 720 s selfadjoint. Let

W
n € N. Then n + 1 € o(nl — ib) because (nl —ib) — (n + 1)1 = —i(b — i1) is not

invertible. Therefore |n + 1| < |n1 — ib|| and hence

(b

(n+1)% < |n1 — b2 T [(n1 — ib)* (n1 — ib)| “Z) [n21 + 82 < n? + 2]

Thus 2n + 1 < HbQH for all n, a contradiction.
The proof of (ii) is non-trivial: see Theorem 4.7.
Lemma 3.5. If aa™ = a*a then p(a) = sup{|A| : A€ a(a)} = |al.
Proof. Since a*a = aa™, we have

al* = Ja*a|* = [(a*a)*(a*a)| = |(a®)*a?| = [a*|

hence ||la|? = |a?| and inductively |a|*>" = [a*"| for all n. Thus, by the Gelfand-

212" = o). ©

Beurling formula (1), p(a) = lim |a

A fundamental consequence of the C*-property combined with complete-
ness is the following:

Proposition 3.6. The norm of a C*-algebra is determined by its alge-

braic structure. Thus if A is a *-algebra, there is at most one norm || on A
such that (A, |-]) is a C*-algebra.
Proof. lal? = |a*al| = p(a*a). O

Corollary 3.7. FEvery morphism p : A — B between C*-algebras is
automatically contractive.

Using Gelfand Theory (see the next section) one can show that an injective
morphism is in fact an isometry.

Dependence of the spectrum on the algebra. If A is a unital C*-
algebra and B is a closed subalgebra of A containing the identity of A, then every
b € B satisfies 0 4(b) € op(b). Indeed if A\ ¢ o5(b) then A1 — b has an inverse in B
hence also in A. But equality need not hold:

For example suppose A = C(T), the continuous functions on the unit
circle. Let B be the subalgebra consisting of all f € A having a continuous
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extension to I which is holomorphic in D.? Let b € B be the function b(z) = z.

1
The function b~ given by b1(2) = = is continuous on T, but is not in B.
z

It is remarkable that if B is a C*-subalgebra this cannot happen:

Proposition 3.8 (Permanence of spectrum). If A is a unital C*-algebra
and B is a C*-subalgebra of A containing the identity of A (i.e. 14 € B < A),
then every b € B satisfies
o4(b) = op(b).
Proof. It is enough to show that if b € B has an inverse in A, then this
inverse is contained in B.
Suppose first that b = b*. Since op(b) < R, for each n € N we have

% ¢ op(b). Thus the elements x,, = b — %1 are invertible in B: each '

belongs to B. But since x,, — b and inversion is continuous on the space GL(A),
z; 1 — b7 Since ;' € B and B is closed, it follows that b~! € B as required.

For the general case, if b € B is invertible in A, so is b* (verify) and hence
so is = b*b. But z is selfadjoint, so by the previous paragraph = € GL(B): if
y =z, then y € GL(B). We have yb*b = yz = 1 and so

bt = (yb* )bt = (yb*)(bb~") = yb*
hence b~! € B, which completes the proof. O

3.2. Gelfand theory for commutative C*-algebras.

Theorem 3.9 (Gelfand—Naimark 1). Every commutative C*-algebra A
is isometrically *-isomorphic to C’o(/l) where A is the set of nonzero morphisms
¢ : A — C which, equipped with the topology of pointwise convergence, is a locally
compact Hausdorff space. For each a € A the function d: A — C: ¢ — ¢(a) is
in Co(A). The Gelfand transform:

A—-Cy(A): a—a

is an isometric *-isomorphism. The algebra A is unital if and only szl s com-
pact.

In more detail: A is the set of all nonzero multiplicative linear forms
(characters) ¢ : A — C. Each ¢ € A necessarﬂy satisfies ||¢| < 1 and, when A is
unital, |¢| = ¢#(1) = 1. The topology on A is'% pointwise convergence: ¢; — ¢
iff ¢;(a) — ¢(a) for all a € A.

9This is 1somorphlc to the disc algebra.
"In fact, since A is contained in the unit ball of the (Banach space) dual A* of A, this
topology is just the restriction of the w*-topology of A* to A.
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When A is non-abelian there may be no characters (consider Ms(C) or
B(H), for example).

When A is abelian there are ‘many’ characters: for each a € A there exists
¢ € A such that |a] = |¢(a)].

When A is also unital, A is compact and A is isometrically *-isomorphic

to C'(A).

When .,iis abelian but non-unital every ¢ € A extends uniquely to a
character ¢~ € A~ by ¢~ (1) = 1, and there is exactly one ¢, € A~ that vanishes
on A. Thus A is *-isomorphic the algebra of those continuous functions on the
‘one-point compactification’ A U {ps} of A which vanish at ¢4; this algebra is
in fact isomorphic to Cp(A).

Sketch of proof in the unital case. We assume that A is
abelian and unital.
(a) The compact space A. Let ¢ : A — C be a character. Then ker ¢ is an
ideal, so ¢(1)® = ¢(1) # 0 (for if ¢(1) = 0 then ¢(a) = ¢(al) = 0 for all a, a
contradiction), hence ¢(1) = 1 . Also for all a € A we have ¢(a) € o(a) because
¢(a)l — a is in ker ¢ which cannot contain invertible elements, being a proper
ideal. Thus |¢(a)| < p(a) < |al|.

In fact the equality

() o(a) = {g(a) : ¢ € A}

holds; we prove this in the Appendix.
Note also that each character ¢ is selfadjoint:

P(a*) = p(a) forall ac A

Indeed, it suffices to prove that if a = a* then ¢(a) € R; but this is clear since
¢(a) € o(a) and o(a) € R.

