Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica
Mathematical Journal

Cepauka

MareMaTnuyeCcKo CIIMCAHUE

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on

Serdica Mathematical Journal
which is the new series of

Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica

or contact: Editorial Office

Serdica Mathematical Journal

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg



Serdica Math. J. 38 (2012), 507-522 Serdica
Mathematical Journal

Bulgarian Academy of Sciences
Institute of Mathematics and Informatics

A SURVEY ON THE KISSING NUMBERS

Peter Boyvalenkov, ‘Stefan Dodunekov ‘, Oleg Musin"

Communicated by V. Drensky

ABSTRACT. The maximum possible number of non-overlapping unit spheres
that can touch a unit sphere in n dimensions is called kissing number. The
problem for finding kissing numbers is closely connected to the more general
problems of finding bounds for spherical codes and sphere packings. We
survey old and recent results on the kissing numbers keeping the generality
of spherical codes.

1. Introduction. How many equal billiard balls can touch (kiss) simul-
taneously another billiard ball of the same size? This was the subject of a famous
dispute between Newton and Gregory in 1694. The more general problem in n
dimensions, how many non-overlapping spheres of radius 1 can simultaneously
touch the unit sphere 8"~ !, is called the kissing number problem. The answer
T, is called kissing number, also Newton number, or contact number. In fact,
Newton was right, without proof indeed, with his answer 73 = 12.
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Further generalization of the problem leads to investigation of spherical
codes. A spherical code is a non-empty finite subset of S*~!. Important para-
meters of a spherical code C C S"~! are its cardinality |C|, the dimension n (it
is convenient to assume that the vectors of C' span R") and the maximal inner
product

s(C) = max{(z,y) : x,y € C,x # y}.

The function
A(n, s) = max{|C| : 3C c S"! with s(C) < s}

extends 7, and it is easy to see that A(n,1/2) = 7,. One also considers the
function

D(n, M) = max{d(C) = v/2(1 — s(C)) : 3C ¢ 8"~ with |C| = M}

which is used in the information theory (cf. [13, 18, 32]).

For n > 3 and s > 0, only a few values of A(n, s) are known. In particular,
only six kissing numbers are known: 71 = 2, 79 = 6 (these two are trivial),
73 = 12 (some incomplete proofs appeared in 19th century and Schiitte and van
der Waerden [41] first gave a detailed proof in 1953, see also [27, 46, 3, 37]),
74 = 24 (finally proved in 2003 by Musin [37]), 7g = 240 and 724 = 196560 (found
independently in 1979 by Levenshtein [30], and by Odlyzko and Sloane [38]).

Note that Kabatiansky and Levenshtein have found an asymptotic up-
per bound 20-401n(1+e() for 7. [25]. The best currently known lower bound is
90.2075n(1+0(1)) [47],

This survey deals with the above-mentioned values of 7, and mainly with
upper and lower bounds in dimensions n < 24. Some interesting advances during
the last years are described.

Usually the lower bounds are obtained by constructions. We describe
such constructions which often lead to the best known lower bounds. The upper
bounds are based on the so-called linear programming techniques [16, 25] and its
strengthening [37, 39, 37]. Applications were proposed by Odlyzko and Sloane
[38], the first named author [7], and strengthening by the third named author
[37] and Pfender [39].

Recently, the linear programming approach was strengthened as the so-
called semi-definite programming method was proposed by Bachoc and Vallentin
[5] with further applications by Mittelmann and Vallentin [33].

The last few paragraphs of this paper were written after August 5, 2012,
the day when the second named author, Stefan Dodunekov, passed away.
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2. Upper bounds on kissing numbers.

2.1. The Fejes T6th bound and Coxeter-Boroczky bound. Fejes
Té6th [22] proved a general upper bound on the minimum distance of a spherical
code of given dimension and cardinality. In our notations, the Fejes T'éth bound
states that

1 1/2
(1) D(n,M)<dFT:<4— ) >
sin® par
M
i)
gives four exact values of the function D(n, M) (but not necessarily implying
exact values for A(n,s)).

First general upper bounds on the kissing numbers were proposed by
Coxeter [14] and were based on a conjecture that was proved later by Boroczky
[6]. Thus it is convenient to call this bound the Coxeter-Boroczky bound.

