


Pliska Stud. Math. Bulgar. 23 (2014), 5–24
STUDIA MATHEMATICA

BULGARICA

BERNSTEIN INEQUALITY FOR 1−D HAMILTONIANS
WITHOUT RESONANCES

Vladimir Georgiev and Anna Rita Giammetta

Abstract. We consider 1-D Laplace operator with short range potential

W (x) and prove the Bernstein inequality for this perturbed Laplacian. It is

shown that non resonance assumption at zero and sufficiently fast decay of

the potential at infinity guarantee that the Hamiltonian obeys the Bernstein

inequality.

1. Introduction.

The study of (local and global in time) well - posedness of initial values problem
for the Schrödinger equation with power nonlinearity

∣∣∣∣
iut +Hu = ±u|u|p−1, (t, x) ∈ R× R

(u)|t=0 = f.

requires the systematic use of Sobolev (Besov) spaces associated with the per-
turbed Hamiltonian H = −∂2

x +W (x). Here and below W : R → R is assumed
to be a real-valued potential, W ∈ L1(R)∩L∞(R) and W is decaying sufficiently
rapidly at infinity, namely following [10] we require

(1) ‖〈x〉γW‖L1(R) < ∞, γ > 3,
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or equivalently we assume W ∈ L1
γ(R), where

Lp
γ(R) = {f ∈ Lp

loc(R); 〈x〉γf(x) ∈ Lp(R)}, 〈x〉2 = 1 + x2.

The study of the decay (in time) of the orbit eitHf of the Schrödinger group
is important initial step to treat corresponding nonlinear Schrödinger equation
(NLS). In the case of free Hamiltonian H0 = −∂2

x one can exploit the Strichartz
estimate

(2) ‖eitH0f‖Lp((0,∞);Ḃs
q (R))

≤ C‖f‖Ḣs(R).

where (p, q) is admissible couple (i.e. 2/p + 1/q = 1/2, 4 ≤ p ≤ ∞ ) and Ḃs
q(R),

Ḣs(R) are homogeneous Besov and Sobolev spaces on R.
Application of similar estimates for the NLS with perturbed Hamiltonian is

more complicated in the presence of a point spectrum of H.
We shall impose for simplicity in this work the assumption that the point

spectrum of H = −∂2
x +W (x) is empty, i.e.

(3) Hf − zf = 0, f ∈ L2(R), z ∈ C =⇒ f = 0.

The functional calculus for the perturbed operator H = −∂2
x +W is defined

for any function g ∈ L∞
loc(R) by the relation

(4) g(−∂2
x +W ) =

1

2πi

∫ ∞

0
g(λ)Ea.c.(dλ),

where

Ea.c.(dλ) =(5)

= lim
εց0

[
(λ+ iε+ ∂2

x −W )−1 − (λ− iε+ ∂2
x −W )−1

]
dλ.

The functional calculus enables one to introduce a Paley-Littlewood partition
of unity

1 =
∑

j∈Z
ϕ

(
t

2j

)
, t > 0

for an appropriate non - negative cutoff ϕ ∈ C∞
0 (R+), such that suppϕ ⊆ [1/2, 2].

The homogeneous Besov spaces Ḃs
p(R) for p, 1 ≤ p ≤ ∞ and s ≥ 0 can be

defined as the closure of S(R) functions f with respect to the norm

(6) ‖f‖Ḃs
p(R)

=




∞∑

j=−∞
22js

∥∥∥∥∥ϕ
(√

−∂2
x

2j

)
f

∥∥∥∥∥

2

Lp(R)




1/2

.
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The perturbed Hamiltonian can be associated with similar homogeneous
Besov and Sobolev spaces. We shall denote by Ḃs

p,H(R) the homogeneous Besov

spaces associated with the perturbed Hamiltonian H = −∂2
x +W as the closure

of S(R) functions f with respect to the norm

(7) ‖f‖Ḃs
p,H

(R) =




∞∑

j=−∞
22js

∥∥∥∥∥ϕ
(√

−∂2
x +W

2j

)
f

∥∥∥∥∥

2

Lp(R)




1/2

.

The application of the homogeneous Sobolev and Besov spaces in the free case
typically involves Bernstein inequality. Then for any 1 ≤ p ≤ q ≤ ∞ and any
ϕ ∈ C∞

0 (R+), such that suppϕ ⊆ [1/2, 2] there exists a constant C > 0 so that
we have

(8)

∥∥∥∥∥ϕ
(√

−∂2
x

M

)
f

∥∥∥∥∥
Lq(R)

≤ CM1/p−1/q‖f‖Lp(R).