The inequality |p(a)| < [a| shows that A is contained in the space
I, 4Dg, the Cartesian product of the compact spaces D, = {z € C : |z| < |a|};
and the product topology is just the topology of pointwise convergence. But in
fact A is closed in this product: if ¢; — 1 pointwise, then it is clear that i is
linear and multiplicative, because each ¢; is linear and multiplicative, and ¢ # 0
because 1(1) = lim ¢;(1) = 1; thus ¢ € A.

7

(b) The Gelfand map G:a — a. For each a € A the function

i: A—C where a(¢) = ¢(a), (pc A
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is continuous by the very definition of the topology on A. This gives a well defined
map

A~

G- A->CA) :a—a.

If a,b € A, since each ¢ € A is linear, multiplicative and *-preserving, we have

therefore
Gla+b) =G(a) +G(b), G(ab) =G(a)g(b) and G(a*) = (G(a))*

that is, the map G is a morphism of *-algebras. Hence it is automatically con-
tractive; but in fact it can be seen directly to be isometric:

lal,, = sup{la(¢)] : ¢ € A}
= sup{|¢(a)| : € A} =sup{|A| : Ne o(a)}  (by 1)

= |

by Lemma 3.5, because a is normal since A is abelian.

(c) The Gelfand map is onto C(A). Consider the range G(A): it is a
*-subalgebra of C(A), because G is a *-homomorphism. It contains the con-
stants, because G(1) = 1 (:the constant function 1). It separates the points of A,

because if ¢, € A are different, they must differ at some a € A, so

G(a)(9) = ¢(a) # P(a) = G(a)(¥).

By the Stone — Weierstrass Theorem, G(A) must be dense in C'(A). But it is
closed, since A is complete and G is isometric. Hence G(A) = C(A). O
Appendix: A note on characters. Let A be an abelian unital
Banach algebra, and let A be the set of all nonzero morphisms ¢ : A — C.
In Section 3.2, we saw that

{¢(a) : p € A} S o(a).

We wish to show that equality in fact holds.
So fix a A\g € o(a) and let Jp = {x(a — A\o1) : © € A}. One easily sees that Jj is
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an ideal of A, and it is proper since a — Ag1 is not invertible. It is enough to find
¢e A such that the ideal ker ¢ contains Jj.
We will show that Jj is contained in a maximal proper ideal of A.
Remark 3.10. If J is a proper ideal of A, then ||[1 —z| > 1 forall z €
J. In particular, the closure of a proper ideal is a proper ideal.

Indeed, if |1 — z| < 1 then, as we know, z € GL(A), so z cannot belong
to a proper ideal.

Remark 3.11. 7 is contained in a maximal proper ideal M of A,
which is therefore closed.

Proof. Let F be the family of all ideals J of A which contain Jy but do
not contain 1; order F' by inclusion. If G € F is a totally ordered subset of F,
let Jo be the union of all elements of G. Of course J contains Jy and does not
contain 1; it is easy to verify that Jg is an ideal, hence it is an upper bound for
G.

Zorn’s lemma shows that there exists M € F which is maximal in the
partially ordered set (F,<). Thus M is an ideal containing Jy and it is proper
because 1 ¢ M. In fact it is a maximal proper ideal; for if A is a proper ideal
of A containing M, then it contains [y and, since it is proper, cannot contain 1;
thus N € F, hence N' = M because M is a maximal member of F.

In particular M is closed, because its closure M is an ideal and does not
contain 1 by Remark 3.10, hence M = M by maximality. 0

Note the essential use of 1 in the above argument: in fact the conclusion
may fail in non-unital algebras: If for example A = ¢y, the Banach algebra of
null sequences, then it can be shown that the ideal J = ¢ (the set of sequences
of finite support) is contained in no maximal ideal.

Now let B = A/ M. It is well known that (since M is a closed subspace)
B is a Banach space with respect to the quotient norm

la + M| = inf{|a + z| : x € M} = dist(a, M).

Remark 3.12. 4/M is a Banach algebra.
Proof. Of course A/M is an algebra. We have to prove that

lab+ M| < |a+ M| [b+ M|, abeA
If z,y € M then

la+ ] o +y| > |

(a+x)(b+y)| = |ab+ zb+ ay + xy| .
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But zb + ay + xy € M, so |ab + zb + ay + xy|| = ||ab + M||. Thus
la+ [ o +yl = Jlab+ M|

and the required inequality follows by taking the inf over x and y in M. O

Remark 3.13. B = A/M is a division algebra with identity 1 + M:
that is, if @ + M is not the zero element 0 + M of B, then a + M is invertible.

Proof. We need to find b € A so that (a + M)(b + M) = 1 + M,
equivalently ab+ M =1+ M, i.e. ab—1€e M. Set

J=aA+M={ab+xz:be A xe M}.

This is easily seen to be an ideal of A and it clearly contains M. But it also
contains a which is not in M; hence, by maximality of M, we must have J = A.
Thus there exists b € A and x € M so that ab+ x = 1, in other words ab — 1 =
—rxeM. O

Remark 3.14. If Bis a division Banach algebra, there is an isomorphism
a— Ma): B—C.

Proof. The spectrum o(a) of each a € B is nonempty. Thus there exists
A(a) € C such that a — A(a)1 is not invertible. By the last remark, a — A(a)1 = 0,
i.e. a = A(a)l. Now if 1 € o(a) then a — p1 is not invertible, hence a = 1 and
so = A(a).

Thus o(a) = {\(a)} is a singleton. Therefore we have a well defined map

a— Ma):B—C.