Let the function Fj,(«) be defined as follows:

where s = This bound is attained for M = 3,4,6, and 12. This

F()(Oz) = Fl(Oz) = 1,

2 «
Fane) =2 | Fo 1 (5(0)dt
™ J(1/2) arccos(1/n)
1 cos 2t . . .
for n > 1, where (t) = = arccos ——————. This function was introduced by
2 1 —2cos2t

Schlafli [40] and is usually referred to as Schlafli function.
In terms of the Schléfli function the Coxeter-Boroczky bound is

2Fn_1(a)
2 A(n,s) < Acp(n,s) = ———=,
( ) ( ) CB( ) Fn(Oé)
here a = —arccosé
v ~ 2 1+ (n—2)s

The bounds 7,, < Acg(n,1/2) are weaker than the linear programming
bound to be discussed below. On the other hand, we have

2F5(m/5)
Fy(/5)

(the lower bound is ensured by the 600-cell). The value A(4,cos7/5) = 120 can
be found by linear programming as well [2]. This suggests that the Coxeter-
Boroczky bound can be better than the linear programming bounds when s is
close to 1.

A(4,cosm/5) =120 = Acp(4,cos/b) =
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2.2. Pure linear programming bounds. The linear programming
method for obtaining bounds for spherical codes was built in analogy with its
counter-part for codes over finite fields which was developed by Delsarte [15].
Delsarte, Goethals and Seidel [16] proved in 1977 the main theorem and it was
generalized by Kabatianskii and Levenshtein [25] in 1978.

The Gegenbauer polynomials [1, 44] play important role in the linear
programming. For fixed dimension n, they can be defined by the recurrence
P =1, P™ =t and

(k+n—2)P7(t) = (2k +n— 2P () — kP (¢) for k > 1.

If -
f)=> at
=0

is a real polynomial, then f(¢) can be uniquely expanded in terms of the Gegen-
bauer polynomials as

=3 1M ).
k=0

The coefficients f;, ¢ = 0,1,...,k, are important in the linear programming
theorems.

Theorem 1 (Delsarte, Goethals and Seidel [16], Kabatianskii and Lev-
enshtein [25]). Let f(t) be a real polynomial such that
(A1) f(t) <0 for =1 <t <s,

m
(A2) The coefficients in the Gegenbauer expansion f(t) = kaPlgn) (t)
k=0

satisfy fo >0, fr >0 fort=1,...,m.
Then A(n,s) < f(1)/fo-

There are two cases, in dimensions eight and twenty four, where only
technicalities remain after Theorem 1. The lower bounds 73 > 240 and 794 >
196560 are obtained by classical configurations and the upper bounds are obtained

by the polynomials
1\° 1
BOD 4y = (t+1) <t + §> £ <t - 5)

FRYOD 4y = (£ 4 1) <t+ %)2 <t—|— i)QtQ (t - i)Q (t - %) ,

and
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respectively (the notations will become clear later). Indeed, one may easily check
that these two polynomial satisfy the conditions (A1) and (A2) for the corre-

(8,0.5) (1)
sponding values of n and s and therefore 73 < 6 = 240 and 1y <
0
(24,0.5)
o TM) 196560.
fo

Together with the Gegenbauer polynomials we consider their adjacent
polynomials which are Jacobi polynomials P,ga’ﬁ ) (t) with parameters

(o, ) = <a+n;3,b—|—n;3>

where a,b € {0,1} (the Gegenbauer polynomials are obtained for a = b = 0).
Denote by tZ’b the greatest zero of the polynomial Péa’ﬁ ) (t). Then

1,1 1,0 1,1
th <t <t

for every k > 2.
Denote
[tifl,ti’o] Cifm=2k—1,
Ly =
[t};o,t};l} . if m = 2k,

fork=1,2,... and Zp = [—1,151’0).
Then the intervals Z,, are consecutive and non-overlapping. For every
s € Iy, the polynomial

t—s) (T (4, 2, if m =2k —1,
s ]| $) (T2 (t.9)) i
(t+1)(t — s) (Tklfl(t,s)> . if m = 2k,

can be used in Theorem 1 for obtaining a linear programming bound. Levenshtein
[30] proved that the polynomials f,gf 8) (t) satisfy the conditions (A1) and (A2)
for all s € Z,,. Moreover, all coefficients f;, 0 < ¢ < m, in the Gegenbauer
expansion of fp, ’S)(t) are strictly positive for s € Z,,,. Hence this implies (after
some calculations) the following universal bound.

