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ABSTRACT. In this paper the Poisson-Charlier polynomials are introduced.
Some of their recurrence relations are presented. Various families of bilinear
and bilateral generating functions for these polynomials are derived. Fur-
thermore, some special cases of the results are presented in this study.

1. Introduction. The Poisson-Charlier polynomials ¢, (a;z) are de-
fined explicitly by [4, 8, 9, 12, 14]

(1.1) clasz) = zn:(—l)k‘(’;) <Z>k!x_k

k=0

1
= 2fp (—n, —a; —; ——)
T

(x > 0, a € Ng:=Nu{0})
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where 9 F( is a case of the generalized hypergeometric function ,F, defined by

ALy ..y Q) B > (al)n (ap)nﬁ
qu|: Bla"'?ﬁq; Z:| B ;::0 (/Bl)n (Bq)n n!

= pF (o, ..., 01,...,04:2) .
Here, as usual, (\),, denotes the Pochhammer symbol given by
AN =AXA+1)---(A+n—-1) (neN) and (N)p := 1.

The Poisson-Charlier polynomials have the following generating function
(see, for instance, [4]):

(1.2) gcn(a;x)%n! - (1 - é)aexp(t).

It is well-known that these polynomials are a family of orthogonal poly-
nomials satisfying the following relation:

[e.e]
xOé

Z Jcn(a;x)cm(a; x) =z "e"nlopm, x> 0.
a=0
It is also known that
xn

(1.3) ()" L (2) = —pen(asz),

which indicates a relationship between the Poisson-Charlier polynomials and the
Laguerre polynomials L(®) (z) (see [4]). Hence, using the relation (1.3) and taking
into account the general properties of the Laguerre polynomials it is possible to
obtain some other properties for the Poisson-Charlier polynomials. In addition,
setting a — (237)1/204 + x and letting * — oo, the Hermite polynomials are
obtained from the Poisson-Charlier polynomials, that is,

lim (22)"%¢, ((237)1/2 a+ x; ar) =(-1)"H, (a).

T—r00
We also know another generating function relation for the Poisson-Charlier poly-
nomials as follows (see [8, 10]):

(1.4) Z Cntm(Q; x)i—n' = <1 - %) exp(t)em (a; z — t).
n=0 :

Some other properties may be found in the paper [6].
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On the other hand, Srivastava-Daoust (or generalized Lauricella) function
(see [11]), which is a generalization of the Kampé de Fériet function in two
variables, is defined by

N [(a) ), ...,e(n)} ; [(b(l)) : ¢(1)} - {(b(n)) : qb(")} :
ettt

Mn

= Z Q(ml,,mn)21 Zn 5

mi,....,mMp=0 ml' mn'

where, for convenience,

A B () B (n)

jl;[1(aj)m19§1>+"'+m”9§‘n) jl;[1 & )m1¢§'1> jl;ll & )m”‘ﬁ;‘n)
Q(mla 7mn) = c ) " D - ’

]:[1<c])m1¢51)++mn¢§n) l:[ (d] )mlg(,l) 1:[ (d] )mn6(.”)
J= 7j=1 J 7j=1 J

the coefficients

0 (G=1,....4 k=1,....,n), and ¢\" (j=1,...,B®; k=1,...,n),

1/1§k> G=1,....C; k=1,...,n), andéj(k) (jzl,...,D(k); kE=1,...,n)

(k)

B<k)) abbreviates the array of B®) parameters

are real constants and (b

(k) (+ _ k). 1. _
b; (]—1,...,B(),k—1,...,n)

with similar interpretations for other sets of parameters [7].

This paper concerns with the following main objectives:

e obtaining theorems giving multilinear and multilateral generating function
relations for the Poisson-Charlier polynomials and discussing their special
cases,

e deriving various recurrence relations for the Poisson-Charlier polynomials

e getting a new kind of bilateral generating function between the Poisson-
Charlier polynomials and the Srivastava-Daoust function.

2. Multilinear and Multilateral Generating Functions. In
this section, firstly we derive several families of bilinear and bilateral generating



460 Nejla Ozmen, Esra Erkus-Duman

functions for the Poisson-Charlier polynomials ¢, («;z) which are generated by
(1.2) and given explicitly by (1.1) by using the similar method considered in
2,1, 5, 13].