It is easy to verify that this is an injective algebra morphism: for example, a =
Aa)l and b = A(b)1 gives ab = A(a)\(b)1, but then A(a)A(b) € o(ab) = {A(ab)}
and so A(a)A(b) = A(ab). O

Conclusion of the proof. To show that {¢(a): ¢ € ./T} =o(a), we
need a character ¢ of A such that ¢(a) = A\g. Consider a maximal ideal M of A
containing 7y and define ¢ : A — C as follows:

p: A — B — C
r — z+M — ANz+M)

where A\ : B — C is the isomorphism of the last Remark. This is a composition
of morphisms, hence a morphism. Its kernel is precisely M, so ¢ # 0 and, since
a—XNle Ty S M, we have ¢p(a — Ngl) =01ie ¢(a) =Ng. O
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3.3. Functional calculus and spectral theorem.
3.3.1. The continuous functional calculus for selfadjoint opera-
tors. Let A be a selfadjoint!! element of the unital C*-algebra B(#).
n

For any (complex) polynomial p(\) = Z cxA\¥ we have a (normal) element
k=0
p(A) = Z e A* of B(H). We wish to extend the map
k=0
P :p— p(A)

to a map f — f(A) defined on all continuous functions f : (A) — C. Since the
polynomials are dense in C'(c(A)), it is enough to prove that ®g is continuous in
the norm of C(c(A)).

Theorem 3.15. If A€ B(H) is selfadjoint and p is a polynomial,

[p(A)] = sup{lp(A)] : A € a(A)} = [ploa)-

In particular ®y(p) only depends on the values of p on o(A); thus @ is
well defined on the subspace of C(0(A)) consisting of polynomial functions.

The proof of Theorem 3.15 is an immediate consequence of the fact that
the spectral radius of a normal element (p(A) is normal) equals its norm, together
with the following entirely algebraic fact:

Lemma 3.16 (Spectral mapping lemma). If A € B(H) is selfadjoint and
p 1s a polynomial,
o(p(A)) = {p(A) : A e a(A)}.

Definition 6. Let A = A* € B(H). The continuous functional cal-
culus for A is the unique continuous extension

D (Cla(A); [-loay) = BH), 1) : f — f(A)

of the map ®, : p — p(A). Thus if f is continuous on o(A), the operator f(A) €
B(H) is defined by the limit

f(A) = limpn(A)

"'The functional calculus can be defined for normal operators as well. We restrict to the

selfadjoint case for simplicity.
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where (py) is any sequence of polynomials such that ||p, — fHU(A) — 0.

It is easily verified that ®. is an isometric *-homomorphism, which is
uniquely determined by the conditions ®.(1) = I and ®.(id) = A (where id(\) =
A is the identity function on o(A)).

3.3.2. Connection with Gelfand theory. Keeping the notations of the
last section, let A < B(H) be the C*-algebra generated by A and the identity. It
is a unital, abelian C*-algebra, the norm closure of {p(A) : p a polynomial}. But
this closure is precisely the set

{f(A): feCla(A))}-

We determine A:
Given any A € 0(A), the map ¢, : A — C given by

is obviously a nonzero multiplicative linear functional.

Conversely, let ¢ € A. Then the number A = #(A) isin 04(A) = o(A)

(Proposition 3.8). For any polynomial p(t) = Z cith, we have, since ¢ is linear
k=0
and multiplicative,

n

$(p(A) = D cxd(A)* = p(A) = da(p(A4)).

k=0

But ¢ and ¢, are continuous on A and the set {p(A) : p a polynomial} is dense
in A; therefore ¢ = ¢,.
Thus we have a bijection

~

A—¢y:o(A) > A

In fact this bijection is continuous and hence, since o(A) is compact, a homeo-
morphism. For this we have to show that if A\,, — A then ¢, (B) — ¢x(B) for
all B € A. Indeed, each B € A is of the form B = f(A) for some f € C(c(A));
and the definition of ¢) gives

D, (B) = éa, (f(A)) = (M) = f(N) = oa(f(A)) = éaA(B)

since f is a continuous function. We summarize
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Theorem 3.17. If A is a selfadjoint operator and A = {f(A) : f €
C(o(A))} is the unital C*-algebra generated by A, then the map
)\—>(;5>\:0'(A)—>/T,
where ¢x(f(A)) = f(N), is a homeomorphism. If A is identified with o(A) via
this homeomorphism, then the functional calculus
f— f(A):C(o(A)) — A

is the inverse of the Gelfand transform.

R To prove the last sentence, take any B = f(A) € A and, for any ¢ = ¢, €
A, consider

B($) = oA(B) = ¢a(f(4)) = f(N).
So, if we identify each A with ¢,, then B is identified with f-

3.3.3. The spectral theorem. If A € B(H) is selfadjoint and K = o(A),
the continuous functional calculus @, : C(K) — B(H) is a representation of the
(abelian) C*-algebra C(K) on H.

We will construct a ‘measure’ E(-) whose values are not numbers, but
projections on H, satisfying

®lf) = | FVAE,
K
for each f € C(K) and in particular

A= ®,(id) = f Ey.
K

In fact, this construction works for any (automatically contractive) *-representation

m: C(K)— B(H):
Sketch of the construction. Fix z,y € H and consider the map
C(K)— C: f—Ln(f)z,y).
This is a linear functional, bounded by |z||.|y||, because

[ (Pl < |m (DI l-Tyll < [ ooyl -

By the Riesz representation theorem, there is a unique complex regular Borel
measure fi;, on K so that

(2) | ey = iney or cach e )
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satisfying'?