Theorem 2 (Levenshtein bound for spherical codes [30, 31]). Let n > 3
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and s € [—1,1). Then

;

k—l—n—3>

%+n—3 P™(s)—P"(s)
Log—1(n,s) = b1 -

n—1 (1—s)P™(s)
for s € Top_1q,

A(n,s) <

. Ckan—2\[24n—1 1+ (P - B)
Qk(n? 8) - < k > n—1 - B (n) (n)
(1=5) (B"(s) + Py (s))
for s € Iyy.

In particular, one has 73 < Lg(8,1/2) = L7(8,1/2) = 240 and 794 <
L10(24,1/2) = L11(24,1/2) = 196560. The Levenshtein bound can be attained
in some other cases (cf. the tables in [30, 31, 32]).

The possibilities for existence of codes attaining the bounds L,,(n, s) were
discussed in [10]. In particular, it was proved in [10, Theorem 2.2] that the even
bounds Log(n, s) can be only attained when s = t}C’O or s = t,lg’l. This follows
from a close investigation of the two-point distance distribution

1 1
At = m;‘{y eC: (x,y> :t}| = m‘{(g;’y) c 02 . <«T,y> :t}|

of the possible (n, Lok (n, s), s)-codes.

On the other hand it was proved by Sidelnikov [42] (see also [32, Theorem
5.39]) that the Levenshtein bounds are the best possible pure linear programming
bound provided the degree of the improving polynomial is at most m. This
restriction was later extended by Boyvalenkov, Danev and Bumova [9] to m + 2
and the polynomials fy, ’S)(t) are still the best.

However, in some cases the Leveshtein bounds are not the best possible
pure linear programming bounds. This was firstly demonstrated in 1979 for
the kissing numbers by Odlyzko-Sloane [38]. Boyvalenkov, Danev and Bumova
[9] proved in 1996 necessary and sufficient conditions for existence of certain
improvements.

Theorem 3 [9]. The bound L,,(n,s) can be improved by a polynomial
from A, s of degree at least m+1 if and only if Q;(n,s) < 0 for some j > m+1.
Moreover, if Qj(n,s) <0 for some j > m +1, then Ly, (n,s) can be improved by
a polynomial from A, s of degree j.
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For s = 1/2 (the kissing number case) and 3 < n < 23, n # 8, the
Levenshtein bounds are better that the Coxeter-Boréczky bounds but weaker
than these which were obtained by Odlyzko and Sloane [38].

In three dimensions, the Levenshtein bound gives 73 < L5(3,1/2) =~
13.285 and it can be improved to 73 < 13.184 which is, of course, not enough.
Then Anstreicher [3] in 2002 and Musin [37] in 2003 presented new proofs which
were based on strengthening the linear programming and using spherical geome-
try on S2. The Musin approach will be discussed in more details below.

In dimensions four, we have 74 < L5(4,1/2) = 26 and this can be improved
to 74 < 25.5584 which implies that 74 is 24 or 25. Then Arestov and Babenko
[4] proved in 2000 that the latter bound is the best possible one can find by pure
linear programming. Earlier (in 1993), Hsiang [24] claimed a proof that 7, = 24
but that proof was not widely recognized as complete. Musin [37] presented his
proof of 74 = 24 in 2003 to finally convince the specialists.

Odlyzko and Sloane [38] use discrete version of the condition (Al) and
then apply the usual linear programming for s = 1/2 and 3 < n < 24. Their
table can be seen in [13, Chapter 1, Table 1.5]. Upper bounds for 25 < n < 32
by linear programming were published in [11]. Now the first open case is in
dimension five, where it is known that 40 < 75 < 44. (The story of the upper
bounds is: 75 < L5(5,1/2) = 48, 75 < 46.345 from [38] 75 < 45 from [5] and
75 < 44.998 from [33].)

Let n and s be fixed, the Levenshtein bound gives A(n,s) < Ly, (n,s) and
it can be improved as seen by Theorem 3. In [8], the first named author proposed
a method for searching improving polynomials f(t) = A2(t)G(t), where A(t) must
have m + 1 zeros in [—1, s], G(s) = 0 and G(t)/(t — s) is a polynomial of second
or third degree polynomial which does not have zeros in [—1, s]. Moreover, one
has f; = 0,7 € {m,m+1,m + 2,m + 3} for two or three consecutive coefficients
in the Gegenbauer expansion of f(t). There restrictions leave several unknown
parameters which can be found by consideration of the partial derivatives of
f(1)/fo and numerical optimization methods. This approach was realized (see
[26]) by a programme SCOD. In fact, SCOD first checks for possible improvements
by Theorem 3 and then applies the above method. It works well for improving
L, (n,s) for 3 <m < 16 and wide range of s.