Our main goal in this work shall be the proof of this inequality for the per-
turbed Hamiltonian.

Theorem 1. Suppose the condition (1) is fulfilled, the operator H has no
point spectrum and 0 is not a resonance for H. Then for any 1 ≤ p ≤ q ≤ ∞ and
any ϕ ∈ C∞

0 (R+), such that suppϕ ⊆ [1/2, 2] there exists a constant C > 0 so
that we have

(9)

∥∥∥∥∥ϕ
(√

−∂2
x +W

M

)
f

∥∥∥∥∥
Lq(R)

≤ CM1/p−1/q‖f‖Lp(R)

for M > 0 and f ∈ S(R).

2. Estimates for the Jost functions, transmission and reflection

coefficients

In this section we recall some classical results concerning the spectral decompo-
sition of the perturbed Hamiltonian. Recall that the Jost functions are solutions
f±(x, τ) = e±iτxm±(x, τ) of −△Wu = τ2u with

lim
x→+∞

m+(x, τ) = 1 = lim
x→−∞

m−(x, τ).

We set x+ := max{0, x}, x− := max{0,−x} and 〈x〉 =
√
1 + x2. We will denote

by Lp
s(R) the space with norm
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(10) ‖u‖Lp
s
= ‖〈x〉sf‖Lp

x
.

The assumption (1) on the decay of the potential can be rewritten as

W ∈ L1
γ(R), γ > 3.

The following lemma is well known.

Lemma 1. Assume W ∈ L1
3(R). Then we have:

a) For any τ ∈ C± with C± = {τ ∈ C; Imτ ≷ 0} we have m±(·, τ) ∈ C2(R,C);
b) For any x ∈ R we have m±(x, ·) ∈ C1(R,C);
c) There exist constants C1 and C2 > 0 such that for any x, τ ∈ R:

|m±(x, τ)− 1| ≤ C1〈x∓〉〈τ〉−1 ;(11)

|∂τm±(x, τ)| ≤ C2〈x〉2.(12)

See Lemma 1 p. 130 [5].

The estimate for partial derivatives in τ of m±(x, τ) can be improved, since
we admit W ∈ L1

γ(R) with γ > 3.

Lemma 2. Suppose W ∈ L1
γ(R) with γ > 1. Then we have

a) For any x ∈ R and k = 0, 1, 2 we have

γ > k + 1 =⇒ m±(x, ·) ∈ Ck(R,C);

b) There exists a constant C > 0 such that for any x ∈ R and τ ∈ R \ {0}:

(13) γ > 1 =⇒ |m±(x, τ)− 1| ≤ min

(
C〈x∓〉
〈x±〉γ−1

,
C〈x∓〉
〈x±〉γ |τ |

)
;

(14) γ > 2 =⇒ |∂τm±(x, τ)| ≤ min

(
C〈x∓〉2
〈x±〉γ−2

,
C〈x∓〉2

〈x±〉γ−1|τ |

)
;

(15) γ > 3 =⇒ |∂2
τm±(x, τ)| ≤ min

(
C〈x∓〉3
〈x±〉γ−3

,
C〈x∓〉3

〈x±〉γ−2|τ |

)
.
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P r o o f. We shall choose for determinacy the sign + for the function m± in
the left sides of (13) – (15) and (37) -(39), since the argument is similar for the
term m−. The integral equation satisfied by m+(x, τ) is

(16) m+(x, τ) = 1 +

∫ ∞

x
D(t− x, τ)W (t)m+(t, τ)dt

due to Lemma 1 p. 130 [5]. Set

v(x) =

∣∣∣∣
m+(x, τ)− 1

〈x−〉

∣∣∣∣ .

Our goal is to apply for v(x) a Gronwall type inequality on the real line. In fact,
we shall use the estimates

(17) |∂k
τD(t, τ)| ≤ C〈t〉1+k, k = 0, 1, 2, · · ·

fulfilled for any τ ∈ C+. If τ ∈ C+ \{0} then we can add the following inequalities

(18) |∂k
τD(t, τ)| ≤ C〈t〉k

|τ | , k = 0, 1, 2, · · ·

In particular, we can write

|D(t− x, τ)| ≤ 〈t− x〉 ≤ 〈t〉+ 〈x−〉,

since x < t. Then (16) and the definition of v implies

(19) v(x) ≤ C

∫ ∞

x

(〈t〉+ 〈x−〉)〈t−〉
〈x−〉

|W (t)|v(t)dt+ C

∫ ∞

x

(〈t〉+ 〈x−〉)
〈x−〉

|W (t)|dt.

