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ON THE REGULARITY PROPERTIES OF THE PRESSURE
FIELD ASSOCIATED TO A HOPF WEAK SOLUTION TO

THE NAVIER-STOKES EQUATIONS

Jmmy Alfonso Mauro

Abstract. We give some new a priori estimates for the pressure field

associated to a Hopf weak solution, under the minimal assumption that

the initial data v0 is in L2(Ω). Then, such estimates are applied to obtain

an existence theorem of suitable weak solutions on a bounded or exterior

domain Ω ⊂ R
3, with the minimal assumption v0 ∈ L2(Ω).

1. Introduction

We consider the non-stationary Navier-Stokes equations with unit viscosity and
zero body force

(1)
vt −∆v + (v·∇)v = −∇π ∀ (x, t) ∈ Ω× (0, T ),

∇· v = 0 ∀ (x, t) ∈ Ω× (0, T ),

where v and π represent the unknown velocity and pressure, respectively. In our
notation (v·∇)v = (∇v)v.
In addition to (1) we require the following initial and boundary conditions

(2)
v(x, t) = 0 ∀ (x, t) ∈ ∂Ω× (0, T ),

v(x, 0) = v0(x) ∀ x ∈ Ω,
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If n = 3, the system (1)–(2) describes the motion of a Newtonian fluid with a
nonslip boundary condition.

The initial data v0 should satisfy the compatibility conditions ∇· v0 = 0 in Ω
and v0 · ν |∂Ω = 0, with ν(x) the outward pointing unit normal vector at x ∈ ∂Ω,
at least in weak form. Moreover, if the domain Ω is unbounded, we also assume
the following condition at infinity

lim
|x|→∞

v(x, t) = 0 ∀ t ∈ [0, T ) .

For the Cauchy problem, the existence of weak solutions for the initial-bound-
ary value problem (1) – (2) was proved by J. Leray in [10]; in particular, he intro-
duced the first notion of weak solution for the Navier-Stokes system (cf. Defini-
tion 1).
In [8] E. Hopf proved the existence of weak solutions on any smooth enough
domain Ω ⊂ Rn, with n ≥ 2; nevertheless, such solutions are slightly different to
Leray’s ones (cf. Definition 2).

Ever since, much effort has been made to establish results on the uniqueness
and regularity of weak solutions; however, such questions remain mostly open so
far. In particular, we are interested in regularity properties of the pressure field
π associated to a Hopf weak solution. These properties are very important in
studying the partial regularity theory of suitable weak solutions (cf. Definition 3)
and they were deeply investigated (cf. e.g. [3, 21, 7]). Nevertheless, in case
Ω ⊂ R

n is a bounded or an exterior domain, the initial data v0 is required to be
in a suitable fractional Sobolev or Besov space.

In this paper we give some new a priori estimates for the pressure field associ-
ated to a Hopf weak solution, under the minimal assumption that the initial data
v0 is in L2(Ω). Then, such estimates are applied to obtain an existence theorem
of suitable weak solutions on a bounded or exterior domain Ω ⊂ R

3, with the
minimal assumption v0 ∈ L

2(Ω).
Thus, as far as we know, if Ω ⊂ R

3 is a bounded or an exterior domain, thanks
to Theorem 2, J(Ω) is the largest class of initial data for which we can give an
existence theorem of weak solutions which are both suitable weak solutions in
Ω× (0,∞), and Leray weak solutions.

Weakening the hypotheses on the initial data isn’t the main question about
the Navier-Stokes system (1); nevertheless, the matter itself is interesting as it
implies that the presence of the boundary doesn’t upset the nature of the problem
compared to the Cauchy one. Moreover, from Theorem 2 and [24, Theorem 2.1]
there follows that suitable weak solutions are obtained for the same class of the
initial data as Hopf weak ones.
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1.1. Notations

Throughout this paper, we assume that Ω is a domain in R
n, with n ≥ 2, which

satisfies one of the following conditions:

Assumption 1.

(D1) Ω ≡ R
n;

(D2) Ω is a bounded domain in R
n;

(D3) Ω is an exterior domain in R
n.

Moreover, if Ω satisfies condition (D2) or (D3), its bounded boundary ∂Ω is re-
quired to be (at least) of class Cm, where m is an even positive integer such that
2m > n.

For 1 ≤ p ≤ ∞, let Lp(Ω) be the Lebesgue space of vector valued func-
tions on Ω. The norm in Lp(Ω) is indicated by ‖ · ‖p and we use the notation

〈u, v〉 =
∫
Ω u · v dx for any vector fields u, v for which the right hand side makes

sense.
For 1 ≤ p ≤ ∞ and m ∈ N, let Wm,p(Ω) be the Sobolev space of functions
u : Ω → R

n in Lp(Ω) with distributional derivatives in Lp(Ω) up to order m
included; the norm in Wm,p(Ω) is denoted by ‖ · ‖

Wm,p(Ω)
.

By C∞
0 (Ω) we denote the space of all infinitely differentiable vector valued func-

tions with compact support in Ω and, for 1 ≤ p ≤ ∞ and m ∈ N,
◦
W

m,p(Ω) is the
completion of C∞

0 (Ω) with respect to the norm ‖ · ‖
Wm,p(Ω)

.
By C0(Ω) we denote the class of all solenoidal vector fields ϕ(x) ∈ C∞

0 (Ω); for
1 < p < ∞, Jp(Ω) and J1,p(Ω) are the closure of C0(Ω) in Lp(Ω) and W 1,p(Ω),
respectively. If Ω satisfies condition (D2) or (D3), we can give the following
characterization of the spaces J(Ω) ≡ J2(Ω) and J1,2(Ω) (see theorems 1.4 and
1.6 in [25])

(3)
J(Ω) =

{
u ∈ L2(Ω) : ∇ · u = 0 , γν(u) = 0

}

J1,2(Ω) =
{
u ∈

◦
W

1,2(Ω) : ∇ · u = 0 , γ0(u) = 0
}
,
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where γ0 is the trace operator from W 1,2(Ω) into W
1
2
,2(∂Ω), whereas γν is a

linear continuous operator from E(Ω) =
{
u ∈ L2(Ω) : ∇ · u ∈ L2(Ω)

}
1 into

W− 1
2
,2(∂Ω), such that γν(u) = u · ν |∂Ω for every vector field u ∈ C∞(Ω), with

ν(x) the outward pointing unit normal vector at x ∈ ∂Ω.