Theorem 2.1. Corresponding to an identically non-vanishing function
Qu(y1, ..., yr) of r complex variables yi,...,y, (r € N) and of complex order p,
let

A @ise 190 = > arQugn(y, -, 9)CH

k=0
where (a, #0, p,9 € C) and
in/r) %
’w . M = N R AN
OL (0,1, i €) = kZ_% Gken—pk (05 T) Qg (91, Ur) oy

Then, for p € N; we have
(o) ’[’] t 6%

(21) Y eny (aw;yu s Y t—p> t" = <1 - E) exp(t)App (Y1, yrim)
n=0

provided that each member of (2.1) exists.

Proof. For convenience, let S denote the first member of the assertion
(2.1) of Theorem 2.1. Then,

oo [n/p]

tn—pk
: k
S = Z Z akcnfpk(av x)Q,uﬂbk(yl? cesYr)n m
n=0 k=0
Replacing n by n + pk, we may write that
oo 00 n
S = >3 apen(a;2)Qupr(yr, .. ,yr)nkm
n=0 k=0 '
oo tn oo
- Z en(a; x)ﬁ Z arp ok (Y1, - - ,yr)r]k
n=0 k=0

£\ @
= <1_E> eXp(t)A,u,z/;(yla"'?yT;n)

which completes the proof. O
By using a similar idea, we also get the next result immediately.
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Theorem 2.2. Corresponding to an identically non-vanishing function
Qu(y1, ..., yr) of r complex variables yi,...,y, (r € N) and of complex order p,
let
o0 tn’
Mppa [ miy1, s yrit] = D ancmiqn(05.2) Qi pn(y1, - ) Gt
n=0

where (a, #0, p € C) and

[n/q]

j : n

en,p,q(yh s Yrs Z) = (TL - qk> aleH”Pk(ylv v 7y7")2k.
k=0

Then, for p € N; we have
oo tn
(22) Y emin(@2)0npq(yr, . U 2)—
n=0
t «
= <1 — E) exp(t)Aypq (a,x —tiyr, ..., yr; 2t9)
provided that each member of (2.2) exists.

Proof. For convenience, let T denote the first member of the assertion
(2.2) of Theorem 2.2. Then,

[n/q]

= N . n Lt
T = T;)Cm+n(a,$) kz_o (TL _ qk) akQM+pk(y1, A ,yr)z E
Replacing n by n + gk, we may write that
— 00 00 n -+ Qk . . thqu
T = ;kzzo ( n )Cm+n+qk(05, x)ak Q,u+pk(y1, A 7yr)2 m
- LAY Q ey ) (2t
o0 (o9} tTL (th)k
= m-rn , —_— Q e Y
k:z_() (;C prtak(® x>n!> @ Sutpk (Y1, - -5 Yr) @)
3 ak 2t9)k
- Z e exp(t)cm+qk (Oé, L= t) akQ#erk(yh ... 7yT) ( )
=0 7 ().
(2t9)F

£\ =
= <1 — E) exp(t) Z AkCm+qk (2 —1) Qu+pk(y17 S Yr) (qk)!
k=0 ‘
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t «
= <1 — ;) exp(t)Aupq (a0, x —tiyr, ..., yr; 2t7)

which completes the proof. O

3. Special Cases. As an application of the above theorems, when the
multivariable function Q,yr(y1,...,9r), k € Ng, 7 € N, is expressed in terms of
simpler functions of one and more variables, then we can give further applications
of the above theorems. We first set

r=1and Quiyr(y) = Puyr(y)

in Theorem 2.1, where P,(z) [12] are the Legendre polynomials generated by
(3.1) (1— 20t +2)~'/? ZP

We are thus led to the following result which provides a class of bilateral generat-
ing functions for the Legendre polynomials and the Poisson-Charlier polynomials
given explicitly by (1.1).

Corollary 3.3. If

;u/;?JC Zak‘ +1/1k‘ 7ak‘7é07 M»@Z)G(C»
then, we have
oo [n/p] k n
3.2 .2) P, ot
(3.2) ;::O kZ:O akCn—pk (@ T) ”Wk(y)t?ﬁm

_ <1 _ i)a exp(t)A, . (y:7)

provided that each member of (3.2) exists.

Remark 3.1. Using the generating relation (3.1) for the Legendre poly-
nomials and getting ax = 1, p = 0, ¥y = 1, we find that

oo [n/p] tn—pk
Cn—pk (@ T) Po(y)n®
gﬂkz_o i (e32) Py )

t\* _
= <1 - ;) exp(t) (1 —2yn + 772) vz
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If we set r = 1 and Q1 yx(y) = cuyyr (B5y), (y >0, 8=0,1,2,...) in
Theorem 2.2, we have the bilinear generating function relation for the Poisson-
Charlier polynomials.