Now we can use the estimates

(20) x < t =⇒ (〈t〉+ 〈x−〉)
〈x−〉

≤ C〈t〉, (〈t〉+ 〈x−〉)〈t−〉
〈x−〉

≤ C〈t〉.

Indeed, if 0 < x < t, then 〈x−〉 = 〈t−〉 = 1 and the inequalities in (20) are
obvious. If x < 0 < t, then 〈t−〉 = 1 and 〈x−〉 = 〈x〉. The desired inequalities are
reduced to

(〈t〉+ 〈x〉)
〈x〉 ≤ C〈t〉

and this is again an obvious inequality. Finally, if x < t < 0, then

〈x−〉 = 〈x〉 ≥ 〈t−〉 = 〈t〉
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and we have

(〈t〉+ 〈x−〉)
〈x−〉

≤ (〈t〉+ 〈x−〉)〈t−〉
〈x−〉

=
(〈t〉+ 〈x〉)〈t〉

〈x〉 ≤ 2〈x〉)〈t〉
〈x〉 = 2〈t〉.

This observation shows that (20) is verified.
Turning to (19), we can use the assumption γ > 1 and we can write

∣∣∣∣
∫ ∞

x
D(t− x, τ)W (t)dt

∣∣∣∣ ≤
∫ ∞

x
〈t〉|W (t)|dt ≤

C‖W‖L1
γ(R)

〈x+〉γ−1
(21)

and we arrive at

(22) v(x) ≤ a(x) +

∫ ∞

x
b(t)v(t)dt,

where

a(x) =
C‖W‖L1

γ(R)

〈x+〉γ−1
, b(x) = C 〈x〉 |W (x)|.

Applying the Gronwall lemma, we find

v(x) ≤ C

〈x+〉γ−1
,

so we have established the estimate

(23) γ > 1 =⇒ |m±(x, τ) − 1| ≤ C〈x∓〉
〈x±〉γ−1

for τ ∈ C+. We can complete the proof of (13) by using (18) in the place of (17).

To prove that m+(x, ·) is continuous in C+ we take τ1, τ2 ∈ C+ we proceed in
a similar way, we shall omit the details.

The existence and continuity of ∂τm+(x, ·) can be deduced (as in Lemma 1
p. 130 [5]) using the fact that m+(x, ·) is analytic in the upper plane C+ and
satisfies appropriate (uniform in τ) bounds.

Finally, the second derivative ∂2
τm+(x, τ) can be estimated in a similar way

using the integral equation

∂2
τm+(x, τ) =

∫ ∞

x
D(t− x, τ)W (t)∂2

τm+(t, τ)dt+(24)

+

∫ ∞

x
∂2
τD(t− x, τ)W (t)m+(t, τ)dt + 2

∫ ∞

x
∂τD(t− x, τ)W (t)∂τm+(t, τ)dt
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in the place of (16).
Setting

v2(x) =

∣∣∣∣
∂2
τm+(x, τ)

〈x−〉3
∣∣∣∣ ,

we quote (17) to obtain

|∂2
τD(t− x, τ)| ≤ 〈t− x〉3 ≤ C

(
〈t〉3 + 〈x−〉3

)
,

for x < t. Then (24) and the definition of v2 implies

v2(x) ≤
∫ ∞

x

C(〈t〉+ 〈x−〉)〈t−〉3
〈x−〉3

|W (t)|v2(t)dt(25)

+

∫ ∞

x

C(〈t〉3 + 〈x−〉3)
〈x−〉3

|W (t)||m+(t, τ)|dt

+

∫ ∞

x

C(〈t〉2 + 〈x−〉2)
〈x−〉3

|W (t)||∂τm+(t, τ)|dt.

As before we use the estimates

(26) x < t =⇒ (〈t〉+ 〈x−〉)〈t−〉3
〈x−〉3

≤ C〈t〉,

(27) x < t =⇒ (〈t〉3 + 〈x−〉3)|m+(t, τ)|
〈x−〉3

≤ C〈t〉3.

and

(28) x < t =⇒ (〈t〉2 + 〈x−〉2)|∂τm+(t, τ)|
〈x−〉3

≤ C〈t〉3.