If Ω ⊆ R
n is a domain satisfying condition (D2) or (D3), for s ∈ (0, 1) and

p ∈ [1,∞), W s,p(Ω) denotes the Slobodeckĭı space of functions v ∈ Lp(Ω) for
which the following norm

‖v‖
Ws,p(Ω)

=

{
‖v‖pp +

∫

Ω

∫

Ω

|v(x)− v(y)|p

|x− y|n+sp dx dy

} 1
p

is finite. Similarly, by W s,p(∂Ω) we denote the space of functions v ∈ Lp(∂Ω) for
which the norm

‖v‖
Ws,p(∂Ω)

=

{
‖v‖p

Lp(∂Ω)
+

∫

∂Ω

∫

∂Ω

|v(x)− v(y)|p

|x− y|n−1+sp
dσx dσy

} 1
p

is finite.

For T ∈ (0,∞) and for a given Banach space X, with associated norm
‖ · ‖

X
, Lp

(
0, T ;X

)
is the linear space of functions f : (0, T ) → X such that∫ T

0 ‖u(τ)‖p
X
dτ <∞, if 1 ≤ p <∞, or ess sup

τ∈(0,T )

‖u(τ)‖
X
<∞, if p = ∞ .

If I is a real interval, we denote by C
(
I;X

)
the class of continuous functions

from I to X; for k a positive integer, we denote by Ck
(
I;X

)
the class of functions

f : I → X endowed with continuous derivatives (as functions into X), up to the
order k included.

For every T ∈ (0,∞), we set ΩT = Ω×[0, T ) and we define

C0(ΩT ) = {ϕ ∈ C∞
0

(
ΩT ;R

n
)

: ∇·ϕ = 0 in ΩT} .

By C(ΩT ) we denote the class of vector fields ϕ ∈ C
(
[0, T ];J1,2(Ω)

)
endowed with

distributional partial derivative ϕt ∈ L2
(
0, T ;J(Ω)

)
and such that ϕ(x, T ) = 0

for a.e. x ∈ Ω.

In this work, we use the same symbol to denote functional spaces of scalar
or vector valued functions. Moreover, the symbol c denotes a generic positive
constant whose numerical value is not essential to our aims. It may assume
several different values in a single computation.

1E(Ω) is a Hilbert space with respect to the inner product 〈u, v〉E(Ω) = 〈u, v〉+ 〈∇ · u,∇ · v〉.
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2. Weak solutions: definitions and properties

We give three different definitions of weak solutions of the initial-boundary value
problem (1) – (2) and we collect some their properties which will be used after-
wards.

Definition 1. Let v0 ∈ J(Ω). A vector field v : Ω × (0,∞) → R
n is said

a Leray weak solution of problem (1) – (2) with initial data v0, if it satisfies the
following conditions for all T ∈ (0,∞)

1. v ∈ L∞
(
0, T ;J(Ω)

)
∩ L2

(
0, T ;J1,2(Ω)

)
;

2. ∀ ϕ ∈ C0(ΩT )

(4)

∫ T

0

[
〈v, ϕt〉 − 〈∇v,∇ϕ〉 − 〈(v·∇)v, ϕ〉

]
dt = −〈v0, ϕ0〉 ;

3. there holds the following energy inequality

(5) ‖v(t)‖22 + 2

∫ t

s

‖∇v(τ)‖22 dτ ≤ ‖v(s)‖22

for s = 0, a.e. s > 0 and ∀ t ≥ s.

Definition 2. Let v0 ∈ J(Ω). A vector field v : Ω × (0,∞) → R
n is said a

Hopf weak solution of problem (1) – (2) with initial data v0, if it satisfies, for all
T ∈ (0,∞), conditions 1, 2 of Definition 1 and if the energy inequality (5) holds
only for s = 0 and for all t ≥ 0.

If Ω is a domain in R
n (with n = 2, 3, 4) satisfying Assumption 1, for any

initial data v0 ∈ J(Ω) there exists at least a Leray weak solution of problem (1) –
(2). Whereas, if Ω is an arbitrary domain in R

n (with n ≥ 2), for any initial data
v0 ∈ J(Ω) there exists at least a Hopf weak solution (cf. [10, 8, 6, 17], see also [5,
Section 3]).
Obviously, every Leray weak solution is a Hopf weak one too.

Remark. If v is a Hopf weak solution, by the energy inequality (5) we have

(6) ‖v‖
L∞

(

0,∞; J(Ω)
) ≤ ‖v0‖2 , ‖∇v‖

L2(0,∞;L2(Ω)
) ≤ 1

2 ‖v0‖2 ;

moreover, by Gagliardo-Nirenberg interpolation inequality, v ∈ Lp
(
0,∞;Lq(Ω)

)

for every pair of exponents (p, q) such that

(7)
n

q
+

2

p
=
n

2
and

{
q ∈ [2, q∗] , with 1

q∗
= 1

2 −
1
n
, if n ≥ 3

q ∈ [2,∞) , if n = 2 ;



100 Jmmy Alfonso Mauro

and there holds the following estimate

(8) ‖v‖
Lp

(

0,∞;Lq(Ω)
) ≤ c ‖v0‖2 ,

where the positive constant c does not depend on v.

The following result due to Hopf ([8]) is relevant for our purposes (for its
proof, see Lemma 1 in [18], Theorem 4 in [19] or Lemma 2.1 in [5]).

Lemma 1. Let v be a Hopf weak solution of initial-boundary value problem
(1) – (2), with initial data v0 ∈ J(Ω). Then, for every T ∈ (0,∞), v can be
redefined on a subset of [0, T ] having zero Lebesgue measure, in such a way that

1. v(·, t) ∈ J(Ω) ∀ t ∈ [0, T ];

2. there holds the following relation

(9)

∫ s

0

[
〈v, ϕt〉 − 〈∇v,∇ϕ〉 − 〈(v ·∇)v, ϕ〉

]
dt = 〈v(s), ϕ(s)〉 − 〈v0, ϕ0〉

for every s ∈ [0, T ] and for every ϕ ∈ C0(ΩT ).

Remark. The so redefined Hopf weak solution v is weakly continuous in J(Ω) as
a function of time; thus, from the energy inequality (5) (with s = 0) we deduce

lim
t→0+

‖v(t) − v0‖2 = 0.

In what follows we will regularly assume that all Hopf weak solutions (and
then Leray weak ones too) under discussion have been redefined according to the
previous Lemma.

The following Proposition, originally presented in [9], is proved in [13, Sec-
tion 2.2] (see also [16]).