2.3. Strengthening the linear programming. The linear program-
ming bounds are based on the following identity

2
B ICrm+ Y () =|C] fo+§jfl2<zvm )

’yec = zeC
TFY
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where C' C 8"~ ! is a spherical code,

k
=" fiPM ),
1=0

{vij(x) : j = 1,2,...,r;} is an orthonormal basis of the space Harm(i) of homo-
geneous harmonic polynomials of degree i and r; = dim Harm(7). In the classical
case (cf. [16, 25]) the sums of the both sides are neglected for polynomials which
satisfy (A1) and (A2) and this immediately implies Theorem 1.

Musin [37] strengthened the linear programming approach by proposing
the following extension of Theorem 1 which deals with a careful consideration of
the left hand side of (3).

Theorem 4 [37]. Let f(t) be a real polynomial such that
(B1) f(t) <0 fortg <t<s, where —tg > s,
(B2) f(t) is decreasing function in the interval [—1,to],

(B3) The coefficients in the Gegenbauer expansion f(t) = kaPlgn) (t)
k=0

satisfy fo >0, fr >0 fort=1,...,m.
Then
max{ho, hl, cee ,h#}

Jo ’

A(n,s) <

where hy,, m = 0,1,...,u, is the mazimum of f(1) + Zf((el,yj>), e1 =
j=1

(1,0,...,0), over all configurations of m unit vectors {yi,y2,...,Ym} in the sphe-
rical cap (opposite of y1) defined by —1 < (y1,x) < to such that (y;,y;) < s.

The proof of Theorem 4 follows from (3) in a similar way to the proof of
Theorem 1 — neglect the nonnegative sum in the right hand side and replace the
sum in the left hand side with its upper bound

IC|

S>> ey

=1 j:(y;,y;)<to

max{ho, hl, e ,h#}

Now observe that the last expression does not exceed

Now the problems are to find u, choose ty and a polynomial which mi-
nimizes the maximal value of hg,hy,...,h,. In [37] good polynomials f(t) were
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found by an algorithm which is similar to the algorithm of Odlyzko and Sloane
[38]. One easily sees that hy = f(1) and hy = f(1) + f(—1). However, the
calculation of the remaining h,,’s usually requires estimations on

S(n, M) = minmax{s(C) : C € 8" ! is a spherical code, |C| = M}

(cf. [9, 22, 23, 32, 37, 41]); observe that D(n,M) = /2(1 — S(n,M))). This
approach was successfully applied in dimensions three and four. In [37] the third
named author also noted that this generalization does not give better upper
bounds on the kissing numbers in dimensions 5, 6, 7 and presumably can lead to
improvements in dimensions 9, 10, 16, 17, 18.

For n = 3 and s = 1/2 it is proved that 4 = 4. Then we can choose
to = —0.5907 and find a suitable polynomial of degree 9 (similar to these found
in [38, 8, 26]) to show that 73 = 12. Analogously, for n = 4 and s = 1/2 one
has u = 6, tp = —0.608 and certain polynomial of degree 9 gives 74 = 24. The
calculations of ho, hy and hy = max,<,/3{f(1) + f(cosp) + f(—cos(m/3 — ¢))}
are easy but the computations of hs, ..., hg require numerical methods.

2.4. Semidefinite programming. Let C' = {z;} C S"~! be a spherical
code, let I C [—1,1) and let

se(C D)= Y () =C1) Ad*.

(z,y)el tel
z,yeC

Odlyzko and Sloane [38] used in dimension 17 the constraints
80((j>]i) f;‘(j|7 80((7715) < 2‘67L

where I} = [~1,—+/3/2) and I, = [-1,—+/2/3), to improve on the LP bound.
More general, if it is known that the open spherical cap of angular radius ¢
can contain at most m points of a code C' with S(C) = s, where cosyp =t =
Vs + (1 —38)/(m+ 1), then so(C, I) < m|C|, where I = [—1,¢).

Pfender [39] found the inequality

s9(C, I) < s0(C, I)s +|C|(1 — s),

where I = [—1 — /s), and used it to improve the upper bounds for the kissing
numbers in dimensions 9, 10, 16, 17, 25 and 26. In fact, the discussion in the
preceding subsection can be viewed as in the following way: the third named
author [34, 35, 36, 37| found a few inequalities for some linear combinations



516 Peter Boyvalenkov, ‘ Stefan Dodunekov‘, Oleg Musin

of s(C,I) for 0 < k < 9, s = 1/2 (the kissing numbers’ case) and certain
I =[-1,t0], to < —1/2. In particular, that gave the proof that 74 = 24 [37] and
a new solution of the Thirteen spheres problem [35].