We skip the proof, since it is similar to the proof of (20).
Turning to (25), we can write now

∫ ∞

x

(〈t〉3 + 〈x−〉3)|m+(t, τ)|
〈x−〉3

|W (t)|dt ≤ C

∫ ∞

x
〈t〉3|W (t)|dt ≤ C

‖W‖L1
3
(R)

〈x+〉γ−3
,

∫ ∞

x

(〈t〉2 + 〈x−〉2)|∂τm+(t, τ)|
〈x−〉3

|W (t)|dt ≤ C

∫ ∞

x
〈t〉3|W (t)|dt ≤ C

‖W‖L1
3
(R)

〈x+〉γ−3
,

and we arrive at

(29) v2(x) ≤ a2(x) +

∫ ∞

x
b(t)v2(t)dt,
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where

a2(x) = C
‖W‖L1

3
(R)

〈x+〉γ−3
, b(x) = C 〈x〉 |W (x)|.

Applying Gronwall lemma, we find

v2(x) ≤
C

〈x+〉γ−3
,

so (15) is established.
This completes the proof of the Lemma. �

In the next step we will find asymptotic expansion for m±(x, τ). To this end
we shall introduce appropriate classes of symbols a(x, τ) defined in a domain

Uδ = R× ((−∞,−δ) ∪ (δ,+∞))

for some δ > 0.

Definition 1. Given any real number δ > 0 and any integer L ≥ 1, we shall
denote by S2

L(Uδ) the linear space of all functions a(x, τ) ∈ C2(Uδ) such that

(30) sup
(x,τ)∈Uδ

2∑

k=0

∣∣∣τL∂k
τ a(x, τ)

∣∣∣ ≤ C < ∞.

When there is no risk of confusion we shall skip the order 2 of the τ− derivatives
in (30) and shall write simply SL(Uδ) instead of S2

L(Uδ).
Usually, the remainders of our asymptotic expansions shall be in a class of

type SL(Uδ)). It is clear that
∪L≥1SL(Uδ)

is an algebra, since

a1(x, τ) ∈ SL1
(Uδ), a2(x, τ) ∈ SL2

(Uδ) =⇒ a1(x, τ)a2(x, τ) ∈ SL1+L2
(Uδ).

Appropriate subclass, taking into account the "hidden" oscillations inside the
symbols, are introduced below.

Definition 2. Given any integer L ≥ 1, we shall denote by SW,±
L (R × (R \

{0})) (or simply by SW,±
L , when there is no risk of misunderstanding) the linear

space generated by all functions a(x, τ) of the form

(31) a(x, τ) =
1

τL

∫

D±(x)
χ(x, t)eiτ(xv0+〈v,t〉)




L∏

j=1

W (tj)


 dt,
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where

(32) D+(x) = {t ∈ R
L;x < min(t1, · · · , tL)},

D−(x) = {t ∈ R
L;x > max(t1, · · · , tL)},

v0 ∈ R, v ∈ R
L and χ(x, ·) ∈ L∞(RL) is such that

sup
x∈R

‖χ(x, ·)‖L∞(RL) ≤ C < ∞.

Again one can check the multiplication rule

(33) a1(x, τ) ∈ SW,±
L1

, a2(x, τ) ∈ SW,±
L2

=⇒ a1(x, τ)a2(x, τ) ∈ SW,±
L1+L2

.

Lemma 3. Suppose W ∈ L1
γ(R) with γ > 1. There exists a constant C > 0

such that for k = 1, 2 any x ∈ R and τ ∈ R with |τ | ≥ 1 we have the following
asymptotic expansion:

(34) m±(x, τ) =




k∑

j=0

m±
j (x, τ)


+R

m,±
k (x, τ),

where:

a) m±
0 (x, τ) = 1, and the recurrence relation

(35) m±
j (x, τ) =

∫

t≷x
D(±(t− x), τ)W (t)m±

j−1(t, τ)dt, j = 1, 2,

holds with

(36) D(t, τ) =
e2itτ − 1

2iτ
=

∫ t

0
e2iyτdy;

b) mj(x, τ) ∈ SW,±
j , j = 1, 2;

c) The remainders R
m,±
k (x, τ) obey the estimates

(37) γ > 1, k = 1, 2 =⇒ |Rm,±
k (x, τ)| ≤ C

〈x±〉(k+1)γ |τ |k+1
;