Proposition 1. Let Ω ⊆ R
n, with n ≥ 2, be a domain satisfying As-

sumption 1; let T ∈ (0,∞) and ϕ(x, t) ∈ C(ΩT ), then, ∀ ε > 0 there exists
ϕ̃(x, t) ∈ C0(ΩT ) such that

(10) max
t∈[0,T ]

‖ϕ(t)− ϕ̃(t)‖
W1,2(Ω)

+

∫ T

0
‖ϕt(t)− ϕ̃t(t)‖

2
2 dt < ε



On the pressure of a Hopf weak solution 101

Remark. Concerning the space to which test functions ϕ belong, in case Ω
is a domain in R

n with n = 2, 3, 4, using Proposition 1 and a limit process, we
can extend the weak formulation of the Navier-Stokes equations (4) or (9) to “less
regular” test functions ϕ ∈ C(ΩT ).
If n > 4, we should consider test functions ϕ ∈ C(ΩT ) ∩ C

(
[0, T ];Jn(Ω)

)
. We

need this further property to assure the summability and the convergence of the
nonlinear term.

Definition 3. Let v0 ∈ J(Ω) and T ∈ (0,∞]. A pair (v, π), having as first
component a vector field v : Ω × (0, T ) → R

n and as second component a scalar
function π : Ω × (0, T ) → R, is said a suitable weak solution of problem (1) – (2),
in Ω× (0, T ), with initial data v0, if the following conditions are satisfied

1. v ∈ L∞
(
0, T ;J(Ω)

)
∩ L2

(
0, T ;J1,2(Ω)

)
;

2. the energy inequality (5) holds, at least, for s = 0 and for all t ∈ (0, T );

3. ∀ φ ∈ C∞
0

(
ΩT ;R

n
)

(11)

∫ T

0

[
〈v, φt〉−〈∇v,∇φ〉−〈(v·∇)v, φ〉

]
dt = −

∫ T

0
〈π,∇·φ〉dt−〈v0 , φ0〉 ;

4. for every non-negative, scalar valued function σ ∈ C∞
0

(
ΩT ;R

)
there holds

the following generalized energy inequality

∫

Ω
|v(t)|2σ(t) dx+ 2

∫ t

s

∫

Ω
|∇v|2σ dxdτ ≤

∫

Ω
|v(s)|2σ(s) dx

+

∫ t

s

∫

Ω
|v|2(στ +∆σ) dxdτ +

∫ t

s

∫

Ω
(|v|2 + 2π)v · ∇σ dxdτ

for s = 0, a.e. s ∈ (0, T ) and ∀ t ∈ (s, T ).

(12)

Definition 4. A point (x, t) ∈ Ω× (0, T ) is called singular for a solution v of
system (1) iff the vector field v is not essentially bounded [ i.e. v 6∈ L∞(I(x,t)) ] on
any neighborhood I(x,t) of (x, t).

Let P1 denote a measure on R
3
x×Rt analogous to one-dimensional Hausdorff

measure H 1, but defined using parabolic cylinders instead of Euclidean balls (cf.
[3, Section 2D]). For a suitable weak solution (v, π), there holds the following local
partial regularity result (cf. [3, Theorem B] and [11]).



102 Jmmy Alfonso Mauro

Theorem. Let Ω be an arbitrary domain in R
3 and let T ∈ (0,∞]; for

any suitable weak solution (v, π) of problem (1) – (2) in Ω × (0, T ), with π ∈

L
3
2

(
Ω×(0, T )

)
, the associated set S of possible singular points satisfies P1(S) = 0.

In the previous theorem, the hypothesis π ∈ L
3
2

(
Ω× (0, T )

)
can be weakened

to π ∈ L
5
4

(
0, T ;L

5
4
loc(Ω)

)
(cf. [3, Section 2C] and [24]).

3. The nonstationary Stokes problem

This section is concerned with the following initial-boundary value problem

vt(x, t)−∆v(x, t) = −∇π(x, t) + f(x, t) ∀ (x, t) ∈ Ω× (0, T ) ,

∇· v(x, t) = 0 ∀ (x, t) ∈ Ω× (0, T ) ,
(13a)

v(x, t) = 0 ∀ (x, t) ∈ ∂Ω × (0, T ) ,

v(x, 0) = v0(x) ∀ x ∈ Ω,
(13b)

with T ∈ (0,∞] and Ω ⊆ R
n a domain satisfying Assumption 1.

As for problem (1)–(2), the initial data v0 should satisfy the compatibility
conditions ∇· v0 = 0 in Ω and v0 · ν |∂Ω = 0, with ν(x) the outward pointing unit
normal vector at x ∈ ∂Ω, at least in weak form. Furthermore, if the domain Ω in
unbounded, we also assume the condition at infinity

lim
|x|→∞

v(x, t) = 0 ∀ t ∈ [0, T ) .

Remark 1. If Ω ⊆ R
n, with n ≥ 2, is a domain satisfying Assumption 1,

by Theorem 1.1 in [25, Ch. 3] (see also [9, Ch. 4 Theorem 3]), for any initial
data v0(x) ∈ J(Ω), the Stokes problem (13) with f(x, t) ≡ 0 has a unique “weak”
solution v such that, for every T ∈ (0,∞),

v ∈ C
(
[0, T ];J(Ω)

)
∩ L2

(
0, T ;J1,2(Ω)

)

∫ s

0

[
〈v, ϕt〉 − 〈∇v,∇ϕ〉

]
dt = 〈v(s), ϕ(s)〉 − 〈v0, ϕ0〉

for every s ∈ [0, T ] and for every ϕ ∈ C0(ΩT ).

(14)

The following Proposition concerns some properties of the pressure field π

associated to the weak solution of problem (13); they will turn out useful to our
purposes.
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Proposition 2. Let Ω ⊆ R
n, n ≥ 3, be a domain satisfying Assumption 1.

Let v be the unique “weak” solution of the Stokes problem (13) with f(x, t) ≡ 0
and initial data v0(x) ∈ J(Ω); then there exists a distribution π : Ω× (0,∞) → R

such that

1. for every T ∈ (0,∞) and for every η ∈ (0, T ),

∇π ∈ Lp
(
0, T ;Lq(Ω)

)
∩ L∞

(
η, T ;Lq(Ω)

)
(15a)

for every pair (p, q) such that 1 < q < 2 and 1 ≤ p < 4q
5q−2 ,

π ∈ Lr
(
0, T ;L2(Ω′)

)
∩ L∞

(
η, T ;L2(Ω′)

)
∀ 1 ≤ r <

4

3
,(15b)

where

(16)

Ω′ ⊂ Ω is an arbitrary bounded domain, if there holds con-
dition (D1); Ω′ ⊂ Ω is a bounded domain such that dist

(
Ω \

Ω′ , ∂Ω
)
> 0, if Ω satisfies condition (D3), while Ω′ ≡ Ω if

there holds condition (D2);

2. for every T ∈ (0,∞),
∫ s

0

[
〈v, φt〉 − 〈∇v,∇φ〉

]
dt = −

∫ s

0

[
〈π,∇ · φ〉

]
dt

+ 〈v(s), φ(s)〉 − 〈v0, φ0〉

for every s ∈ [0, T ] and for every φ ∈ C∞
0 (ΩT ;R

n);