This approach can be further generalized by consideration of the three-
point distance distribution

Aot = ——{(@,y,2) € C¥ s (@, ) = u, (, 2) = v, (y, 2) = £}]

IC|
(note that A, ,1 = A,). Here one needs to have 1+ 2uvt > u? + v* + 2. Bachoc
and Vallentin [5] developed this to obtain substantial improvements for the kissing
numbers in dimensions n = 5,6,7,9 and 10. Some numerical difficulties prevented
Bachoc and Vallentin from furthers calculations but Mittelmann and Vallentin
[33] were able to overcome this and to report the best known upper bounds so
far.

3. Lower bounds on kissing numbers.

3.1. Constructions A and B. The idea for using error-correcting codes
for constructions of good spherical codes is natural for at least two reasons — it
usually simplifies the description of codes and makes easier the calculation of the
code parameters. Leech and Sloane [29] make systematic description of dense
best sphere packings which can be obtained by error-correcting codes and give,
in particular, the corresponding kissing numbers.

We describe Constructions A-B following [13]. Let C' be an (n, M,d)-
binary code. Then Construction A uses C' to build a sphere packing in R" by
taking centers of spheres (21, z2, ..., Ty), z; are integers, if and only if the n-tuple

(z1(mod 2), z2(mod 2),...,x,(mod 2))

belongs to C.
1
The largest possible radius of nonoverlapping spheres is 3 min{2, \/E}

The touching points on the sphere with center x are
2 A4(z) if d < 4, 2n 4+ 16A,4(x) if d =4 2n if d > 4,

where A;(x) is the number of codewords of C' at distance i from x. Suitable
choices of codes for Construction A give good spherical codes for the kissing
number problem in low dimensions. The record lower bounds for the kissing
numbers which can be produced by Construction A are shown in Table 1.
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Table 1
Dimension | Best known | Best known
lower bound | upper bound

3 12 12

4 24 24

5 40 45

6 72 78

7 126 134

8 240 240

9 306 364
10 500 554
11 582 870
12 840 1357
13 1154 2069
14 1606 3183
15 2564 4866
16 4320 7355
17 5346 11072
18 7398 16572
19 10668 24812
20 17400 36764
21 27720 54584
22 49896 82340
23 93150 124416
24 196560 196560

Let in addition all codewords of C' have even weight. Construction B takes
centers (1,2, ...,Ty), T; are integers, if and only if (z1(mod 2), z2(mod 2),...,
n

Zp(mod 2)) € C and 4 divides sz The touching points on the sphere with
=1
center x are now Z
2971 Ay(x) if d < 8, 2n(n — 1) + 1284g(x) if d = 8, 2n(n — 1) if d > 8.

This, further development, of Construction A gives good codes for the kissing
number problem in dimensions below 24. It is remarkable that Construction B
produces the even part of the Leech lattice in dimension 24. The record achieve-
ments of Construction B are also indicated in Table 1.

Having the sphere packings (by Constructions A and B, for example) one
can take cross-sections to obtain packings in lower dimensions and can build up
layers for packings in higher dimensions. This approach is systematically used in

[13] (see Chapters 5-8).
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3.2. Other constructions. Dodunekov, Ericson and Zinoviev [17] pro-
posed a construction which develops the ideas from the above subsection by
putting some codes at suitable places (sets of positions in the original codes;
this is called concatenation in coding theory). This construction gives almost all
record cardinalities for the kissing numbers in dimensions below 24. Ericson and
Zinoviev [18, 19, 20] later proposed more precise constructions which give records
in dimensions 13 and 14 [20].

4. A table for dimensions n < 24. The table of Odlyzko and
Sloane [13, 38] covers dimensions n < 24. Lower bounds by constructions via
error-correcting codes in many higher dimensions can be found in [18, 13] (see also
http://www.research.att.com/ njas/lattices/kiss.html). The Table 1 re-
flects our present (July 2012) knowledge in dimensions n < 24.

The lower bounds in the Table 1 follow Table 1.5 from [13] apart from
dimensions 13 and 14 taken from [20]. The upper bounds are mainly taken from
[33] (dimensions 5-7, 9-23).

Note that recently in [12] new kissing configurations in dimensions 25-31
were found, which improve on the records set in 1982 by the laminated lattices.
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