[y < -]l

Now fix a Borel set 2 € K and consider the map
HxH— C: (2,y) — pray(Q).

One shows that this is sesquilinear and bounded by 1, that is

|ty (D] < payl < 2]yl

Therefore there is a unique bounded operator E(2) € B(H) satisfying

(BE@Qr,9) = (@) for all o,y € B(H)
and |E(Q)| <1 for all Borel Q2 € K.

One shows that E(-) is a ‘spectral measure’, that is:
1. E(Q)* = E(Q)
2. E(11 n Q) = E(OQ1).E(Qs)
3. E()=0 and E(K)=1

4. for x,y € H, the map fizy : Q@ — (E(Q)x,y) is a o-additive complex-valued
set function on the Borel o-algebra of K.

We now define integration with respect to the ‘measure’ E(-): If
f= Z AiX,
i

is a simple Borel function (with A\; € C and §2; € K pairwise disjoint Borel sets
such that U$); = K), define

fK f(NAE) = Z NE(Q) € B(H).

<(L< f(A)dEA) z, y> - | fdna,

12”,“/9:,1;” is the total variation of the measure s y; it equals the norm of the corresponding
functional on C(K).

Observe that
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for all z,y € H.
One shows that the mapping f — f fdE is linear, and also a *-homomorphism,

J fdE = (J de)* and J fgdE = (J de) (J ng>

for all simple Borel functions f,g.
One shows that

U / dEH < sup{| (V)] : A e K},

Hence the map f — f fdFE extends uniquely to a contractive linear mapping

LP(K) — B(H), where L*(K) is the C*-algebra of all bounded Borel functions
on K. This extension is also a *-homomorphism. Finally, if f : K — C is
continuous, then

(o)) s

={r(f)z,y) for all =,y e H,
and so JK FNAEy = 7 (f).

This concludes the (sketch of the) construction of the spectral measure corre-
sponding to the representation 7. Notice that E(-) is ‘regular’ in the sense that
fez is (by construction) a regular Borel (positive) measure for each xz € .
Uniqueness of E(-) follows by the uniqueness part of the Riesz representation
theorem.

We summarize:

Theorem 3.18. FEwvery representation m of C(K) on a Hilbert space H
determines a unique reqular Borel spectral measure E(-) on K so that

fK fAE = x(f)  (feC(K)).

Applying this to the representation given by the continuous functional
calculus

O, : C(c(A)) — B(H), we obtain
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Theorem 3.19. If A € B(H) is a selfadjoint operator, there exists a
unique regular Borel spectral measure E(.) on o(A) so that

f fdE = f(A) (fe C(K)) and in particular A = j ME).
o(A) a(A)

Notice that in the course of the construction leading to Theorem 3.18
we have defined the operator-valued integral | fdE for every bounded Borel

function. This leads to an extension of the functional calculus:

Proposition 3.20 (Borel Functional calculus). The map ®.: C(c(A) —

B(H) extends uniquely to a contractive *-representation f — f(A) := fdE
o(A)

of the C*-algebra L™ (c(A)) of all bounded Borel functions on o(A). In particular,

if Q < o(A) is a Borel set, xa(A) = E(Q).

Remark 3.21. The spectral Theorem and the Borel functional calculus
are also valid for a normal operator A € B(H). The proof is the same as the self-
adjoint case, provided one extends the continuous functional calculus to normal
operators.

4. Positivity.

Definition 7. An element a € A is positive (written a > 0) if a = a*
and o(a) < Ry. We write Ay = {ae A:a > 0}.
If a,b are selfadjoint, we define a < b byb—ae Ay.

Examples 4.1. In C(X): f > 0iff f(¢) € Ry for all t € X because

o(f) = f(X).
In B(H): T>0iff (T¢, ) >0 forall e H.

Remark 4.2. Any morphism 7 : A — B between C*-algebras preserves
order:
a>0 = 7(a)=0.

Proof. If a = a* and o(a) < [0, +0) then 7(a)* = 7(a*) and
o(n(a)) € o(a) U {0} < [0,+0)

som(a) =20. O
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Remark 4.3. Inaunital C*-algebra, ifa = a* then — |al|1 < a < |a| 1.

Proof. Observe that ||a| 1 — a is selfadjoint and
o(lal1 - a) = {Jla] = X : e o(a)} S R,

because A € R and A < |a| for A € o(a). Hence ||a| 1 —a > 0; the other inequality
is proved similarly. O

Proposition 4.4. FEvery positive element of a C*-algebra has a unique
positive square root. In fact

ae A, if and only if there exists be Ay such that a = b*.

Proof. If a = b? where be A, then a = a* and o(a) = {\? : A € o(D)}
by the Spectral mapping Lemma 3.16; thus o(a) € R, since b > 0 and therefore
a = 0.

Conversely, suppose a = 0 and consider the C*-subalgebra C = C*(a)
of A generated by a; it is *-isomorphic to the algebra C,(X) for some space X
via the Gelfand transform x — 2. Note that a € C; since o¢(a) = ga(a). The
Gelfand transform and its inverse preserve order. Since a > 0, we have a > 0.
Look at the function va € Cy(X). This is the image of some b € A, which must
be positive because va = 0; also (3)2 = d, so b® = a.

Uniqueness: Let b € A, be as in the last paragraph and suppose there
exists ¢ € A, which also satisfies ¢® = a. Observe that ac = ca. Since b is in
C*(a), it is a limit of polynomials in a, so it follows that bc = c¢b. Now consider
the C*-algebra C*(b,c): it is abelian and contains a, so we may view b,c,a as
continuous functions on the same space and then it is clear that b =c¢. O

Proposition 4.5. For any C*-algebra the set A, is a cone:

a,b€A+,)\>0 - AGGA_HG"FZ)EA_A,_.