(17)

P r o o f. By density of C0(Ω) in J(Ω), there exists a sequence {vn0 } ⊂ C0(Ω)
converging to v0 in J(Ω). From [7, Theorem 2.8], [14, Theorem 1.4] and Section 2
in [9, Chapter 4]) it follows that for every n ∈ N there exists a unique solution
(vn,∇πn) of problem (13) with f(x, t) ≡ 0 and initial data vn0 ∈ C0(Ω), satisfying
the following properties

v ∈ C
(
[0, T ];W 2,2(Ω) ∩ J1,2(Ω)

)
∩ Lp

(
0, T ;J1,q(Ω) ∩W 2,q(Ω)

)

∂v

∂t
∈ C

(
[0, T ];J(Ω)

)
∩ Lp

(
0, T ;Jq(Ω)

)

∇π ∈ C
(
[0, T ];L2(Ω)

)
∩ Lp

(
0, T ;Lq(Ω)

)

for every T ∈ (0,∞) and for all p, q ∈ (1,∞).
For any T ∈ (0,∞), we can multiply both sides of (13a)1 by an arbitrary

φ ∈ C∞
0 (ΩT ;R

n) and integrate the product over Ω× (0, s). Then, integrating by
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parts with respect to x and t, we obtain the following relation
∫ s

0

[
〈vn, φt〉 − 〈∇vn,∇φ〉

]
dt =−

∫ s

0

[
〈πn,∇ · φ〉

]
dt+ 〈vn(s), φ(s)〉−〈vn0 , φ0〉

for every s ∈ [0, T ].

(18)

By the linearity property of system (13a), for every n, m ∈ N the difference
(vn−vm,∇πn−∇πm) is the unique solution of problem (13) with f(x, t) ≡ 0 and
initial data vn0 − vm0 . Considering the summability properties of (vn − vm,∇πn −
∇πm), for every s ∈ (0,∞), we can multiply both sides of (13a)1 by vn − vm in
L2

(
Ω × (0, s)

)
. Integrating by parts with respect to x and t and reminding that

the vector field vn − vm is solenoidal, we obtain the following identity

‖vn(s)− vm(s)‖22 + 2

∫ s

0
‖∇(vn(τ)− vm(τ))‖22 dτ = ‖vn0 − vm0 ‖22,

for every s ∈ [0,∞),

(19)

from which we derive that {vn} is a Cauchy sequence in C
(
[0, T ];J(Ω)

)
∩

L2
(
0, T ;J1,2(Ω)

)
, for every T ∈ (0,∞). Then, there exists its limit v̄ ∈

C
(
[0, T ];J(Ω)

)
∩L2

(
0, T ;J1,2(Ω)

)
, for every T ∈ (0,∞), which is a “weak” solution

of problem (13) with f(x, t) ≡ 0 and initial data v0. By the uniqueness of the
“weak” solution of the Stokes problem, it follows that v̄ ≡ v a.e. in Ω × (0,∞)
and, then, for every T ∈ (0,∞)

(20)
vn(x, t) → v(x, t) in J(Ω), uniformly in [0, T ]

∇vn(x, t) → ∇v(x, t) in L2
(
0, T ;L2(Ω)

)
.

Now, let us apply the divergence operator to (13a)1, in the distribution sense,
and let us multiply both sides of (13a)1 by ν(x), the outward pointing unit normal

vector at x ∈ ∂Ω, in W− 1
2
,2(∂Ω). As vn − vm is a solenoidal vector field which

satisfies homogeneous boundary conditions, we have that, for every n, m ∈ N, for
all t̄ ∈ (0,∞), the function πn(x, t̄)− πm(x, t̄) is a weak solution of the following
Neumann problem

(21)

∆
(
πn(x, t̄)− πm(x, t̄)

)
= 0 ∀ x ∈ Ω ,

∂

∂ν

(
πn(x, t̄)− πm(x, t̄)

)
= ν(x) ·∆

(
vn(x, t̄)− vm(x, t̄)

)
∀ x ∈ ∂Ω ,

If Ω ⊆ R
n is an exterior domain, we also assume the following condition at infinity

lim
|x|→∞

(
πn(x, t̄)− πm(x, t̄)

)
= 0
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For every t̄ ∈ (0,∞), let a(n,m,t̄)(x) = (vn(x, t̄) − vm(x, t̄)); as a(n,m,t̄) is a
divergence free vector field, we have

ν(x) ·∆
(
vn(x, t̄)− vm(x, t̄)

)
= ν(x) ·

(
∆a(n,m,t̄)(x)−∇(∇ · a(n,m,t̄)(x))

)

=
n∑

i,j=1

νi(x)
∂

∂xj

(
∂a

(n,m,t̄)
i

∂xj
(x)−

∂a
(n,m,t̄)
j

∂xi
(x)

)

=
1

2

n∑

i,j=1

(
νi(x)

∂

∂xj
− νj(x)

∂

∂xi

)(
∂a

(n,m,t̄)
i

∂xj
(x)−

∂a
(n,m,t̄)
j

∂xi
(x)

)

By virtue of estimate (2.18) in [14, Lemma 2.3] (see also [22, Lemma 2.1]), using
the trace embedding theorem and an interpolation inequality, we obtain that for
every q ∈ (1, 2) and ε ∈

(
0, 1

q
− 1

2

)

‖∇
(
πn(t̄)− πm(t̄)

)
‖
q
≤ c





n∑

i,j=1

∫

∂Ω

∫

∂Ω

∣∣∣∂a
(n,m,t̄)
i

∂xj
(x)−

∂a
(n,m,t̄)
i

∂xj
(y)

∣∣∣
q

|x− y|n−2+q
dσx dσy





1
q

≤ c ‖∇a(n,m,t̄)‖
W

1− 1
q
,q

(∂Ω)
≤ c(ε) ‖∇a(n,m,t̄)‖

W
1− 1

q
+ε,2

(∂Ω)

≤ c(ε) ‖∇a(n,m,t̄)‖
W

3
2
−

1
q
+ε,2

(Ω)
≤ c(ε) ‖∇a(n,m,t̄)‖

1
q
− 1

2
−ε

2 ‖∇a(n,m,t̄)‖
3
2
− 1

q
+ε

W1,2(Ω)

≤ c(ε)
(
‖∇a(n,m,t̄)‖2 + ‖∇a(n,m,t̄)‖

1
q
− 1

2
−ε

2 ‖D2a(n,m,t̄)‖
3
2
− 1

q
+ε

2

)

with the constant c(ε) blowing up as ε → 0+; D2a(n,m,t̄) denotes the matrix of
the second order spatial derivatives of a(n,m,t̄).

