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Abstract. In this paper, we use summability methods on the approxi-
mation to derivatives of functions by a family of linear operators acting on
weighted spaces. This point of view enables us to overcome the lack of or-
dinary convergence in the approximation. To support this idea, at the end
of the paper, we will give a sequence of positive linear operators obeying
the arithmetic mean approximation (or, approximation with respect to the
Cesàro method) although it is impossible in the usual sense. Some graphical
illustrations are also provided.

Introduction. Approximation to functions and their derivatives by a
family of linear operators acting on weighted spaces was studied by Èfendiev
[10], whose results improve the classical Korovkin theory (see [2, 15]) based on
positive linear operators defined on the space of all continuous and real-valued
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356 Nisa Küçük, Oktay Duman

functions on a compact subset of the real line. In this paper, we investigate
Èfendiev’s results in the framework of summability theory. More precisely, we
obtain various weighted approximation theorems in the sense of summability
process. This point of view enables us to overcome the lack of the ordinary
convergence of approximating operators. For example, by using our results it is
possible to construct a class of linear operators approximating in the Cesàro sense
a given function and its derivatives (but not in the usual sense). We mainly use
the A-summability method (process) introduced by Bell [8].

Let a sequence A = {Aυ} = {[aυnk]} (k, n, υ ∈ N) be a non-negative
regular summability method, that is, if

(1.1) lim
n→∞

∞
∑

k=1

aυnkxk = L, uniformly in υ ∈ N,

for any sequence x = {xk} converging to a number L. Recall that a sequence x is
called A-summable to L if (1.1) holds. A characterization on the regularity of A is
similar to the well-known Silverman-Toeplitz conditions. We should note that this
general summability method A contains many well-known (regular) convergence
methods. For example, the case of A = {Aυ} = {I}, the identity matrix, for
each υ ∈ N, coincides with the ordinary convergence in Cauchy’s sense. Another
interesting method is the almost convergence introduced by Lorentz [16], which
is the case of A = F = {[cυnk]} defined by

(1.2) cυnk :=







1

n
, if υ ≤ k ≤ n+ υ − 1

0, otherwise,

Furthermore, the Cesàro convergence method (or, the arithmetic mean conver-
gence), which is the case of A = {C1} = {[c1nk]} is easily obtained from (1.2) by
taking υ = 1. Bell’s summability method also includes the order summability
introduced by Jurkat and Peyerimhoff [13, 14].

So far, Bell’s summability method has been used in several papers (see,
for instance, [1, 5, 6, 12, 17, 18, 19, 20]). In the present paper we use it in the
approximation to derivatives of functions by a family of linear operators acting
on weighted spaces.

2. Weighted approximation theorems via summability meth-

ods. In this section, we approximate (in the sense of summability process) a func-
tion and its derivatives by using sequences of linear operators acting on weighted
spaces.
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We mainly consider the following class of functions as in the paper by
Èfendiev [10]. Let r be a non-negative integer. As usual, the space of all functions
with r-th continuous derivatives on R is denoted by C(r)(R). Let ρ : R → [1,+∞)
be a weight function, that, it satisfies the following conditions: (a) ρ(0) = 1; (b)
it is increasing on (0,+∞) and decreasing on (−∞, 0); (c) lim

x→±∞
ρ(x) = +∞.

Then, the corresponding weighted spaces are given as follows:

C(r)
ρ (R) =

{

f ∈ C(r)(R) :
∣

∣

∣
f (r)(x)

∣

∣

∣
≤ mfρ(x), ∃mf > 0, ∀x ∈ R

}

,

C̃(r)
ρ (R) =

{

f ∈ C(r)
ρ (R) : lim

x→±∞
f (r)(x)/ρ(x) = kf , ∃ kf

}

,

Ĉ(r)
ρ (R) =

{

f ∈ C̃(r)
ρ (R) : lim

x→±∞
f (r)(x)/ρ(x) = 0

}

,

Bρ(R) = {g : R → R : |g(x)| ≤ mgρ(x), ∃mg > 0, ∀x ∈ R} .