Proof. The first assertion is immediate from the definition of positivity.
Hence, for the second one, passing to the unitisation if necessary, it is enough to

+0b
assume that 0 < a <1 and 0 < b < 1 and prove that GT = 0.

But we have the following characterization:

Lemma 4.6. In a unital C*-algebra, if x = ¥ and |z|| < 1, then

r=20 <<= |l1-zf<]1.
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: . : a+b . .
Thus if a and b are positive contractions then is a selfadjoint con-

a+b 1

1
1- 2 = Sl -a) + =)l < 30t —al + 1 -b) < 150

traction and

that atb

> 0, completing the proof of the Proposition.

Proof of the Lemma. Considering the C*-algebra generated by x
and 1, there is no loss in assuming that x is a continuous function on a compact
set. Then the Lemma is just an application of the triangle inequality: The
assumption is that —1 < z(¢) < 1 for all ¢ and we need to conclude that

z(t) =20 <= [1-—=z@)|<1
But this is obvious!

We now have the machinery to complete the proof of Proposition 3.4:

Theorem 4.7. In any C*-algebra, any element of the form a*a is posi-
tive.

Proof. Of course a*a is selfadjoint.!® So it can be written
a*a=b—c whereb,c>0,bc=0

(to see this, consider a*a as a function and let b and ¢ be its positive and negative
parts).
We will show that ¢ = 0.

Let z = ca®. Observe that
zx* = ca*ac = ¢(b— c)c = -

and so, since ¢ = 0,
—zx* e A,.

On the other hand, if we write x = u + v with wu, v selfadjoint, we find
¥+ x¥r = 2u® 4+ 202 e Ay
since A, is a cone. Again using the fact that A, is a cone, we conclude that

z¥r = —za® + (za® + z¥x) € Ay

1B31f g were normal, we could consider it as a function a on a locally compact space, and then
we could conclude that a*a corresponds to the function a*a = |a|> which is nonnegative; the
difficulty is that a need not lie in an abelian C*-algebra.
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Thus we have
o(z*x) Ry and o(zz™) < R_.

But in any unital algebra we have o(kh) < o(hk) U {0}.14
It follows that o(xz*) = {0}. Thus ||zz*| = 0 (xz* is selfadjoint) showing
that —c® = zz* =0 andsoc=0. O

5. The Gelfand—Naimark theorem.
5.1. The GNS construction.

Definition 8. A state on a C*-algebra A is a positive linear map ¢ :
A — C of norm 1, i.e. such that ¢(a*a) =0 for alla € A and ||¢|| = 1. A state
is called faithful if ¢(a*a) > 0 whenever a # 0.

Note. When A is unital and ¢ is positive, |¢| = ¢(1).
Examples 5.1. On B(H),

e the map ¢(T) =(T¢, &) (where £ € H is a unit vector)
e the map Y(T') = Z (T&;, &) where Z I&i]I> = 1 (called a ‘density matrix’

in physics).
On C(K),
e the map ¢(f) = f(t) fort e K

e the map ¥(f) = j fdu for a probability measure u.

For a C*-algebra A, if 7 : A — B(H) is a representation and £ € ‘H a unit vector,
the map ¢(a) = (7 (a), &).
In fact, every state on a C*-algebra arises as in the last example.
Theorem 5.2 (Gelfand, Naimark, Segal). For every state ¢ on a C*-

algebra A there is a triple (wy,Hgy,Ep) where my is a representation of A on a
Hilbert space Hy and £y € Hy a cyclic'® unit vector such that

p(a) = (my(a)éy, Ep) for all ac A.

The GNS triple (14, Hg,Eg) is uniquely determined by this relation up to unitary
equivalence.

“Indeed if A ¢ o(hk) is nonzero then the element y = A"'14+ X" 'k(Al —hk) 'h  satisfies
y(A1 — kh) = (A1 — kh)y = 1 and so A ¢ o(kh).
'®j.e. such that ms(A)&, is dense in Hg.
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Motivation: the abelian case. Consider a state ¢ on A = C(K). By
the Riesz representation theorem, there is a unique positive Borel measure u on
K so that

o(f) = L{ fdp  for all f e C(K).

Define the seminorm

1/2
171l = ( [ !f!2du) _ o2 feC(K).

The set Ny = {f eC(K): f]f]Qdu = 0} is a subspace of C'(K) (it consists of

all f e C(K) that vanish p-a.e.) and the seminorm || - || induces a norm, |||, on
Hy := C(K)/N4. The completion is of course just the Hilbert space L?(K, ).

We may represent the C*-algebra A on this Hilbert space by observing
that for each f € A the map C(K) — C(K) : g — fg preserves Ny (it is a (left)
ideal of A) and hence induces a map

mo(f) : Ho — Ho : [g] = [f9]

here [g| denotes the coset g + Ny). But this map is bounded in the norm ||-|,:
¢ 2

Imo( /g2 = I[f]l2 = f Fol2du < sup | f? f 92y = 1712 119112

and hence extends to a bounded operator 7(f) on L*(K,u) (: the operator of
multiplication by f). It is now easy to check that m : A — B(L*(K,pu)) is a
representation. Note finally that the vector & := [1] is cyclic for 7 (indeed
w(A)¢s = {[f1] : fe A} = Hp) and satisfies

r(f)Es Er) = f(fl)idu - f fdu = 6(f)
for all f € A.