Since vn0 − vm0 ∈ C0(Ω), using the decay estimates (4.3) in [14, Theorem 4.1]
(which also hold if Ω is bounded), we get

‖∇
(
πn(t)− πm(t)

)
‖
q
≤ c(ε, T ) t

−( 5
4
− 1

2q
+ ε

2
)
‖vn0 − vm0 ‖2

∀ T ∈ (0,∞) and for any t ∈ (0, T ) ,

(22)

and, therefore, {∇πn} is a Cauchy sequence in Lp
(
0, T ;Lq(Ω)

)
∩L∞

(
η, T ;Lq(Ω)

)
,

for every pair (p, q) such that 1 < q < 2 and 1 ≤ p < 4q
5q−2 , for every T ∈ (0,∞)

and for every η ∈ (0, T ).
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In a similar way, using estimate (2.17) in [14, Lemma 2.3], we obtain that for
every ε ∈

(
0, 12

)

‖πn(t̄)− πm(t̄)‖
L2(Ω′)

≤c ‖∇a(n,m,t̄)‖
Wε,2(∂Ω)

≤ c ‖∇a(n,m,t̄)‖
W

1
2
+ε,2

(Ω)

≤c ‖∇a(n,m,t̄)‖
1
2
−ε

2 ‖∇a(n,m,t̄)‖
1
2
+ε

W1,2(Ω)

≤c
(
‖∇a(n,m,t̄)‖2 + ‖∇a(n,m,t̄)‖

1
2
−ε

2 ‖D2a(n,m,t̄)‖
1
2
+ε

2

)

where Ω′ is any domain satisfying (16).
Then, by the decay estimates (4.3) in [14, Theorem 4.1] we have

‖
(
πn(t)− πm(t)

)
‖
2
≤ c(T )

(
t−

1
2 + t−( 3

4
+ ε

2
)
)
‖vn0 − vm0 ‖2

∀ T ∈ (0,∞) and for any t ∈ (0, T ) ,

(23)

from which we obtain that {πn} is a Cauchy sequence in Lr
(
0, T ;L2(Ω′)

)
∩

L∞
(
η, T ;L2(Ω′)

)
, for every 1 ≤ r < 4

3 , for every T ∈ (0,∞), for every η ∈ (0, T )
and for any domain Ω′ satisfying (16).

Therefore, there exists a function π : Ω × (0,∞) → R, enjoying summability
properties (15), such that, for every T ∈ (0,∞) and for every η ∈ (0, T ),

∇πn(x, t) → ∇π(x, t) in Lp
(
0, T ;Lq(Ω)

)
∩ L∞

(
η, T ;Lq(Ω)

)
,

for every pair (p, q) such that 1 < q < 2 and 1 ≤ p < 4q
5q−2 ,

πn(x, t) → π(x, t) in Lr
(
0, T ;L2(Ω′)

)
∩ L∞

(
η, T ;L2(Ω′)

)
∀ 1 ≤ r <

4

3
,

where Ω′ is any domain satisfying (16).

Then, if we let n → ∞ in relation (18), recalling (20), we deduce the weak
formulation (17). �

Remark 2. Of course, the pressure field π is only determined up to a func-
tion π0 : (0,∞) → R.
If Ω ⊆ R

n, with n ≥ 3, is a domain satisfying Assumption 1 and ∇π ∈
Lr

(
0, T ;Ls(Ω)

)
for some T ∈ (0,∞], r ∈ [1,∞] and s ∈ (1, n), by [6, Lemma

1.3] (see also [17, Lemma 3.2] or [4, Theorem II.6.1]), π0(t) can be chosen so that
π̃(x, t) ≡ π(x, t) + π0(t) is in Lr

(
0, T ;Lα(Ω)

)
with α = ns

n−s
.
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We point out that the chosen function π0(t) is independent of s, i.e. if ∇π ∈
Lr

(
0, T ;Ls(Ω)

)
for some T ∈ (0,∞], r ∈ [1,∞] and for every 1 < s1 ≤ s ≤ s2 < n

then π̃ ∈ Lr
(
0, T ;Lα(Ω)

)
for all α ∈

[
ns1
n−s1

, ns2
n−s2

]
.

Hereafter, for the sake of simplicity, the tilde mark is omitted in π̃.
In the case Ω ≡ R

n, in Proposition 2 we can choose π(x, t) = 0 almost everywhere.

4. The pressure field π associated to a Hopf weak solution

Theorem 1. Let Ω ⊆ R
n, with n ≥ 3, be a domain satisfying Assumption 1

and let v be a Hopf weak solution of problem (1) – (2) with initial data v0 ∈ J(Ω);
then, there exists a scalar field π : Ω× (0,∞) → R such that,

1. if Ω satisfies condition (D2) or (D3), for every T ∈ (0,∞), for every η ∈
(0, T ) and for any domain Ω′ satisfying (16),

i. ∇π ∈ Lp
(
0, T ;Lq(Ω)

)
, for every pair of exponents (p, q) such that

n
q
+ 2

p
= n+ 1 and 2(n−1)

2n−3 < q < n
n−1 ;

∇π ∈ Lr
(
0, T ;Lq(Ω)

)
∩ Lp

(
η, T ;Lq(Ω)

)
, for every tern of exponents

(r, p, q) such that

1 < q ≤ 2(n−1)
2n−3 , 1 ≤ r < 4q

5q−2 and n
q
+ 2

p
= n+ 1 ;

ii. π ∈ Lp
(
0, T ;Lq̃(Ω)

)
, for every pair of exponents (p, q̃) such that

n
q̃
+ 2

p
= n and 2n(n−1)

(2n−1)(n−2) < q̃ < n
n−2 ;

π ∈ Lr
(
0, T ;Lq̃(Ω)

)
∩ Lp

(
η, T ;Lq̃(Ω)

)
, for every tern of exponents

(r, p, q̃) such that

n
n−1 < q̃ ≤ 2n(n−1)

(2n−1)(n−2) , 1 ≤ r < 4q̃n
5q̃n−2(n+q̃) and n

q̃
+ 2

p
= n ;

iii. π ∈ Lr
(
0, T ;L

2n
2n−3 (Ω′)

)
∀ 1 ≤ r < 4

3 ;

iv. if n ≥ 4, π ∈ Lp
(
0, T ;Lq̃(Ω′)

)
for every pair of exponents (p, q̃) such

that
n
q̃
+ 2

p
= n and 2n

2n−3 < q̃ ≤ 2n(n−1)
(2n−1)(n−2) ;
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2. if Ω ≡ R
n,

i. ∇π ∈ Lp
(
0,∞;Lq(Rn)

)
, for every pair of exponents (p, q) such that

(24) n
q
+ 2

p
= n+ 1 and 1 < q < n

n−1 ;

ii. π ∈ Lp
(
0,∞;Lq̃(Rn)

)
, for every pair of exponents (p, q̃) such that

n
q̃
+ 2

p
= n and 1 < q̃ ≤ n

n−2 ;

3. ∀ T ∈ (0,∞), the Hopf weak solution v and the scalar field π satisfy the
following relation

∫ s

0

[
〈v, φt〉 − 〈∇v,∇φ〉 − 〈(v·∇)v, φ〉

]
dt = −

∫ s

0
〈π,∇ · φ〉 dt

+〈v(s), φ(s)〉 − 〈v0, φ0〉

∀ s ∈ [0, T ] , ∀ φ ∈ C∞
0 (ΩT ;R

n) .