Furthermore, for every suitable choice of the coefficients a; (i € Ny), if the
multivariable function €44k (y1,...,%s), (s € N), is expressed as an appropri-
ate product of several simpler functions, the assertions of Theorems 2.1 and 2.2
can be applied in order to derive various families of multilinear and multilateral
generating functions for the Poisson-Charlier polynomials.

4. Miscellaneous Properties. In this section we give some properties
for the Poisson-Charlier polynomials ¢, (a;x) given by (1.1).
Firstly, if we use (1.3) and the relation between Jacobi and Laguerre

polynomials [10]
2z
L (z) = lim {P(O"B) <1— —)}
© (@) = Jim { P :
we have

2
(4.1) cn(a;x) = lim {(—x)"n!P}f‘”’ﬁ) (1 — —m> } ,
B—o0 ,8
which gives a relationship between the Poisson-Charlier polynomials and the
Jacobi polynomials. In addition, if we use (4.1) and the relation between Jacobi
and Lagrange polynomials [3]

(a,8) —_ _ fnP(fafn,fﬂfn) T+Yy
o a,) = (y — )" P (222).

where the Lagrange polynomials gff"ﬁ) (x,y) are defined through the generating
function

L=ty (1 =yt = 3 gDy, (1t < min {Jo| |y })
n=0

which occur in certain problems in statistics [4], we get

cn(a;x) = ,Bh—>Holo { <_y—:22> B nlgl-e—h=n) (y(l - g)»y> } “

which gives a relationship between the Poisson-Charlier polynomials and the
Lagrange polynomials.
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We now discuss some miscellaneous recurrence relations of the Poisson-
Charlier polynomials. By differentiating each member of the generating function
relation (1.2) with respect to x and using

D Alkn) =) ) Ak, — k)

n=0 k=0 n=0 k=0
we arrive at the following (differential) recurrence relations for the Poisson-
Charlier polynomials:

T m—n— lcm a; CL')
(42) 7—(121‘ 77 nZL
and
/ . / . .
(43) $2 cn(a,x) _ xcn—l(aa IL‘) _ acnfl(a,l').
n! (n—1)! (n—1)!

If we compare (4.2) and (4.3), we get

n—1 .
me n+lcma:v Z e 1cma:z:):cn,1(a,:c)
m!

(n—1)! "~

Besides, by differentiating each member of the generating function rela-
tion (1.2) with respect to ¢, we have the recurrence relation

Tept1(o;x) —nep—1(asz) = (n — a + x)ep(a; o),

for the Poisson-Charlier polynomials.

5. Another bilateral generating function relation. For a suit-

ably bounded non-vanishing multiple sequence {Q(my;ma, ... 7m3)}m1,m2, ms€No
of real or complex parameters, we define a function ¢, (ui;us,...,us) of s (real
or complex) variables uq;us,...,us by

n o] - b -
A D DD S 3<d>§f,33 :

m1=0 ma,....,ms=0

uml ums
x ) (mle(l)—l—---—|—m50(s);m2,...,ms) L=
mq! mg!

where,
B D

(O)mis = [T 0)mie, and (@)m,s = [ [(dj)mis,-

J=1 J=1
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Theorem 5.1. The following bilateral generating function holds true:

ch(a;ﬂ?)%(ul;uw--,Us)%n!

n=0
_ t aex - ((0)) (1 +k)0 (— )
_ (1 w) p(t) > "

k,mi,ma,...,ms=0

xQ((m1 4+ k)0V + -+ mb;mg, . my)

ult k
" (—ugt)™ r—t) uy?  ul
my! k! ma! T mgl

Proof. By using the relationship (1.4), it is easily observed that

) "
Z Cn(CM;$)¢n(U1;U2, cee 7“5)_
n=0

n!

_ OOC o - - <_n)m1((b))m1d)
- n;"( ’ )(Z 2 ((d))mrs

m1=0 ma,...ms=0

x Q (m10(1> 4o+ mg0®)mo, ... ,ms)

U{nl ums tn
mil T myg!

— Y Omeg(go i, m)

(_Zﬂi?ml ?3;2' ZT' <1 - %) exp(t)em, (@ — t)
AN S 0))my
_ (1—5> exp(t) Y Egd))ﬂ

_ )m15
mi,mz,...,Ms=

mi,ma,...,ms=0

x ) (mlﬁ(l) 4o g mo, ... ,ms)
(uat)™ uy® ug k(M) (@ —k
. E -1 Nx —
8 my! mo!l  mygl! (=1) k k K@ =1)

_ _t aex = ((0)) (m1+k)8
- (1 a:) O DI (7

k,m1,ma,....,ms=0

xQ ((ml +E)OV + - g0 my, 7ms) (—a)k
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uyt k

_ugt

(—uat)™ ( OH) uy? o uge

X )
mq! k! mo! mg!