Proof of the Theorem (sketch). Assume for simplicity that A
is unital. Define the sesquilinear form

(a,b)y = ¢(b*a), a,be A

The set
Ny ={aecA:¢(a*a) =0}
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is a left ideal of A. This follows from the Cauchy—Schwarz inequality

[p(b*a)* < ¢(a*a)d(b*b), a,be A

In particular
(a) Ng is a linear subspace of A and the quotient Hy = A/N, acquires
the scalar product

{al],[0]) = ¢(b*a), a,be A.

(b) For each a € A the map b — ab leaves N, invariant, so it induces a
linear map

mo(a) : Hy — Hy : [b] — [ab].

Now observe that the map mo(a) is bounded on (Hy, ||-|) (where ||[6][* = {[b], [b]) =
#(b*b)). Indeed, if [b], [c] are in Hy,

[ {mo(a)[b], [e]) |* = [([ab]. [c]) [ = |o(c*ab)[?
< ¢(c*c)o((ab)*ab) = ¢(c*c)p(b*a”ab)
= ¢(c*c)pp(a’a)  where ¢y(z) = p(b*xb)
< ¢(c*e) [l la*al = ¢(c*e)gp(1) al”
= ¢(c*)p(b*0) llal* = | [l 81" )

(where we have used the fact that ¢, is a positive linear form and its norm is

¢b(1)).
So mp(a) extends to a bounded operator 7(a) on the completion Hg of
Hy. It is easy to see that the map

m: A—B(H,) :a— 7(a)

is a *-representation (it suffices to verify that mg is a *~homomorphism). Finally,
setting s = [1] € Hg (a unit vector), we have w(A){y = {m(a)[1] : a € A} =
{[a] : a € A} = Hy, which is dense in H4 and

(m(a)8s, 84y = {lal], [1]) = ¢(17a) = ¢(a). O

5.2. The universal representation.
Theorem 5.3 (Gelfand, Naimark). For every C*-algebra A there exists
a representation (mw, H) which is one to one (called faithful).

The idea of the proof. We may adjoin an identity, if necessary;
so we may assume A unital. Let S(A) be the set of all states. For each ¢ € S(.A)
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consider the triple (74, He,&s); ‘adding up’ all these representations, we obtain
a representation (m, H).

More precisely:

The space H consists of all families (24)ges(4) of vectors x4 € Hy such

that Z H:%H?{é < 00.16 Given a family (A¢)¢eS(A) of operators where A, € B(H¢)
¢
such that sup [|Ag| < o, the map A =: @A, given by A((zg)) = (Agze) is a well
2
defined bounded operator on H. Thus for each a € A, since sup [mg(a)| < |al,
¢

we may define the operator m(a) := Z mg(a) € B(H); one can readily verify that
¢

the map A — B(#H) : a — m(a) is a *-representation of A.

It remains to prove that it is faithful. This follows from the fact (see the
following lemma) that for each nonzero a € A there exists ¢ € S(A) such that
Y(a*a) > 0. Denoting by x, € H the family (z4)s with z, = & and 24 = 0 for
all ¢ # 1) we have

Im(@)xgll3; = Imp(@)éyl? = {my(a*a)éy, &p) = Yala®a) > 0

which proves that m(a) # 0, as required.
It remains to prove the following

Lemma 5.4. For each nonzero a € A there exists 1 € S(A) such that
¥(a*a) > 0.

Proof. Consider the real Banach space Aj, of all selfadjoint elements of
A. The set A, is a closed convex cone in Ay and the element b := —a*a € Ay,
is not in A, . By the Hahn - Banach separation theorem, there is a (real-linear)
functional w : A, — R and a ¢ € R such that w(b) < ¢ and w(z) > ¢ for all
x € Ay. Note that ¢ < 0 because 0 = w(0) > ¢ since 0 € A.

We claim that w(A;) € R;. Indeed, if w(y) < 0 for some y € A, then
w(ny) = nw(y) < c for large enough n € N, contradicting the fact that w(z) = ¢
for all z € Ay.

We extend w to a complex linear map w, : A — C by setting

we(z +1y) = w(z) +iw(y), z,y€ Ap.

that is, such that sup Z Hx¢|\3{¢ < o0, where the supremum ranges over all finite subsets

PEF
F of S(A)
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. s w
= V =
Then we|4, w, hence w, is positive and so

is a state; finally
e

[wel ¥(b) = w(b) < ¢ and so YP(a*a) = —1p(b) > 0 since ¢ < 0. O

6. Bimodules over masas.

6.1. Von Neumann algebras. Apart from the norm, B(#) is equipped
with other natural topologies.

We will concentrate on the weak™ topology that B(#) has as a dual Ba-
nach space:

For &, € H, we denote by we , the linear form on B(H) given by

wey(T) =T ny, TeBH).

This is clearly bounded (by [£||n]). We denote by B(#). the linear space
spanned by these linear forms, and by B(#), its closure in the dual Banach space
of B(H).

Each T € B(#) defines a bounded linear form ¢ on B(H) _ by evaluation:
¢r(w) = w(T), and in particular, ¢r(we,,) = (T'E,n). Conversely, each bounded
linear form ¢ on B(H)_ defines an operator Ty, € B(H) such that (Typ€, 1) =
d(we,y) for all &,ne H.IT

Proposition 6.1. The map T — ¢7 is an isometric isomorphism from
B(#H) onto the Banach space dual of B(H)_ (and hence of its closure B(H), ) with
inverse ¢ — Ty.

Thus B(H) acquires a weak™ topology, as the dual of the Banach space
B(#H),: a net T; converges to 0 in this topology if and only if w(T;) — 0 for
all w € B(H),. For norm bounded nets (in particular, for sequences), this is
equivalent to the requirement that (T;¢,n) — 0 for all £, € H.