(25)

Remark. In [7, Theorem 3.1] it was proved that if Ω ⊆ R
n is a domain

satisfying condition (D2) or (D3) and if the initial data v0 is in B
2− 2

p
q,p (Ω)∩Jq(Ω),

for some pair of exponents (p, q) satisfying condition (24), then ∇π is in
Lp

(
0,∞;Lq(Ω)

)
. Even if this result is better than ours, however we require less

regularity for the initial data, i.e. we require only v0 ∈ J(Ω). That is very impor-
tant to understand if it’s possible to deduce partial regularity properties of weak
solutions under the only hypotheses which assure their existence.

P r o o f. Let v be a Hopf weak solution with initial data v0 ∈ J(Ω); by the
Hölder inequality and estimates (6), (8) we have

‖(v·∇)v‖
Lp

(

0,∞;Lq(Ω)
) ≤ ‖v‖

Ls
(

0,∞;Lr(Ω)
) ‖∇v‖

L2(0,∞;L2(Ω
) ≤ c ‖v0‖

2
2

with 1
q
= 1

r
+ 1

2 and 1
p

= 1
s
+ 1

2 , for every pair of exponents (s, r) satisfying

condition (7). Then (v·∇)v ∈ Lp
(
0,∞;Lq(Ω)

)
for every pair of exponents (p, q)

satisfying condition (24).
Let (u1,∇π1) be the unique solution of the Stokes problem (13) with v0(x) ≡ 0

and f = −(v·∇)v; we have (cf. [7, Theorem 2.8], [14, Lemma 4.2], [15])

– as n
n−1 ≤ n

2 for n ≥ 3, u1 ∈ Lp
(
0, T ;W 2,q(Ω) ∩ J1,q(Ω)

)
, for every

T ∈ (0,∞), and ∇π1 ∈ Lp
(
0,∞;Lq(Ω)

)
for every pair of exponents (p, q)

satisfying condition (24);
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– u1, π1 satisfy the following relations, with f = −(v·∇)v and for every
T ∈ (0,∞)

∫ s

0

[
〈v, φt〉 − 〈∇v,∇φ〉

]
dt = −

∫ s

0

[
〈π,∇ · φ〉+ 〈f, φ〉

]
dt+ 〈v(s), φ(s)〉

∀ s ∈ [0, T ] , ∀ φ ∈ C∞
0 (ΩT ;R

n) ,

(26)

∫ s

0

[
〈v, ϕt〉 − 〈∇v,∇ϕ〉

]
dt = −

∫ s

0
〈f, ϕ〉 dt+ 〈v(s), ϕ(s)〉

∀ s ∈ [0, T ] , ∀ ϕ ∈ C0(ΩT ) .

(27)

Moreover, since n
n−1 < n for n ≥ 3, by Remark 2, we deduce

π1 ∈ Lp
(
0,∞;Lq̃(Ω)

)
for every pair of exponents (p, q̃) such that

n
q̃
+ 2

p
= n and n

n−1 < q̃ < n
n−2 .

(28)

By Remark 1, there exists a unique “weak” solution u2 of the Stokes problem
(13) with f(x, t) ≡ 0 and initial data v0, which satisfies relation (14), for every
T ∈ (0,∞). By Proposition 2, there exists a function π2 such that

– π2 = 0 if Ω satisfies condition (D1);

– π2 enjoys summability properties (15), if Ω is a domain satisfying condition
(D2) or (D3).

Moreover u2, π2 satisfy relation (17), for every T ∈ (0,∞).

We set π = π1 + π2.
Let Ω ≡ R

n. In such a case π ≡ π1 and, therefore, property 2-i holds.
Following [3, Section 2c], we can apply the divergence operator to the equation
(1)1, in the distribution sense. As v is a solenoidal vector field, we have that, for
almost every t̄ ∈ (0,∞), the function π(·, t̄) is a weak solution of the following
elliptic equation

(29) ∆π(x, t̄) = −

n∑

h,k=1

∂2

∂xk∂xk

(
uhuk

)
(x, t̄) ∀ x ∈ R

n .

The previous equation can be solved explicitly; there follows that the function
π(·, t̄) is a sum of singular integral transforms applied to the functions uhuk. By
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the Calderón – Zygmund Theorem (cf. Theorems 2 – 4 in [23, Chapter II]), for
almost every t̄ ∈ (0,∞), we have

‖π(t̄)‖
Lq(Rn)

≤ c ‖v(t̄)‖2
L2q(Rn)

∀ 1 < q̃ ≤
n

n− 2
.

Thus, property 2-ii follows from estimate (8).
If Ω is a domain satisfying condition (D2) or (D3), since

2(n−1)
2n−3 < q < n

n−1 =⇒ n+1
2 − n

2q >
5
4 −

1
2q ,

1 < q ≤ 2(n−1)
2n−3 =⇒ n+1

2 − n
2q ≤ 5

4 −
1
2q ,

from the summability properties of ∇π1, ∇π2, there follows that ∇π satisfies
summability properties 1-i.
As n

n−1 < n, by Remark 2, we deduce properties 1-ii from properties 1-i.

By (28), π1 ∈ L
4
3

(
0, T ;L

2n
2n−3 (Ω)

)
; since 2n

2n−3 ≤ 2 for n ≥ 3, by (15b) we obtain
property 1-iii.
As 2n(n−1)

(2n−1)(n−2) < 2 for n ≥ 4 and

2n
2n−3 < q̃ ≤ 2n(n−1)

(2n−1)(n−2) =⇒ 1
p
= n

2

(
1− 1

q̃

)
> 3

4 ,

by (28) and (15b) we obtain property 1-iv.
Adding relation (27), for u1, and relation (14), for u2, we deduce that the

vector field u(x, t) = u1(x, t) + u2(x, t) satisfy the following identity

∫ s

0

[
〈u , ϕt〉 − 〈∇u , ∇ϕ〉

]
dt =

∫ s

0
〈(v·∇)v , ϕ〉 dt+ 〈u(s) , ϕ(s)〉 − 〈v0 , ϕ0〉

∀ T ∈ (0,∞) , ∀ s ∈ [0, T ] , ∀ ϕ ∈ C0(ΩT ) .