(38) γ > 2, k = 1, 2 =⇒ |∂τRm,±
k (x, τ))| ≤ C〈x∓〉

〈x±〉γ(k+1)−1|τ |k+1
;

(39) γ > 3, k = 1, 2 =⇒ |∂2
τR

m,±
k (x, τ))| ≤ C〈x∓〉2

〈x±〉γ(k+1)−2|τ |k+1
.
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d) If γ > 3, then R
m,+
k (x, τ) ∈ Sk+1 for x > 0, k = 1, 2 and R

m,−
k (x, τ) ∈ Sk+1

for x < 0, k = 1, 2.

P r o o f.

We make the substitution

m+(x, τ) = 1 +R
m,+
0 (x, τ)

in the integral equation (16) and follow the same line already presented in the
proof of the previous Lemma, so we shall skip the details.

�

The transmission coefficient T (τ) and the reflection coefficients R±(τ) are
defined by the formula

(40) T (τ)m∓(x, τ) = R±(τ)e
±2iτxm±(x, τ) +m±(x,−τ).

From [5] and from [10] we have the following lemma.

Lemma 4. We have the following properties of the transmissions and reflec-
tion coefficients.

a) T,R± ∈ C(R).
b) There exists C1, C2 > 0 such that:

|T (τ)− 1|+ |R±(τ)| ≤ C1〈τ〉−1(41)

|T (τ)|2 + |R±(τ)|2 = 1.(42)

c) If T (0) = 0, (i.e. zero is not a resonance point), then for some α ∈ C \ {0}
and for some α+, α− ∈ C

(43) T (τ) = ατ + o(τ), 1 +R±(τ) = α±τ + o(τ),

for τ ∈ R, τ → 0.

We can use the stronger decay assumption W ∈ L1
γ(R), γ > 3, to get some

more precise bounds.

Lemma 5. Suppose W ∈ L1
γ(R) with γ > 3 and T (0) = 0. Then we have:

a) T,R± ∈ C2(R);
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b) There exists C > 0 such that for any τ ∈ R we have:

(44)

2∑

k=0

∣∣∣∣
dk

dτk
T (τ)

∣∣∣∣+
∣∣∣∣
dk

dτk
R±(τ)

∣∣∣∣ ≤ C,

(45) |〈τ〉 [T (τ)− 1]|+|〈τ〉R±(τ)|+
2∑

k=1

∣∣∣∣〈τ〉
dk

dτk
T (τ)

∣∣∣∣+
∣∣∣∣〈τ〉

dk

dτk
R±(τ)

∣∣∣∣ ≤ C;

P r o o f.
The proof is based on the relations

(46)
τ

T (τ)
= τ − 1

2i

∫

R

W (t)m+(t, τ)dt

and

(47) R±(τ) =
T (τ)

2iτ

∫

R

e∓2itτW (t)m∓(t, τ)dt

so we can skip the details.
�

We can improve the asymptotic expansions of T (τ), R±(τ) for |τ | ≥ 1/10.
Before stating the precise result we shall introduce class of symbols

a(τ) ∈ C2({τ ∈ R, |τ | > 1/10}),

such that

(48)

2∑

k=0

|∂k
τ a(τ)| ≤

C

|τ |L , |τ | >
1

10
.

We shall denote the class of symbols satisfying this property by S2
L(R) or SL(R).

Appropriate subclass (denoted by S2,W
L (R) or by SW

L (R)) is defined by linear
combinations of functions a(τ) ∈ C2({τ ∈ R, |τ | > 1/10}), having the representa-
tion formula

(49) a(τ) =
1

τL

∫

RL

χ(t)eiτ〈v,t〉




L∏

j=1

W (tj)


 dt,

for some vector v ∈ R
L and some χ(t) ∈ L∞(RL).
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Lemma 6. Suppose W ∈ L1
γ(R) ∩ L∞

β with γ, β > 3 and T (0) = 0. Then
there exists a constant C > 0 such that for any x ∈ R and τ ∈ R with |τ | ≥ 1 we
have the following asymptotic expansion:

(50) T (τ) =




2∑

j=0

Tj(τ)


+R

T
2 (x, τ), R±(τ) =




2∑

j=0

R±
j (τ)


+R

R,±
2 (τ),

where T0(τ) = 1, R±
0 (τ) = 0,

(51) T1(τ), R
±
1 ∈ SW

1 (R), T2(τ), R
±
2 ∈ SW

2 (R)

and the remainders R
T
2 (x, τ), R

R,±
2 (τ) belong to S3(R), i.e. they obey the esti-

mates

(52)

2∑

k=0

∣∣∣∂k
τR

T
2 (x, τ)

∣∣∣ +
∣∣∣∂k

τR
R,±
2 (x, τ)

∣∣∣ ≤ C

|τ |3 < ∞.

