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Abstract. We study particular kind of Stefan problem and use the theory
of abstract quasilinear evolution equations for its solution.

Introduction. The Stefan problem is a special kind of a free boundary
problem which models phase transition phenomena of two or more materials, for
example melting of ice and freezing of water. It is named after the physicist J.
Stefan who has originally designed a model that describes ice formation in polar
seas, see [11], [12]. Lam and Clapeyron treated similar problem in [5]. For detailed
historical account and older results see Rubinstein [9], and for more recent results
see the monographs by Meirmanov [8] and Visintin [13]. We study a quasy-steady
variant and propose in our model a boundary condition with surface tension
and kinetic undercooling that reflects the relaxation dynamics. Our approach
to the problem is by using the theory of abstract parabolic evolution equations.
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The Stefan problem consists in finding the unknown free boundary Γt and the
temperature u in the following set of equations





∆u = 0 in Ωt

V + ∂νu = 0 on Γt

u = aV + κ on Γt

Γ(0) = Γ0

The boundary condition u = aV +κ with positive function a > 0 expresses
the temperature as a function of the local normal velocity V and the normal
curvature κ of the phase boundary.

1. The oblique derivative problem. Using the so called Hanzawa
transformation [3], the free boundary problem can be transformed to a fixed
domain D ⊂ R

n with boundary ∂D = Σ.




A(ρ)v = 0 in D

v + δB(ρ)v = H(ρ) on Σ

∂tρ+ LρB(ρ)v = 0 on Σ

ρ(0) = ρ0 on Σ.

The first two equations form a boundary value problem, known as Oblique
Derivative Problem. We assume that the initial geometry Γ0 is in the class C3,α.
Then we have that the boundary describing function ρ is in the same class. A(ρ)
is a second order uniformly elliptic operator, A(ρ) : C2,α(D) → C0,α(D) and it
has the representation

A(ρ)v =
∑

i,j

aij(ρ)∂
2
ijv +

∑

i

ai(ρ)∂iv,

with aij(ρ) ∈ C2,α(D), ai(ρ) ∈ C1,α(D). The boundary operator B(ρ) : C2,α(D) →
C0,α(Σ) has the representation

B(ρ)v =
−→
bρ · ∇v,

for a nowhere tangential and nowhere vanishing vector field
−→
bρ : Σ → R

n.

Lρ is a strictly positive function. The novel thing is that δ is not a constant but
also a strictly positive function. H(ρ) is the transformed mean curvature and its
regularity is decisive for the solvability of the problem. In our model H(ρ) is a
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C1,α(Σ) function. For more details the reader is referred to [6].
Let S be the formal solution operator for the Oblique Derivative Problem, de-
pending on g.

Theorem 1.1. There is a unique solution v = S(g) ∈ C2,α(D), and there

exist a constant C > 0 such that

‖S(ρ)g‖2,α ≤ C(‖S(ρ)g‖∞ + ‖g‖1,α).

It holds δB(ρ)S(ρ) = I − γS(ρ).

P r o o f. For the first assertition see [2, Theorem 6.31]. For the second

δB(ρ)S(ρ)g = g − γS(ρ)g

= [I − γS(ρ)]g. ✷

We assume that the distance function ρ belongs to the set U := {ρ ∈
C3,α(Σ) : ‖ρ‖C3,α(Σ) < b} and show that the solution operator is Lipschitz con-
tinuous on this set.

Theorem 1.2. The solution operator for sufficiently small b > 0

S : U → L(C1,α(Σ), C2,α(D)),

ρ 7→ S(ρ)g

of the Oblique Derivative Problem

A(ρ)v =0

v + δB(ρ)v = g

is Lipschitz continuous. There is a constant C > 0 such that

‖S(ρ1)− S(ρ2)‖L(C1,α(Σ),C2,α(D)) ≤ C‖ρ1 − ρ2‖C1,α(Σ),

for all ρ1, ρ2 ∈ U .