Also, by M (r) (R) we denote the class of linear operators L acting on the above
weighted spaces such that L (f) ≥ 0 whenever f (r) ≥ 0 on R. Observe that the
case of r = 0 coincides with the family of positive linear operators. If r = 0, we
just write Cρ(R), C̃ρ(R), Ĉρ(R), M(R). The weighted norm on Bρ(R) is defined
by ‖g‖ρ = sup

x∈R
|g(x)| /ρ(x) for g ∈ Bρ(R).

We now recall the next definition.

Definition 2.1 ([15]). We say that the system of continuous functions

{f0 , f1, · · · , fn}

on an interval [a, b] is T -system provided that any polynomial P (x) = a0f0(x) +
a1f1(x) + · · · + anfn(x) has not more than n zeros in this interval for which the
coefficients ai (0 ≤ i ≤ n) are not all equal to zero.

Let A = {[aυnk]} (k, n, υ ∈ N) be a non-negative regular summability
method, and let the {Lk} be a sequence of operators acting on weighted spaces.
Throughout the paper we say that, for a given function f in an appropriate
weighted space, the sequence {Lk(f)} is (uniformly) A-summable to f with re-
spect to the weighted norm if the following limit holds:

(2.1) lim
n→∞

∥

∥

∥

∥

∥

∞
∑

k=1

aυnkLk (f)− f

∥

∥

∥

∥

∥

ρ

= 0, uniformly in υ ∈ N.
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Throughout the paper we assume that A is regular and the series

∞
∑

k=1

aυnkLk (f)

in (2.1) converges for each n, υ ∈ N.
It is well-known that the test functions ei(x) = xi (i = 0, 1, 2) of the

classical Korovkin theorem can be replaced with the T -system {f0, f1, f2} on an
interval [a, b] (see Theorem 8 of [15]). The statistical analog of this result may be
found in [9]. Furthermore, Swetits [20] improved the classical Korovkin theorem
on the interval [a, b] via summability methods in (2.1). The T -system version of
Swetits’ result has recently been obtained by Atlihan and Tas [7] as follows:

Theorem 2.2. ([7]) Let A = {[aυnk]} (k, n, υ ∈ N) be a non-negative reg-
ular summability method, and let {Lk} be a sequence of positive linear opera-
tors from C[a, b] into itself. If, for each i = 0, 1, 2, {Lk (fi)} is (uniformly)
A-summable to fi on [a, b], where {f0, f1, f2} is T -system on [a, b], then, for all
f ∈ C[a, b], the sequence {Lk(f)} is (uniformly) A-summable to f with respect to
the classical sup-norm on C[a, b].

Now, we are ready to give our approximation results on weighted spaces.
We begin with the case of r = 0.

Theorem 2.3. Let A = {[aυnk]} (k, n, υ ∈ N) be a non-negative regular
summability method, and let the operators Lk : Cρ(R) → Bρ(R) belong the class
M(R), that is, the class of positive linear operators. Assume that {f0, f1} and
{f0, f1, f2} are T -systems on R. Assume further that the following conditions

(2.2) lim
x→±∞

fi(x)

1 + |f2(x)|
= 0 (i = 0, 1),

(2.3) lim
x→±∞

f2(x)

ρ(x)
= mf2 6= 0

hold. If, for each i = 0, 1, 2, {Lk (fi)} is (uniformly) A-summable to fi with
respect to the weighted norm on Bρ(R), then, for all f ∈ C̃ρ(R), the sequence
{Lk(f)} is (uniformly) A-summable to f with respect to the weighted norm on
Bρ(R).