Thus, the proof of Theorem 5.1 is completed. O

By appropriately choosing the multiple sequence (mq,ma,...,ms) in
Theorem 5.1, we obtain several interesting results including, for example, the
following bilateral generating functions.

I. By letting

Q (m10<1> + o 4+ mgf)mo, . .. ,ms)

A B(®) @ B (5)
) ]l;ll(ay)m 00 4 m, 01 ]H (b; )m2¢>§2> jl;[l(bj )ms¢>§.s’
e pe ey B
: . ¢ b .
j=1 (D ) jl;Il( J )m25§2> ]1;[1( I )ms5§'>

in Theorem 5.1, we obtain the following result:
Corollary 5.2. The following bilateral generating function holds true:

[e.9]

Z 2555@,D<§“)
n=0
0O 1] [0): 6 (6% 2 6 s [00) : 6O
,M (d)  8; [(@®) :6P]; . [(d) 2 600
tn
uy, u2, 7us> E

AN A4BOLBE); 50
= (1 - ;) exp(t )FE-i-DOOD( 2)...:D()

[(e) : 80(1),---,@““)} Cos a1 [0@) 6@ L [(09) 1 @)

()¢, ¢ = [@®) 6@ (@) 60,
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where the coefficients e;, f;, gog.k) and @;k) are given by

_Ja  (1<j<A)
T\ bjea (A<j<A+B)

fi= Cj (1§J§E)
! di-g (E<j<E+D),

2 (1<j<A; 1<k<2)
M (1< <A 2<k<s+1)
pj-a  (A<j<A+B; 1<k<2)
(A<j<A+B; 2<k<s+1)

and
e (1<j<E 1<k<2)
) _ PN (1<j<E 2<k<st1)
! Sj-p (E<j<E+D;1<k<2)
0 (E<j<E+D;2<k<s+1),
respectively.
I1. Upon setting
Q(m0W + -+ m 0 my, . my :(a) 1 2 s
( ! 2 ) (c)my - - (Cs)m,
and

¢ =090=0 (thatis, ¢1:“‘:¢B:51:”‘:5D:O)
in Theorem 5.1, we obtain the following result:

Corollary 5.3. The following bilateral generating function holds true:

S
g (o) Fy [a,—n,bg,...,bs;cl,...,cs;ul,uz,...,us]E
n=0 ’

1:0;1515...51
= (]‘ - )a exp(t)Flzo;O;l;...;l

8| =+



468 Nejla Ozmen, Esra Erkus-Duman
[(a):lv'-'vl]: - [_al], [b21]a

(e sV, ] o e e 1

Ult
(_Ult)a(_:c t)vu27"'7us ) ’

where Fés) 18 the first kind Lauricella function in s variables and the coefficient
w(k) 18 given by

p® — 1, (1<k<2)
10, 2<k<s+1)°

III. If we put
Q <m10(1> 4t msﬂ(s); mo,...,Mg

(@) o (@D @)y - (@),
(©mat - 4m,

N——

and
B=1,b=0b, ¢1=1and §=0
in Theorem 5.1, we obtain the following result:

Corollary 5.4. The following bilateral generating function holds true:

> S S— S— tn
ch(a;x)F](g) [—n,agl),...ag U,b,ag),...,aé U;c;ul,uz,...,us}ﬁ
n=0 ’

t 1:0;1;2;...;2
= (1 — E)a exp(t)FI:O;O;O;W;O

[(b) :9(1),...,0(5"'1)} o= a1 [a(l) : 1} P [a(s_l) : 1} ;

U1t s
(—u1t), (—E)Wzv ey Us >

where F](;) is the second kind Lauricella function in s variables and the coefficient
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o) s given by

IV. By letting

Q <m10(1> 4o+ g mo, ... ,ms> =

and
¢ = 5 = 07
in Theorem 5.1, we obtain the following our last result:

Corollary 5.5. The following bilateral generating function holds true:

(o) s tn
ch(a;x)F](j) [a,=n,ba, ... bsicur, ug, - . us] —
~ n!
t s ut
= (1- ;)a exp(t)Fl()H) a,—, (—a),ba, ..., bs;c; (—ust), (—x i t),uz,. U

where F](js) is the fourth kind Lauricella function in s variables.
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