P r o o f. We introduce B̃(ρ)v := γv + δB(ρ)v and denote with S̃(ρ) the

inverse to

(
A(ρ)

B̃(ρ)

)
. Then the operator

(
A

B̃

)
is in C∞(U ,L(C2,α(D), Cα(D) ⊕

C1,α(Σ))), especially is Lipschitz continuous and for some constant C > 0
∥∥∥∥
(
A(ρ1)

B̃(ρ1)

)
−

(
A(ρ2)

B̃(ρ2)

)∥∥∥∥
L(C2,α(D),Cα(D)⊕C1,α(Σ))

≤ C‖ρ1 − ρ2‖C1,α(Σ).
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We have

‖S̃(ρ1)− S̃(ρ2)‖L(Cα(D)⊕C1,α(Σ),C2,α(D))

=

∥∥∥∥S̃(ρ1)
[(

A(ρ2)

B̃(ρ2)

)
−

(
A(ρ1)

B̃(ρ1)

)]
S̃(ρ2)

∥∥∥∥
L(Cα(D)⊕C1,α(Σ),C2,α(D))

≤‖S̃(ρ1)‖L(Cα(D)⊕C1,α(Σ),C2,α(D))

∥∥∥∥
(
A(ρ2)

B̃(ρ2)

)
−

(
A(ρ1)

B̃(ρ1)

)∥∥∥∥
L(C2,α(D),Cα(D)⊕C1,α(Σ))

×‖S̃(ρ2)‖L(Cα(D)⊕C1,α(Σ),C2,α(D))

≤C‖ρ1 − ρ2‖C1,α(Σ).

It follows that S(ρ) = S̃(ρ)
∣∣∣
{0}⊕C1,α(Σ)

is also Lipschitz continuous. ✷

2. The evolution equation. The last two equations in the Stefan
problem give the evolution equation

{
∂tρ+ LρB(ρ)v = 0 on Σ

ρ(0) = ρ0 on Σ.

Plugging the solution v = S(ρ)H(ρ) into the evolution equation gives
fully nonlinear evolution equation

{
∂tρ+ LρB(ρ)S(ρ)H(ρ) = 0

ρ(0) = ρ0.

This evolution equation can be linearized by using the quasilnear structure of
the mean curvature operator H(ρ). It can be written as H(ρ) = P (ρ)ρ + Q(ρ),
where P (ρ) is a second order uniformly elliptic differential operator and Q(ρ) is
an analytic function depending on the first and second order derivatives of ρ, see
Escher and Simonett [1].

Then the evolution equation becomes quasilnear

∂tρ+A(ρ)ρ = F (ρ)

ρ(0) = ρ0,(1)

with the operator

A(ρ) := LρB(ρ)S(ρ)P (ρ), and the function F (ρ) := −LρB(ρ)S(ρ)Q(ρ).
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3. The existence and uniqueness theorem. We use the following
interpolation spaces of Da Prato and Grisvard which are defined for two Banach
spaces E0 and E1 with E1 →֒ E0, E1 densely embedded in E0 and 0 < θ ≤ 1.

E
θ
0(J) := {u ∈ C(J̇ , E0) : lim

t→0+
‖t1−θu(t)‖E0

= 0}

E
θ
1(J) := {u ∈ C1(J̇ , E0) ∩C(J̇ , E1) :

lim
t→0+

t1−θ(‖u′(t)‖E0
+ ‖u(t)‖E1

) = 0}

γEθ
1(J) := {u(0) : u ∈ E

θ
1(J)}

For more information on these and other interpolation spaces we refer the reader
to Lunardi’s book [7].

With H(E1, E0) we denote the set of all analytic generators from E1 to
E0. In the following, the concept of continuous maximal regularity is used.

Definition 3.1. The operator A ∈ H(E1, E0) has continuous maximal

regularity if the inhomogeneous Cauchy problem

(2)

{
u̇(t) = Au(t) + f(t), on J

u(0) = u0.

has a unique solution u ∈ E
θ
1 for all f ∈ E

θ
0 and u0 ∈ γEθ

1.

For maximal regularity in the context of Lp spaces see the excellent survey
by Kunstmann and Weis [4].

Remark 3.2. Uniformly elliptic operators have maximal regularity. This
property is inherited by operators which are lower order perturbations of opera-
tors with maximal regularity.