(30)

Subtracting identity (30) from identity (9), written for the Hopf weak solution v,
we obtain

∫ s

0

[
〈(v − u) , ϕt〉 − 〈∇(v − u) , ∇ϕ〉

]
dt = 〈(v(s)− u(s)) , ϕ(s)〉

∀ T ∈ (0,∞) , ∀ s ∈ [0, T ] , ∀ ϕ ∈ C0(ΩT ) .

(31)

Using Proposition 1 and a limit process, we can extend this last relation to “less
regular” test functions ϕ ∈ C(ΩT ).

Let ψ : Ω × (0,∞) → R
n be the unique solution of the Stokes problem (13)

with f(x, t) ≡ 0 and arbitrary smooth initial data ψ0(x) ∈ C0(Ω). By Theorem 1
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in [9, Ch. 4] (see also Proposition 1.2 in [25, Ch. 3]), ψ ∈ C
(
[0, T ];J1,2(Ω)

)
with

ψt ∈ L2
(
0, T ;J(Ω)

)
, for every T ∈ (0,∞).

For any s̄ ∈ (0,∞), ψ(x, s̄ − t) is the (unique) backward in time solution of the
adjoint Stokes problem on Ω× (0, s̄).

Let us set

ψ̃(x, t) =

{
ψ(x, s̄ − t) , ∀ (x, t) ∈ Ω× [0, s̄]

ψ0(x) , ∀ (x, t) ∈ Ω× (s̄,∞) ;

Of course, for every T ∈ (s̄,∞), ψ̃ ∈ C
(
[0, T ];J1,2(Ω)

)
with ψ̃t ∈ L

2
(
0, T ;J(Ω)

)
.

Let θ : R → [0, 1] be a smooth, decreasing, non negative function such that
θ(t) = 1, for t ≤ 1, and θ(t) = 0, for t ≥ 2.
For some T ∈ (s̄,∞), we set

ϕ̃(x, t) = ψ̃(x, t) θ
(t+ T − 2s̄

T − s̄

)
∀ (x, t) ∈ Ω× [0,∞)

As ϕ̃(x, T ) = ψ̃(x, T ) θ(2) ≡ 0 for a.e. x ∈ Ω, taking the regularity properties of
ψ̃(x, t) and θ(t) into account, we may conclude that ϕ̃ ∈ C(ΩT ); moreover, since
ϕ̃(x, t) ≡ ψ(x, s̄ − t) for a.e. x ∈ Ω and ∀ t ∈ [0, s̄], ϕ̃ also satisfies the adjoint
Stokes problem on Ω× (0, s̄).
Therefore, substituting ϕ̃ in (31) and using Green’s identity, we obtain

〈(v(s̄)− u(s̄)) , ψ0〉 = 0

Since s̄ ∈ (0,∞) and ψ0(x) ∈ C0(Ω) are been arbitrarily chosen, by the density of
C0(Ω) in J(Ω), we may conclude that v(x, t) = u1(x, t) + u2(x, t) for a.e. x ∈ Ω
and ∀ t ∈ (0,∞).

Finally, adding relation (26), for (u1, π1) with f = −(v·∇)v, and relation
(17), for (u2, π2), we obtain identity (25) with π ≡ π1 + π2. �

Remark. When Ω ⊆ R
n is an exterior domain, the summability properties

given in Theorem 1 imply a certain decay of π, for |x| → ∞. As pointed out
in [21, 7], an important consequence of that is the regularity of suitable weak
solutions for large x, when Ω ⊆ R

3 is an exterior domain. Such result is proved
in [3] in case Ω ≡ R

3, in [12] for exterior domains.

Analogously in the Appendix of [3], using Proposition 2 and Theorem 1, we
can prove the following

Theorem 2. Let Ω ⊆ R
3 be a domain satisfying condition (D2) or (D3); for

every v0 ∈ J(Ω), there exists a suitable weak solution (v, π) of problem (1) – (2),
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in Ω × (0,∞). Moreover, v is a Leray weak solution and, for every T ∈ (0,∞),
for every η ∈ (0, T ) and for any domain Ω′ satisfying (16), we have

(32)

∇π ∈ Lp
(
0, T ;Lq(Ω)

)
, for every pair (p, q) such that

3
q
+ 2

p
= 4 and 4

3 < q < 3
2 ;

∇π ∈ Lr
(
0, T ;Lq(Ω)

)
∩ Lp

(
η, T ;Lq(Ω)

)
, for every tern of exponents

(r, p, q) such that

1 < q ≤ 4
3 , 1 ≤ r < 4q

5q−2 and 3
q
+ 2

p
= 4 ;

(33)

π ∈ Lp
(
0, T ;Lq̃(Ω)

)
, for every pair (p, q̃) such that

3
q̃
+ 2

p
= 3 and 12

5 < q̃ < 3 ;

π ∈ Lr
(
0, T ;Lq̃(Ω)

)
∩ Lp

(
η, T ;Lq̃(Ω)

)
, for every tern of exponents

(r, p, q̃) such that

3
2 < q̃ ≤ 12

5 , 1 ≤ r < 12q̃
13q̃−6 and 3

q̃
+ 2

p
= 3 ;

π ∈ Lr
(
0, T ;L2(Ω′)

)
∀ 1 ≤ r < 4

3 .

Remark. In [24, Theorem 2.1] it was shown that, if Ω ⊂ R
3 satisfies

condition (D2) or (D3), for each v0 ∈ J(Ω) there exists at least a suitable weak

solution (v, π), of problem (1) – (2), in Ω× (0,∞), such that π ∈ L
5
4
loc

(
Ω× (0,∞)

)

and the generalized energy inequality (12) is satisfied for every non-negative σ ∈
C∞
0

(
Ω× (0,∞);R

)
.

In Theorem 2, for any initial data v0 ∈ J(Ω), we can prove the existence of a
suitable weak solution (v, π) with a more regular associated pressure field π (in
fact, it satisfies summability properties (32) – (33)); moreover, there hold both the
usual energy inequality (5) and the generalized one (12) for every non-negative
σ ∈ C∞

0

(
Ω× [0,∞);R

)
(i.e. σ(x, 0) doesn’t need to be zero).

So, as far as we know, if Ω ⊂ R
3 is a bounded or an exterior domain, thanks

to Theorem 2, J(Ω) is the largest class of initial data for which we can give an
existence theorem of weak solutions which are both suitable weak solutions, in
Ω× (0,∞), and Leray weak solutions.