P r o o f.
The proof is based on the relations

(53) T (τ) =
1

1−Ψ(τ)
, Ψ(τ) = τ−1Φ(τ) =

1

2iτ

∫

R

W (t)m+(t, τ)dt.

and we omit the details. �

3. Functional calculus and Bernstein inequality for perturbed

Hamiltonian

The functional calculus in (4), (5) can be connected with the Jost functions. In
fact the kernel (λ ± i0 + ∂2

x − W )−1(x, y) of the operator (λ ± i0 + ∂2
x − W )−1

satisfies the relation

(54) (λ± i0 + ∂2
x −W )−1(x, y) =





f−(x,±
√
λ)f+(y,±

√
λ)

w(±
√
λ)

, if x < y;

f−(y,±
√
λ)f+(x,±

√
λ)

w(±
√
λ)

, otherwise.

where the Wronskian w(τ) is defined by the relation

(55) w(τ) := (∂xf+)(x, τ)f−(x, τ) − f+(x, τ)∂xf−(x, τ).

Using the well - known identity (see p.144, [5])

(56)
1

T (τ)
=

w(τ)

2iτ
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we get
(57)

g(−∂2
x +W )(x, y) =

∫ ∞

0
τg(τ2)

[
f−(x, τ)f+(y, τ)

w(τ)
− f−(x,−τ)f+(y,−τ)

w(−τ)

]
dτ

πi

= − 1

2π

∫

R

T (τ)g(τ2)f−(x, τ)f+(y, τ)dτ

for x < y. These relations imply that for any h(τ) ∈ L1(0,∞) one can extend h
as an even function h̃(τ) ∈ L1(R) so that the relation

h
(√

−∂2
x +W

)
(x, y) = − 1

2π

∫

R

h̃ (τ)T (τ)m+(y, τ)m−(x, τ)e
−iτ(x−y)dτ.(58)

holds for x < y.
The proof of the Bernstein inequality is based on few technical estimates that

we state and prove now.

Theorem 2. Suppose the condition (1) is fulfilled, the operator H has no
point spectrum and 0 is not a resonance point for H. If ϕ is an even non - negative
function, such that ϕ ∈ C∞

0 (R \ {0}), then for any M > 0 we have

a) if 0 < M < 1, then

(59)

∣∣∣∣∣ϕ
(√

−∂2
x +W

M

)
(x, y)

∣∣∣∣∣ ≤
CM2

〈M(x− y)〉2 +
CM2

〈M(x+ y)〉2 ;

b) if M ≥ 1, then we have
∣∣∣∣∣ϕ
(√

−∂2
x +W

M

)
(x, y)− ϕ

(√
−∂2

x

M

)
(x, y)

∣∣∣∣∣ ≤(60)

≤ C

〈M1/3(x− y)〉2 +
C

〈M1/3(x+ y)〉2 .

P r o o f. We shall assume x < y for determinacy. Then (58) implies

ϕ

(√
−∂2

x +W

M

)
(x, y) = c

∫

R

ϕ
( τ

M

)
T (τ)m+(y, τ)m−(x, τ)e

−iτ(x−y)dτ =

(61)

=cM

∫

R

ϕ (τ)T (Mτ)m+(y,Mτ)m−(x,Mτ)e−iMτ(x−y)dτ.
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First, we shall prove (59) so we can assume 0 < M < 1. We shall use the
second identity in (61) that is
(62)

ϕ

(√
−∂2

x +W

M

)
(x, y) = cM

∫

R

ϕ (τ)T (Mτ)m+(y,Mτ)m−(x,Mτ)e−iMτ(x−y)dτ.

Since x < y, we have three different cases.

(Case A) x < 0 < y,

(Case B) 0 ≤ x < y,

(Case C) x < y ≤ 0.