The set of all operators with continuous maximal regularity is denoted
by Mθ(E1, E0). For the solution of the Stefan problem we need the following
existence and uniqueness theorem which is a version of [10, Theorem 3.1]

Theorem 3.3. Let E0 and E1 be two Banach spaces such that E1 →֒ E0

and for 0 < θ ≤ 1 let Vθ ⊂ γEθ
1(J) be an open neighbourhood of u0 ∈ Vθ. Assume

in addition that F ∈ Lip(Vθ, E0) and A ∈ Lip(Vθ,Mθ(E1, E0)). Then there is

τ > 0, such that the quasilinear evolution equation

(3)

{
u̇+A(u)u = F (u) on J,

u(0) = u0

has a unique solution u ∈ E
θ
1(Jτ ).
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P r o o f. We define A0 and B = B(u) with A0 := A(u0), B(u) :=
A0 −A(u). Then (3) can be rewritten as

{
u̇+A0u = B(u)u+ F (u), on J

u(0) = u0,

which is a inhomogeneous Cauchy problem. Since A(u0) ∈ Mθ(E1, E0), the
solution is given by

(4) u = y0 + JA0
(B(u)u+ F (u))

where JA is the operator JA(f)(t) :=

∫ t

0
e(t−s)Af(s) ds and y0(t) := e−tA0u0. The

solutions of (4) are the fixed points of the mapping Φ,

Φ(u) := y0 + JA0
(B(u)u+ F (u)).

For a small ε > 0 which we determine later, we choose neighborhood U ⊂ Vθ of
u0, such that ‖B(u)‖L(E1,E0) ≤ ε for all u ∈ U . Next we introduce the subset W

of Eθ
1(Jτ ),

W := {u ∈ E
θ
1(Jτ ) : u(0) = u0, u(Jτ ) ⊂ U, ‖u‖E0

≤ 2‖y0‖Eθ
1
(Jτ )

},

and claim that Φ is a contraction on W . There is a constant C > 0 such that

(5) ‖Φ(u)− Φ(v)‖
E
θ
1
(Jτ )

≤ C{‖B(u)u−B(v)v‖
E
θ
0
(Jτ )

+ ‖F (u)− F (v)‖
E
θ
0
(Jτ )

}

for all u, v ∈ W , which follows from the boundedness of the operator norm of
JA0

. For σ with 0 < σ < θ, one can show the embedding

E
θ
1(J) →֒ C0,θ−σ(J, γEσ

1 (J)).

Then for all u, v ∈ W

‖u(t)− v(t)‖γEσ
1
(Jτ ) ≤ Ctθ−σ‖u− v‖

E
θ
1
(Jτ )

,

and it follows that

‖F (u)− F (v)‖
E
θ
0
(Jτ )

= sup
t∈J̇τ

t1−θ‖F (u(t)) − F (v(t))‖E0

≤ M sup
t∈J̇τ

t1−θ‖u(t)− v(t)‖γEσ
1
(Jτ )

≤ MC sup
t∈J̇τ

t1−θtθ−σ‖u− v‖
E
θ
1
(Jτ )

= MCτ1−σ‖u− v‖
E
θ
1
(Jτ )

.
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With the assumption ‖B(u)‖L(E1,E0) ≤ ε, the first term in (5) can be estimated
as

‖B(u)u−B(v)v‖
E
θ
0
(Jτ )

≤ ‖B(u)(u− v)‖
E
θ
0
(Jτ )︸ ︷︷ ︸

I

+ ‖(B(u)−B(v))v‖
E
θ
0
(Jτ )︸ ︷︷ ︸

II

.

I = sup
t∈J̇τ

t1−θ‖B(u(t))(u(t) − v(t))‖E0

≤ sup
t∈J̇τ

t1−θ‖B(u)‖L(E1,E0)‖u(t)− v(t)‖E0

≤ ε‖u− v‖
E
θ
1
(Jτ )

.

From the embedding it follows

II = sup
t∈J̇τ

t1−θ‖(B(u(t)) −B(v(t)))v(t)‖E0

≤ sup
t∈J̇τ

t1−θM‖u(t)− v(t)‖γEσ
1
(Jτ )‖v(t)‖E0

≤ MC sup
t∈J̇τ

t1−θtθ−σ‖u− v‖
E
θ
1
(Jτ )

‖v(t)‖
E
θ
1
(Jτ )

≤ MCτ θ−σ‖u− v‖
E
θ
1
(Jτ )

.

So we have

‖B(u)u−B(v)v‖
E
θ
0
(Jτ )

≤ ε‖u− v‖
E
θ
1
(Jτ )

+MCτ θ−σ‖u− v‖
E
θ
1
(Jτ )

.