A von Neumann algebra M is a selfadjoint unital subalgebra of B(H)
which is closed in the weak* topology.

Theorem 6.2 (von Neumann’s bicommutant theorem). If A < B(H) is
a selfadjoint unital algebra and T € B(H), the following are equivalent:

(a) Te A”.

(b) For each & € H, the operator T is in the closed linear span of {Ax :
Ae A}

(¢) T is in the weak*-closure of A.

"because the map (&,m) — &(we,n) is a bounded sesquilinear form on H x H
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For later use, note that the equivalence of (b) and (c) says that a selfad-
joint unital algebra is weak*-closed if and only if it is equal to the annihilator of
a set of vector (or rank one) functionals, i.e. functionals of the form we .

Of course every von Neumann algebra is a C*-algebra but not conversely.
For example the algebra of compact operators on an infinite dimensional Hilbert
space is a C*-algebra, but is not weak*-closed in B(#), hence it is not a von
Neumann algebra.

Similarly, the set of all multiplication operators {M; : f € C([0,1])} is a
C*-algebra C of operators on L?([0,1]), but is not weak*-closed. It is not hard
to see that the bicommutant C” is the set M = {M; : f € L*([0,1])}, and this is
a von Neumann algebra.'®

Abelian von Neumann algebras. It can be shown that any abelian
von Neumann algebra M is *-isomorphic (isometrically, of course) to the algebra
L*(X, ) for a suitable measure space (X,u), where X may be taken locally
compact Hausdorff and p a regular Borel measure. In fact the *-isomorphism is
bicontinuous for the weak* topology on M and the weak* topology on L™ (X, i)
as the dual of L'(X, ;). For this reason, the theory of von Neumann algebras is
sometimes described as “non-commutative measure theory”, while the theory of
C*-algebras is thought of as “non-commutative topology”.

A mazimal abelian selfadjoint algebra (masa for short) M is an abelian
selfadjoint subalgebra of some B(H) which is maximal among abelian selfadjoint
subalgebras of B(H). It is not hard to see that maximality is equivalent to
the requirement that M = M’; hence a masa is automatically a von Neumann
algebra.

A masa M is not only *-isomorphic, it is spatially isomorphic (that is,
unitarily equivalent) to a multiplication algebra

M, = {My: fe L*(X,u)} € B(L*(n).

In fact when M acts on a separable space, then it is spatially isomorphic to one of
the following: L®([0,1]) (with Lebesgue measure), £*(n), or L*([0,1]) & (*(n),
for some n € N or n = Ng.

The first case arises when M has no minimal projections, the second when
each projection in M dominates a minimal projection in M, and the third when
there are n minimal projections whose sum is not the identity operator.

In this last case M is unitarily equivalent to the von Neumann algebra
M, ® D, acting on L*([0,1], 1) @ ¢*(n) (here u denotes Lebesgue measure and

1811 fact M = (.
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D,, denotes the set of all bounded operators on ¢*(n) which are diagonal with
respect to the usual orthonormal basis of £2(n)).

6.2. The support of an operator. In the sequel we shall assume that
all Hilbert spaces are separable. In particular the predual of B(H), and of every
von Neumann algebra, will be separable. The material that follows is based on
[1, 7, 22] and [23].

An operator T € B(£?) is said to vanish on a rectangle A x B < N x
N if P(B)TP(A) = 0, where P(A) is the projection onto the space spanned
by the basis elements {e; : j € A}. Notice that these projections belong to
the masa D < B(£?) of all diagonal operators. Thus D codifies the ‘coordinate
system’ induced by the usual basis of 2. More generally, every masa M < B(#)
can be said to introduce a ‘coordinate system’: After a unitary equivalence,
we may identify H with L?(X,x) and M with the multiplication masa M,, of
L*(X, p); the ‘coordinate system’ is indexed by X. In this representation, we
say that an operator T' € B(H) vanishes on a Borel rectangle A x B < X x X if
P(B)TP(A) = 0, where P(A) is the projection onto the space of all f € L?(X, 1)
that vanish almost everywhere on A¢; thus P(A) is an element of M, namely the
multiplication operator corresponding to x 4.

Definition 9. We say that a set of operators T < B(H) is supported in
aset Q< X x X if P(B)TP(A) =0 for all T € T whenever Qn (A x B) = .

If Q is a measurable set of positive product measure, then it supports
nonzero operators, for example any Hilbert-Schmidt operator whose kernel van-
ishes almost everywhere (with respect to product measure) on Q°. However even
sets of product measure zero can support nonzero operators: for example the
diagonal A = {(z,z) : x € [0,1]} supports the identity operator, as well as any
multiplication operator M; with f e L*([0,1]).

A set Q € X x X is said to be marginally null if it is contained in a union
(NxX)u(XxM), where u(N) = u(M) = 0. Such a set cannot support a nonzero
operator T, because (N¢ x M¢) n Q = ¢ whereas P(M°)TP(N¢) =T # 0.

One would like to define ‘the support’ of a set 7 of operators to be the
complement of the union of the family £ all Borel rectangles on which 7 vanishes.
However this union is in general non-measurable. The way around this difficulty is
the following: there exists a countable set {E,,} < £ whose union E (a measurable
set) ‘almost contains’ every Borel rectangle Ax B € £, in the sense that (Ax B)\E
is marginally null. Thus E° ‘almost contains’ every subset of X x X supporting 7.