In the (Case A), we can use two integration by parts in the oscillatory integral

representing ϕ
(√

−∂2
x +W/M

)
(x, y) and we use the estimates of Lemmas 1 and

4 . In fact, we have (for x < 0 < y)

(63)

2∑

k=0

|∂k
τm+(y,Mτ)| ≤ C,

2∑

k=0

|∂k
τm−(x,Mτ)| ≤ C

and also

(64)

∣∣∣∣
T (Mτ)

Mτ

∣∣∣∣+
2∑

k=1

|∂k
τ T (Mτ)| ≤ C

due to Lemma 1 and Lemma 4. One can apply integration by parts two times in
(62), so we get (59).

In the (Case B) we can use (40) and we can write the identity

(65) T (τ)m−(x, τ) = R+(τ)e
2iτxm+(x, τ) +m+(x,−τ),

so (62) becomes now

(66) ϕ

(√
−∂2

x +W

M

)
(x, y) = cMI1(x, y;M) + cMI2(x, y;M),

where

I1(x, y;M) =

∫

R

ϕ (τ)m+(y,Mτ)(R+(Mτ) + 1)m+(x,Mτ)eiMτ(x+y)dτ,
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I2(x, y;M) =

=

∫

R

ϕ (τ)m+(y,Mτ)(m+(x,−Mτ)− e2iMxτm+(x,Mτ))e−iMτ(x−y)dτ.

For both integrals we can perform two integrations by parts and apply the esti-
mates of Lemma 1 and Lemma 4 for 0 < x < y as follows. By Lemma 1 we can
write

(67)
2∑

k=0

|∂k
τm+(y,Mτ)| ≤ C,

2∑

k=0

|∂k
τm+(x,±Mτ)| ≤ C.

We can add the obvious (but crucial) estimate

(68)

∣∣∣∣
m+(y,−Mτ)− e2iMxτm+(x,Mτ)

Mτ

∣∣∣∣ ≤ C.

The estimates of Lemma 4 imply

(69)

∣∣∣∣
T (Mτ)

Mτ

∣∣∣∣+
2∑

k=1

|∂k
τ T (Mτ)| ≤ C,

∣∣∣∣
R(Mτ) + 1

Mτ

∣∣∣∣+
2∑

k=1

|∂k
τR+(x,Mτ)| ≤ C.

In this way we get

|I1(x, y;M)| ≤ CM

〈M(x+ y)〉2 , |I2(x, y;M)| ≤ CM

〈M(x− y)〉2

and we obtain (59) in the (Case B).
In the (Case C) we follow the argument used in the (Case B), but this time

we replace (65) by the following relation

(70) T (τ)m+(y, τ) = R−(τ)e
−2iτym−(y, τ) +m−(y,−τ),

and derive (59) using two integrations by parts.
This completes the proof of (59).
Next, we turn to (60) so we can assume M ≥ 1.
In the (Case A) we have x < 0 < y. We shall use the first identity in (61) so

we start with

ϕ

(√
−∂2

x +W

M

)
(x, y) − ϕ

(√
−∂2

x

M

)
(x, y) =

= c M

∫

R

ϕ (τ) [T (Mτ)m+(y,Mτ)m−(x,Mτ)− 1] e−iMτ(x−y)dτ.(71)
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Note that the symbol

a(x, y, τ) = T (τ)m+(y, τ)m−(x, τ)− 1

can be expand using Lemmas 3 and 6 as follows

a(x, y, τ) = a1(x, y, τ) + a2(x, y, τ) +R3(x, y, τ),

where

a1(x, y, τ) = T1(τ) +m+
1 (y, τ) +m−

1 (x, τ)

a2(x, y, τ) = T2(τ) +m+
2 (y, τ) +m−

2 (x, τ)+

+T1(τ)m
+
1 (y, τ) + T1(τ)m

−
1 (x, τ) +m+

1 (y, τ)m
−
1 (x, τ)

and the remainder R3(x, y, τ) is in S3(R × R × {|τ | ≥ δ > 0}), i.e. satisfies the
estimate

(72)

2∑

k=0

|∂k
τR3(x, y, τ)| ≤

C

|τ |3

for |τ | ≥ δ.

We have to estimate each of the oscillatory integrals

∫

R

ϕ (τ) aj(x, y,Mτ)e−iMτ(x−y)dτ, j = 1, 2,

and ∫

R

ϕ (τ)R3(x, y,Mτ)e−iMτ(x−y)dτ.