P r o o f. By the proof of Theorem 1 in the paper by Èfendiev [10] (see
also Theorem 2.2 in [3]), for a given function f ∈ C̃ρ(R), the function g on R

defined by g(y) := mf2f(y)− kff2(y) belongs to Ĉρ(R), where the constants kf
andmf2 are the same as in the definitions of corresponding weighted spaces. Now,
following Lemma 2 in [10], we get from (2.2), (2.3) and {f0, f1} being T -system
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that, for a given ε > 0 and a fixed positive constant s0, there exists a positive
constant u0 such that

(2.4) |g(y)| <
M

ma
Φa(y) + s0εf2(y) for all y ∈ R,

where Φa (a being a fixed real number satisfying fi(a) 6= 0, i = 0, 1) is a function
such that Φa(a) = 0 and Φa(y) > 0 for y < a and that Φa(y) = γ0(a)f0(y)+
γ1(a)f1(y), where |γ0(a)| = |f1(a)/f2(a)| and |γ1(a)| = 1. In (2.4), the constants
M and ma are given, respectively, by M := sup

|y|≤u0

|g(y)| and ma := min
|y|≤u0

Φa(y).

Then, using (2.4) we observe that
∣

∣

∣

∣

∣

∞
∑

k=1

aυnkLk(g;x)

∣

∣

∣

∣

∣

≤

∞
∑

k=1

aυnkLk(|g(y)| ;x)

≤

∞
∑

k=1

aυnk

{

M

ma
Lk(Φa;x) + εs0Lk(f2;x)

}

=
M

ma

{

γ0(a)
∞
∑

k=1

aυnkLk(f0;x) + γ1(a)
∞
∑

k=1

aυnkLk(f1;x)

}

+ εs0

∞
∑

k=1

aυnkLk(f2;x)

holds for each n, υ ∈ N. Using the last inequality, we get
∣

∣

∣

∣

∣

∞
∑

k=1

aυnkLk(g;x)

∣

∣

∣

∣

∣

≤
M

ma
|γ0(a)|

∣

∣

∣

∣

∣

∞
∑

k=1

aυnkLk(f0;x) − f0(x)

∣

∣

∣

∣

∣

+
M

ma

∣

∣

∣

∣

∣

∞
∑

k=1

aυnkLk(f1;x) − f1(x)

∣

∣

∣

∣

∣

+ εs0

∣

∣

∣

∣

∣

∞
∑

k=1

aυnkLk(f2;x) − f2(x)

∣

∣

∣

∣

∣

+
M

ma
|Φa(x)|+ εs0 |f2(x)| .

On the other hand, we have
∥

∥

∥

∥

∥

∞
∑

k=1

aυnkLk(g) − g

∥

∥

∥

∥

∥

ρ

≤ sup
|x|≤u0

1

ρ(x)

∣

∣

∣

∣

∣

∞
∑

k=1

aυnkLk(g;x) − g(x)

∣

∣

∣

∣

∣
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+ sup
|x|>u0

1

ρ(x)

∣

∣

∣

∣

∣

∞
∑

k=1

aυnkLk(g;x)

∣

∣

∣

∣

∣

+ sup
|x|>u0

|g(x)|

ρ(x)
.

Then, combining the above inequalities, we see that

(2.5)

∥

∥

∥

∥

∥

∞
∑

k=1

aυnkLk(g) − g

∥

∥

∥

∥

∥

ρ

≤

∥

∥

∥

∥

∥

∞
∑

k=1

aυnkLk(g) − g

∥

∥

∥

∥

∥

[−u0,u0]

+
M

ma
|γ0(a)|

∥

∥

∥

∥

∥

∞
∑

k=1

aυnkLk(f0)− f0

∥

∥

∥

∥

∥

ρ

+
M

ma

∥

∥

∥

∥

∥

∞
∑

k=1

aυnkLk(f1)− f1

∥

∥

∥

∥

∥

ρ

+εs0

∥

∥

∥

∥

∥

∞
∑

k=1

aυnkLk(f2)− f2

∥

∥

∥

∥

∥

ρ

+
M

ma
sup

|x|>u0

|Φa(x)|

ρ(x)
+ εs0 sup

|x|>u0

|f2(x)|

ρ(x)
,

+ sup
|x|>u0

|g(x)|

ρ(x)

where ‖·‖[−u0,u0]
denotes the usual sup-norm on C[−u0, u0]. Since, for i = 0, 1, 2,