Definition 10. The complement E° of the union of the rectangles in
{E,} is defined to be the support of T and is denoted supp T .
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Let us call two subsets E,F of X x X marginally equivalent (written
E ~ F) if their symmetric difference is marginally null; let us call a subset E
of X x X w-open if it is marginally equivalent to a countable union of Borel
rectangles; the complements of w-open sets are of course called w-closed sets.
Thus supp T is w-closed; it is uniquely determined (up to marginal equivalence)
and is the smallest w-closed set supporting 7.

6.3. Masa bimodules, reflexivity and operator synthesis. Fix any
set 2 € X x Y. The set of all operators which are supported in €2 is denoted
Mnax ().

This is easily seen to be a weak-* closed linear space. Also, it is a bimodule
over the masa M: indeed if T is supported in €, then so is M;T M, for every
My, My in the masa M.

It is not hard to see that M.« (€2) is reflexive in the sense of Loginov-
Shulman [17]; that is, DMmax(2) is equal to the annihilator of a set of rank one
functionals.'® The support of Myax(Q) is an w-closed set, it contains  and is,
up to marginally null sets, the smallest w-closed set containing €2; it is called the
w-closure of §2.

It can be shown conversely that if an M-bimodule T is reflexive, then it
is necessarily of the form 7 = DM, (), where 2 can be chosen w-closed; in fact,
Q is the support of T.

Thus there is a bijective correspondence between reflexive M-bimodules
and w-closed subsets of X x X.

Note that, in case X comes equipped with a topology, the support of a
masa bimodule cannot always be chosen to be topologically closed. For exam-
ple, there is a reflexive M-bimodule & < B(L?([0,1]) (where M is the masa of
L*([0,1])) such that the smallest closed subset of [0,1] x [0, 1] supporting U is
the whole of [0,1] x [0, 1], although U # B(L*([0,1]).2°

We have seen that for unital and selfadjoint operator algebras, closure
in the weak-* topology automatically implies reflexivity (von Neumann’s bicom-
mutant theorem, 6.2). For non-selfadjoint algebras this is no longer true: the
simplest example is the algebra of all 2 x 2 complex matrices of the form [3 Z];
but this algebra is not a masa bimodule. What happens in the masa bimodule
case?

lglndeed, Mumax(£2) is the annihilator of the set of all functionals wpayr p(B)g, Where f,g €
L*(X, ) are arbitrary and A, B are Borel subsets of X satisfying (A x B) n Q = (.

*One can take U = {M + PXP : M € M, X € B(H)} where P = P(A) and A < [0,1] is
chosen so that both A and A intersect every open set in a set of nonzero Lebesgue measure.
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If U < B(H) is a weak-* closed subspace which is a bimodule over a
discrete masa D (so that 7 may be realized as ¢* and D as the algebra of all
diagonal matrices), then it is automatically (and trivially) reflexive: its support
Q2 is the complement of the set of all pairs (m,n) € N x N such that w,,, = 0
for every U = [um, ] in U; hence, since we,, ¢,, (U) = Um n, U is the annihilator of
all rank one functionals {we,, c,, : (m,n) € Q°}; equivalently, every matrix which
vanishes in Q¢ must be in U, and so U = Mypax ().

When the masa M is not generated by its minimal projections, the situ-
ation is more complex. Arveson [1] was the first to exhibit a weak-* closed masa
bimodule & with support 2 for which U # 9My,.x(2). He called this phenomenon
failure of operator synthesis, as his example was based on the failure of spectral
synthesis in the group algebra L'(R?).

He proved?! that any weak-* closed masa bimodule ¢ with support 2 lies
between two extremal weak-* closed masa bimodules: Myin () € U S Mpax(Q).

The predual approach [22]. When the masa M is identified with the
multiplication algebra of L (X, ) acting on H = L?(X, u), every element w €

n

B(H) . is identified with a function on X x X; indeed w = Z Wi, g, corresponds

k=1
to the function

Fw(svt) = Z fk(s)gk(t)7 (S7t) € X xX.
k=1

e}
admits a representation w = Z Wf, g, With
k=1

In fact every element w € B(H),

Dkl gl = w| < oo and hence defines the function
k

Fw(svt) = Z fk(S)gk(t), (S7t) eXxX
k=1

where the series converges marginally almost everywhere on X x X, that is for
all (s,t) € X x X outside a marginally null set. Two functions define the same
element of B(#), if and only if they agree marginally almost everywhere.

The space T'(X) of all (marginal equivalence classes of ) functions on X x X

of the above form, equipped with the norm |||, inherited from B(H), coincides

*for the separably acting unital algebra case
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with the projective tensor product L*(X, u)®L'(X, ). Given any w-closed set
Q) < X x X we consider the subspaces

®(Q2) = {heT(X):h=0marginally a.e. on Q}
Uy(Q2) = {heT(X): h =0 marginally a.e. in an w-open neighbourhood of Q}

where an w-open neighbourhood of €2 is a countable cover of {2 by Borel rectan-
gles. It can be shown that the annihilator of Uy(€2) in B(H) is Mmax(£2), while
the annihilator of ®(2) is the minimal weak-* closed bimodule M,y (2) having
support 2. This leads to the

Definition 11. An w-closed set ) is said to satisfy operator synthesis if
Muin (2) = Mnax(Q), equivalently is every h € T(X) that vanishes (marginally
a.e.) on Q can be approzimated (in the norm ||-|,) by elements of T'(X) vanishing
in an w-open neighbourhood of €.

The investigation of conditions that imply operator synthesis is an active
area of research, with close connections to harmonic analysis. We refer the reader
to the contribution of I. G. Todorov [27] in these proceedings.
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