Since the remainder satisfies (72) we can use integration by parts and deduce

∣∣∣∣
∫

R

ϕ (τ)R3(x, y,Mτ)e−iMτ(x−y)dτ

∣∣∣∣ ≤
C

〈M1/3(x− y)〉2 .

The symbols aj(x, y,Mτ), j = 1, 2 can be represented as oscillatory integrals of
type (49) so we are in position to use integration by parts and deduce

∣∣∣∣
∫

R

ϕ (τ) aj(x, y,Mτ)e−iMτ(x−y)dτ

∣∣∣∣ ≤
C

〈M1/3(x− y)〉2

with j = 1, 2 thus we obtain (60) in the (Case A).
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In the (Case B) we can use (40) and we can write the identity (65) so (71)
becomes now

(73) ϕ

(√
−∂2

x +W

M

)
(x, y)−ϕ

(√
−∂2

x

M

)
(x, y) = cI3(x, y;M) + cI4(x, y;M),

where

I3(x, y;M) =

∫

R

ϕ
( τ

M

)
m+(y, τ)R+(τ)m+(x, τ)e

iτ(x+y)dτ,

I4(x, y;M) =

∫

R

ϕ
( τ

M

)
[m+(y, τ)m+(x,−τ)− 1]e−iτ(x−y)dτ

each of the integrals I3 and I4 can be treated as in the (Case A) by using the
asymptotic expansions of Lemmas 3 and 6, so we get

|I3(x, y;M)| ≤ C

〈M1/3(x− y)〉2 .

and

|I4(x, y;M)| ≤ C

〈M1/3(x+ y)〉2 .

In the (Case C) we follow the argument used in the (Case B), but this time
we replace (65) by the relation (70) and derive (60).

This completes the proof of the Theorem.
�

Now we can prove the Bernstein inequality (9).

Corollary 1. Suppose the condition (1) is fulfilled, the operator H has no
point spectrum and 0 is not a resonance for H. Assume further 1 ≤ p ≤ q ≤ ∞
and ϕ(τ) is a smooth function with compact support separated from the origin.
Then there exists a constant C > 0 so that:

a) the Bernstein inequality

(74)

∥∥∥∥∥ϕ
(√

−∂2
x +W

M

)
f

∥∥∥∥∥
Lq(R)

≤ CM1/p−1/q‖f‖Lp(R)

holds for any M > 0 and any f ∈ S(R);
b) if 0 < M ≤ 1, then we have a stronger estimate

(75)

∥∥∥∥∥ϕ
(√

−∂2
x +W

M

)
f

∥∥∥∥∥
Lq(R)

≤ CM1+1/p−1/q‖f‖Lp(R).
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P r o o f. First consider the case 0 < M ≤ 1. Then we have the estimates (59)
so we can write

∣∣∣∣∣ϕ
(√

−∂2
x +W

M

)
(x, y)

∣∣∣∣∣ ≤
CM2

〈M(x− y)〉2 +
CM2

〈M(x+ y)〉2

so we can use the pointwise estimates

∣∣∣∣∣ϕ
(√

−∂2
x +W

M

)
f(x)

∣∣∣∣∣ ≤ CMKM
+ (|f |)(x) + CMKM

− (|f |)(x),

where

KM
± (f)(x) = M

∫

R

〈M(x± y)〉−2f(y)dy

The Young inequality implies that we have

‖KM
± (f)‖Lq

x
≤ CM1/p−1/q‖f‖Lp

x

so (75) is fulfilled for 0 < M ≤ 1.
For M ≥ 1 we quote (60) and start with

∣∣∣∣∣ϕ
(√

−∂2
x +W

M
,M

)
(x, y)

∣∣∣∣∣ ≤
C

〈M1/3(x− y)〉2 +
C

〈M1/3(x+ y)〉2 .

and we can use the pointwise estimates

∣∣∣∣∣ϕ
(√

−∂2
x +W

M

)
f(x)

∣∣∣∣∣ ≤ CK̃M
− (|f |)(x) + CK̃M

+ (|f |)(x),

where

K̃M
± (f)(x) =

∫

R

〈M1/3(x± y)〉−2f(y)dy.

The Young inequality implies

‖K̃M
± (f)‖Lq

x
≤ CM (1/p−1/q−1)/3‖f‖Lp

x
≤ CM1/p−1/q‖f‖Lp

x
,

since M ≥ 1.
Hence (9) is fulfilled for M ≥ 1 and this completes the proof.

�
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