∥

∥

∥

∥

∥

∞
∑

k=1

aυnkLk(fi)− fi

∥

∥

∥

∥

∥

[−u0,u0]

≤ K

∥

∥

∥

∥

∥

∞
∑

k=1

aυnkLk(fi)− fi

∥

∥

∥

∥

∥

ρ

,

where K := ‖ρ‖[−u0,u0]
, the hypothesis implies that the sequence {Lk (fi)} (i =

0, 1, 2) is (uniformly)A-summable to fi with respect to the sup-norm on C[−u0, u0].
Hence, from Theorem 2.2, we obtain that {Lk (g)} (i = 0, 1, 2) is (uniformly) A-
summable to g with respect to the sup-norm since g ∈ C[−u0, u0]. Therefore, all
terms of the left hand-side of (2.5) tends to zero as n→ ∞, uniformly in υ ∈ N,
which implies that

(2.6) lim
n→∞

∥

∥

∥

∥

∥

∞
∑

k=1

aυnkLk(g)− g

∥

∥

∥

∥

∥

ρ

= 0, uniformly in υ ∈ N.

Now, by the regularity of A and the linearity of Lk, it follows from the definition
of g that

f(y) =
1

mf2

g(y) +
kf
mf2

f2(y),
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which implies, for each n, υ ∈ N, that

∥

∥

∥

∥

∥

∞
∑

k=1

aυnkLk(f)− f

∥

∥

∥

∥

∥

ρ

≤
1

mf2

∥

∥

∥

∥

∥

∞
∑

k=1

aυnkLk(g) − g

∥

∥

∥

∥

∥

ρ

+
kf
mf2

∥

∥

∥

∥

∥

∞
∑

k=1

aυnkLk(f2)− f2

∥

∥

∥

∥

∥

ρ

.

Taking limit as n → ∞ (uniformly in υ ∈ N) and also considering (2.6) and the
hypothesis, the proof is completed. ✷

Notice that if mf2 = 0 in (2.3), then we can approximate to functions in

Ĉρ(R) instead of the ones in C̃ρ(R).
Now, for r = 1, 2, . . . , we approximate to the r-th order derivative of a

function f in C̃(r)
ρ (R).

Theorem 2.4. Let A = {[aυnk]} (k, n, υ ∈ N) be a non-negative regular
summability method, and let the operators Lk : C(r)

ρ (R) → Bρ(R) belong the class

M (r)(R). Assume that f0, f1, f2 ∈ C(r)
ρ (R) and that {f

(r)
0 , f

(r)
1 } , {f

(r)
0 , f

(r)
1 ,

f
(r)
2 } are T -systems on R. Assume further that the following conditions

(2.7) lim
x→±∞

f
(r)
i (x)

1 +
∣

∣

∣
f
(r)
2 (x)

∣

∣

∣

= 0 (i = 0, 1),

(2.8) lim
x→±∞

f
(r)
2 (x)

ρ(x)
= m

(r)
f2

6= 0

hold. If, for each i = 0, 1, 2, {Lk (fi)} is (uniformly) A-summable to f
(r)
i with

respect to the weighted norm on Bρ(R), then, for all f ∈ C̃(r)
ρ (R), the sequence

{Lk(f)} is (uniformly) A-summable to f (r) with respect to the weighted norm on
Bρ(R).