With this and the previous estimate:

‖Φ(u)−Φ(v)‖
E
θ
1
(Jτ )

≤ C{τ1−σ‖u−v‖
E
θ
1
(Jτ )

+ε‖u−v‖
E
θ
1
(Jτ )

+ τ θ−σ‖u−v‖
E
θ
1
(Jτ )

}.

If we now choose ε and τ sufficiently small, say

ε < 1/2C, und τ < (1/2C)1/max{1−σ,θ−σ} ,

then Φ is indeed a contraction. Applying the Banach Fixed Point Theorem, Φ
possesses a unique fixed point which is the solution of (4). Hence the evolution
solution has also unique solution u ∈ E

θ
1(Jτ ) and the proof is complete. ✷
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4. Solution of the Stefan problem. We have shown that the Stefan
problem can be reduced to a single quasilinear evolution equation (1). In order
to apply the abstract existence theorem, we proceed to show that (1) satisfies all
its conditions.

Theorem 4.1. The function F : U → C1,α(Σ) in the evolution equation

∂tρ+A(ρ)ρ = F (ρ),

ρ(0) = ρ0(6)

with

A(ρ) := LρB(ρ)S(ρ)P (ρ)

and

F (ρ) := −LρB(ρ)S(ρ)Q(ρ)

is Lipschitz continuous. It holds

‖F (ρ1)− F (ρ2)‖C1,α(Σ) ≤ C‖ρ1 − ρ2‖C1,α(Σ).

P r o o f. We set M(ρ) := Lρ/δ and recall that δ ≥ c > 0. Then M(ρ) is
Lipschitz continuous. Similarly M(ρ)Q(ρ) and M(ρ)γS(ρ)Q(ρ) are also Lipschitz
continuous. Hence

‖M(ρ1)Q(ρ1)−M(ρ2)Q(ρ2)‖C1,α(Σ) ≤ C‖ρ1 − ρ2‖C1,α(Σ)

and

‖M(ρ1)γS(ρ1)Q(ρ1)−M(ρ2)γS(ρ2)Q(ρ2)‖C1,α(Σ) ≤ C‖ρ1 − ρ2‖C1,α(Σ).

By Theorem 1.1

‖F (ρ1)− F (ρ2)‖C1,α(Σ)

= ‖Lρ1B(ρ1)S(ρ1)Q(ρ1)− Lρ2B(ρ2)S(ρ2)Q(ρ2)‖C1,α(Σ)

= ‖M(ρ1)Q(ρ1)−M(ρ2)Q(ρ2)−M(ρ1)γS(ρ1)Q(ρ1)+M(ρ2)γS(ρ2)Q(ρ2)‖C1,α(Σ)

≤ C1‖ρ1 − ρ2‖C1,α(Σ) + C2‖ρ1 − ρ2‖C1,α(Σ)

≤ C‖ρ1 − ρ2‖C1,α(Σ). ✷

Analogously one can show using P ∈ C∞(U ,L(C3,α(Σ), C1,α(Σ))),
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Theorem 4.2. The operator A(ρ) = B(ρ)S(ρ)P (ρ),

A : U → L(C3,α(Σ), C1,α(Σ))

is Lipschitz continuous.

The maximal regularity of A(ρ) follows from its representation as a lower
order perturbation of P (ρ) which we give next, and the Remark 3.2.

Theorem 4.3. It holds

A(ρ) =
Lρ

δ
P (ρ)−

Lρ

δ
γS(ρ)P (ρ)

P r o o f. Indeed, by Theorem 1.1

A(ρ) =
Lρ

δ
[δB(ρ)S(ρ)P (ρ)]

=
Lρ

δ
(I − γS(ρ))P (ρ)

=
Lρ

δ
P (ρ)−

Lρ

δ
γS(ρ)P (ρ). ✷

Summarizing all the previous results we have reached our goal of solving
the Stefan problem.

Theorem 4.4. For any initial geometry ρ(0, .) = Γ0, ρ(0, .) ∈ C3,α(Σ),
0 < α < 1, the Stefan Problem has a unique local solution (v, ρ) on a sufficiently

small time interval Jτ = [0, τ), such that

v ∈ C(Jτ , C
2,α(D))

and

ρ ∈ C(Jτ ;C
3,α(Σ)) ∩ C1(Jτ ;C

1,α(Σ)).
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[5] M. M. Lamé, B. P. Clapeyron. Mémoire sur la Solidification par re-
froidissement d’un globe liquide. Annales Chimie Physique, 47 (1831),
250–256.
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