P r o o f. As in the proof of Theorem 1 in [10] (see also [3]), if we
consider the operators L∗

k := Lk ◦ D−r, where D−r denotes the r-th inverse
derivative operator, then it follows from the hypothesis on Lk that, for each
k ∈ N, L∗

k is a positive linear operator mapping Cρ(R) into Bρ(R) such that

L∗
k(f

(r)) = Lk(D
−r(f (r)) for f ∈ C(r)

ρ (R). Since, for each i = 0, 1, 2, {Lk (fi)}

is (uniformly) A-summable to f
(r)
i , we may write that {L∗

k(ψi)} is (uniformly)

A-summable to ψi with respect to the weighted norm on Bρ(R), where ψi := f
(r)
i

(i = 0, 1, 2). In this case, from (2.7), (2.8), we immediately see that conditions
(2.2) and (2.3) are valid for the T -systems {ψ0, ψ1} and {ψ0, ψ1, ψ2}. Thus,
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Theorem 2.3 implies that, for all ψ ∈ C̃ρ(R), the sequence {L
∗
k(ψ)} is (uniformly)

A-summable to ψ with respect to the weighted norm on Bρ(R). For a given

f ∈ C̃(r)
ρ (R), taking ψ = f (r), the proof follows immediately. ✷

In general, the concept of A-statistical convergence (see [11]) and A-sum-
mability method cannot be comparable. So, our results are completely different
the ones in [3, 4]. However, the next result provides an interesting connection
between them.

Corollary 2.5. Let, for each υ ∈ N, A = {Aυ} = {[ank]} be a non-
negative regular summability matrix, let {Lk} be a uniformly bounded sequence of
operators from C(r)

ρ (R) into Bρ(R) belonging to the class M (r)(R). Assume that

f
(r)
0 , f

(r)
1 , f

(r)
2 satisfy the conditions of Theorem 2.4. If, for each i = 0, 1, 2,

(2.9) stA − lim
k

∥

∥

∥
Lk(fi)− f

(r)
i

∥

∥

∥

ρ
= 0,

where stA − lim denotes the A-statistical limit, then, for all f ∈ C̃(r)
ρ (R), the

sequence {Lk(f)} is (uniformly) A-summable to f (r) with respect to the weighted
norm on Bρ(R).

P r o o f. From (2.9) we may write that, for a given ε > 0, lim
n→∞

∑

k∈Ki(ε)

ank =

0, where Ki(ε) :=

{

k ∈ N :
∥

∥

∥
Lk(fi)− f

(r)
i

∥

∥

∥

ρ
≥ ε

}

(i = 0, 1, 2) . Also, by the uni-

form boundedness of {Lk} we get, for each n ∈ N, that

∞
∑

k=1

ank

∥

∥

∥
Lk(fi)− f

(r)
i

∥

∥

∥

ρ
≤

∑

k∈Ki(ε)

ank

∥

∥

∥
Lk(fi)− f

(r)
i

∥

∥

∥

ρ

+
∑

k∈N\Ki(ε)

ank

∥

∥

∥
Lk(fi)− f

(r)
i

∥

∥

∥

ρ

≤ (MDi + Ei)
∑

k∈Ki(ε)

ank + ε

∞
∑

k=1

ank,

where M := ‖Lk‖Cρ(R)→Bρ(R) = sup
‖f‖ρ=1

‖Lk(f)‖ρ , Di := ‖fi‖ρ and Ei :=
∥

∥

∥
f
(r)
i

∥

∥

∥

ρ

(i = 0, 1, 2). Then, the regularity of A implies that

lim
n→∞

∞
∑

k=1

ank

∥

∥

∥
Lk(fi)− f

(r)
i

∥

∥

∥

ρ
= 0.
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Now using the fact that
∥

∥

∥

∥

∥

∞
∑

k=1

ankLk(fi)− f
(r)
i

∥

∥

∥

∥

∥

ρ

≤

∞
∑

k=1

ank

∥

∥

∥
Lk(fi)− f

(r)
i

∥

∥

∥

ρ
+ Ci

∣

∣

∣

∣

∣

∞
∑

k=1

ank − 1

∣

∣

∣

∣

∣

,

where Ci :=
∥

∥

∥
f
(r)
i

∥

∥

∥

ρ
, we immediately see that

lim
n→∞

∥

∥

∥

∥

∥

∞
∑

k=1

ankLk(fi)− f
(r)
i

∥

∥

∥

∥

∥

ρ

= 0 for each i = 0, 1, 2,

which means the sequence {Lk (fi)} is (uniformly) A-summable to fi for each
i = 0, 1, 2 with respect to the weighted norm on Bρ(R). Hence, the proof follows
from Theorem 2.4. ✷

In order to get an approximation on the space C(r)
ρ (R) we need a new

weight function as follows:

Theorem 2.6. Let A = {[aυnk]} (k, n, υ ∈ N) be a non-negative regular
summability method, and let the operators Lk : C(r)

ρ (R) → Bρ1(R) belong the class

M (r)(R). Assume that f
(r)
0 , f

(r)
1 , f

(r)
2 satisfy the conditions of Theorem 2.4. Let

ρ1 : R → [1,∞) be a weight function. Assume further that

(2.10) lim
x→±∞

ρ(x)

ρ1(x)
= 0

and

(2.11) lim
x→±∞

f
(r)
2

ρ1(x)
= m

(r)
f2

6= 0

holds. If, for each i = 0, 1, 2, {Lk (fi)} is (uniformly) A-summable to f
(r)
i with

respect to the weighted norm on Bρ(R), then, for all f ∈ C(r)
ρ (R), the sequence

{Lk(f)} is (uniformly) A-summable to f (r) with respect to the weighted norm on
Bρ1(R).

P r o o f. It is easy to check that C(r)
ρ (R) ⊂ Ĉ(r)

ρ1
(R) ⊂ C̃(r)

ρ1
(R). Also, we

get from (2.10) and (2.11) that all conditions of Theorem 2.4 are valid for the
weight function ρ1. Thus, the proof is a direct consequence of Theorem 2.4. ✷

Specializing Theorem 2.6 (consider the case of r = 0), it is also possible
to obtain a modification of Theorem 3 presented by Atlihan and Orhan [6].

Now, we can summarize some important conclusions of our weighted ap-
proximation results via summability process.
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• Theorems 2.3 and 2.4 improve Èfendiev’s results in [10]. Indeed, for each
υ ∈ N, it is enough to take A = {Aυ} = {I}, the identity matrix.

• If we take A = F , the almost convergence method, then we get an almost
approximation result in Lorentz’s sense [16].

• If we take A = {C1}, the Cesàro method, we obtain an arithmetic mean
approximation in Cesàro’s sense. In order to verify it we give the following
application.

Define the functions uk : [0,+∞) → R (k ∈ N) by

(2.12) uk(x) =

{

1 + sinx, if k is odd,
1− sinx, if k is even.

Then, taking ρ(x) = 1 + x2 and also considering the test functions

fi(x) =
xi+1ρ(x)

(i+ 1) (1 + x2)
=

xi+1

(i+ 1)
(i = 0, 1, 2)

the following positive linear operators on Cρ[0,+∞)

(2.13) Lk(f ;x) = uk(x)e
−kx

∞
∑

j=0

f

(

j

k

)

nj

j!

(

jxj−1 − kxj
)

,

satisfy all conditions of Theorem 2.4 for r = 1. In this case, observe that

(2.14) Lk(f ;x) = uk(x)S
′
k(f ;x),

where, for each k ∈ N, Sk(f ;x) denotes the classical Szász-Mirakjan operator [21]
(see also [2]) and S′

k(f ;x) denotes its derivative with respect to x. If we use the
Cesàro matrix A = {C1} = {[cnk]} (k, n ∈ N) , then it follows from (2.12) that

(2.15) lim
n→∞

1

n

n
∑

k=1

uk(x) = 1, uniformly on x ∈ [0, b] (b > 0).

We also know that

(2.16) lim
k→∞

S′
k(f ;x) = f ′(x), uniformly on x ∈ [0, b],
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Fig. 1. L2k+1(f ;x) in (2.13) approaches to (1 + sin (x))f ′(x) on [0, 5] for sufficiently
large k, where f(x) = 2x+ cosx+ x sin x

Fig. 2. L2k(f ;x) in (2.13) approaches to (1 − sin (x))f ′(x) on [0, 5] for sufficiently large
k, where f(x) = 2x+ cosx+ x sinx

Fig. 3. Tn(f ;x) in (2.20), which is the arithmetic mean of Lk(f ;x), approaches to f
′(x)

on [0, 5] for sufficiently large n
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for all f ∈ C(1)
ρ [0,+∞). By the regularity of the Cesàro method, (2.16) guarantees

that

(2.17) lim
n→∞

1

n

n
∑

k=1

∣

∣S′
k(f)− f ′(x)

∣

∣ = 0, uniformly on x ∈ [0, b].

On the other hand, one can write from (2.14) that

Lk(f ;x)− f ′(x) = (uk(x)− 1)
(

S′
k(f ;x)− f ′(x)

)

+ f ′(x) ((uk(x)− 1))

+ S′
k(f ;x)− f ′(x),

which implies

1

n

n
∑

k=1

Lk(f ;x)− f ′(x) =
1

n

n
∑

k=1

(uk(x)− 1)
(

S′
k(f ;x)− f ′(x)

)

+ f ′(x)

(

1

n

n
∑

k=1

uk(x)− 1

)

+
1

n

n
∑

k=1

(

S′
k(f ;x)− f ′(x)

)

.

Since |uk(x)− 1| ≤ 1 for all k ∈ N and x ≥ 0, we obtain that
(2.18)
∣

∣

∣

∣

∣

1

n

n
∑

k=1

Lk(f ;x)− f ′(x)

∣

∣

∣

∣

∣

≤
2

n

n
∑

k=1

∣

∣S′
n(f ;x)− f ′(x)

∣

∣+
∣

∣f ′(x)
∣

∣

∣

∣

∣

∣

∣

1

n

n
∑

k=1

uk(x)− 1

∣

∣

∣

∣

∣

.

Now using (2.15), (2.17) and (2.18), we conclude that

(2.19) lim
n→∞

Tn(f ;x) = f ′(x), uniformly on x ∈ [0, b],

where

(2.20) Tn(f ;x) :=
L1(f ;x) + L2(f ;x) + ...+ Ln(f ;x)

n
.

Thus, this arithmetic mean approximation in (2.19) by the operators Lk

verifies Theorem 2.4 on the compact intervals of [0,+∞). However, it is impos-
sible to approximate f ′ by the operators Lk(f) in (2.13) except for the constant
functions since the function sequence (uk(x)) given by (2.12) is non-convergent
(pointwisely) on [0,+∞)\{(2k − 1)π/2 : k = 1, 2, ...}. Furthermore, observe that,
for any non-negative regular matrix A, the A-statistical limit of (uk(x)) does not
exist. Therefore, it is also impossible to approximate statistically to f ′ by the
operators Lk(f).
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Now we use the function f(x) = 2x + cos x + x sinx and its derivative
f ′(x) = 2 + x cos x. Then, we see from Figure 1 that L2k+1(f ;x) approaches
to (1 + sinx)f ′(x) on the compact interval [0, 5] while, according to Figure 2,
L2k(f ;x) goes to the function (1 − sinx)f ′(x) on [0, 5] for sufficiently large k.
This means that it is impossible to approximate f ′ by Lk(f) on [0, 5]. However,
Figure 3 indicates that Tn(f), which is the arithmetic mean of Lk, approaches
uniformly to f ′ on [0, 5] for sufficiently large n.
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