P r o o f. Let v0 ∈ J(Ω); by density of C0(Ω) in J(Ω), there exists a sequence
{vk0} ⊂ C0(Ω) converging to v0 in J(Ω); of course, there exists c > 0 such that

(34) ‖vk0‖2 ≤ c ‖v0‖2 ∀ k ∈ N .
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For every k ∈ N, let us consider the following initial-boundary value problem

∂tv
k −∆vk + (F k·∇)vk = −∇πk in Ω× (0, T ) ,

∇· vk = 0 in Ω× (0, T ),
(35a)

vk(x, t) = 0 on ∂Ω× (0, T ),

vk(x, 0) = vk0 (x) in Ω,
(35b)

where, for almost every t ∈ (0, T ),

F k(x, t) =

∫

R3

j 1
k
(|x− y|) ṽk(y, t) dy ,

is the regularized function, in the sense of Friederichs, in the space variables of

ṽk(x, t) =

{
vk(x, t) in Ω ,
0 in R

n \ Ω ,

with j 1
k
(s) an even, nonnegative, real-valued function belonging to C∞

0 (R), such

that j 1
k
(s) = 0 if |s| ≥ 1

k
and

∫
R
j 1
k
(s) ds = 1.

If the domain Ω is unbounded, we also assume the condition at infinity

lim
|x|→∞

vk(x, t) = 0 ∀ t ∈ [0, T ) .

Let k ∈ N and T ∈ (0,∞) be fixed; using the Faedo-Galerkin method, we can
construct a weak solution vk : Ω×(0, T ) → R

n to problem (35), in Ω×(0, T ), such
that vk ∈ L∞

(
0, T ;J(Ω)

)
∩ L2

(
0, T ;J1,2(Ω)

)
. Since the kernel j 1

k
(s) ∈ C∞

0 (R),

by Young’s inequality for convolution, we get F k ∈ L∞
(
0, T ;Lq(Ω)

)
for every

q ∈ [2,∞] 2. Since vk0 ∈ C0(Ω), from Theorem 4.2 in [22] there follows that there
exists a pressure field πk : Ω× (0, T ) → R, associated to vk, such that

– (vk,∇πk) is the unique solution to problem (35), in Ω× (0, T );

– system (35a) is satisfied almost everywhere in Ω× (0, T );

– there hold

(36)

v(x, t) ∈ Lq
(
0, T ;W 2,q(Ω) ∩ J1,q(Ω)

)
,

vt(x, t) ∈ Lq
(
0, T ;Jq(Ω)

)
,

∇π(x, t) ∈ Lq
(
0, T ;Lq(Ω)

)
,

π(x, t) ∈ Lq
(
0, T ;Lq(Ω′)

)
,

for every q ∈ (1,∞) and for any domain Ω′ satisfying (16).

2Of course, the sequence {F k} is not bounded in L∞
(

0, T ;Lq(Ω)
)

, for q ∈ (2,∞].
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Then, for 0 ≤ s ≤ t ≤ T , we can multiply both sides of (35a)1 by vk in L2
(
Ω ×

(s, t)
)

(respectively by vkσ, with non-negative σ ∈ C∞
0

(
Ω×[0, T );R

)
). Integrating

by parts with respect to x and t, we obtain the following usual and generalized
energy equalities:

(37) ‖vk(t)‖
2

2 + 2

∫ t

s

‖∇vk(τ)‖
2

2 dτ = ‖vk(s)‖
2

2,

∫

Ω
|vk(t)|

2
σ(t) dx+ 2

∫ t

s

∫

Ω
|∇vk|

2
σ dxdτ =

∫

Ω
|vk(s)|

2
σ(s) dx

+

∫ t

s

∫

Ω
|vk|

2
(στ +∆σ) dxdτ +

∫ t

s

∫

Ω

[
|vk|

2
F k · ∇σ + 2πk vk · ∇σ

]
dxdτ

(38)

for all s, t ∈
[
0, T

]
with s ≤ t and for every non-negative, scalar valued function

σ ∈ C∞
0

(
Ω× [0, T );R

)
.

From the energy equality (37) and estimate (34), we deduce

‖vk‖
L∞

(

0, T ; J(Ω)
) ≤ ‖vk0‖2 ≤ c ‖v0‖2 ,

‖∇vk‖
L2(0, T ;L2(Ω)

) ≤ 1
2 ‖v

k
0‖2 ≤ c ‖v0‖2 ,

(39)

where the constant c is independent of k; from (39) we can also obtain a uniform
estimate with respect to k, like (8).

Let (uk1 ,∇π
k
1 ) the unique solution of problem (13) with external force f =

−(F k·∇)vk and initial data uk1(x, 0) = 0 and (uk2 ,∇π
k
2 ) the unique solution of

problem (13) with external force f = 0 and initial data uk1(x, 0) = vk0 (analo-
gously in the proof of Theorem 1).
Using Hölder’s inequality and the properties of Friederichs mollifiers (cf. [1, Sec-
tion 2.29 ]), by estimates (39) we obtain

‖(F k·∇)vk‖
L

4
3
(

0, T ;L
6
5 (Ω)

) ≤ ‖F k‖
L4(0, T ;L3(Ω)

)‖∇vk‖
L2(0, T ;L2(Ω)

)

≤ ‖vk‖
L4(0, T ;L3(Ω)

)‖∇vk‖
L2(0, T ;L2(Ω)

) ≤ c ‖v0‖
2
2 .

So, by estimate (4.12) in [14, Lemma 4.2] or estimate (2.22) in [7, Theorem 2.8],
we obtain ‖∇πk1‖L

4
3
(

0, T ;L
6
5 (Ω)

) ≤ c ‖v0‖
2
2 .

By estimate (22) in Proposition 2, we get ‖∇πk2‖L
7
6
(

0, T ;L
6
5 (Ω)

) ≤ c(T ) ‖v0‖2 .

Then, for πk ≡ πk1 + πk2 there holds the following estimate

(40) ‖∇πk‖
L

7
6
(

0, T ;L
6
5 (Ω)

) ≤ c(T )
(
‖v0‖2 + ‖v0‖

2
2

)
,
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from which, by virtue of Remark 2, we get

(41) ‖πk‖
L

7
6
(

0, T ;L2(Ω)
) ≤ c(T )

(
‖v0‖2 + ‖v0‖

2
2

)
,

where the constant c(T ) is independent of k.
Then, from estimates (39), (41), we may deduce the existence of subsequences

of {vk}, {πk} — again denoted by {vk}, {πk} respectively, for simplicity — and of

functions v ∈ L∞
(
0, T ;J(Ω)

)
∩ L2

(
0, T ;J1,2(Ω)

)
, π ∈ L

7
6

(
0, T ;L2(Ω)

)
such that

vk → v weakly in L2
(
0, T ;J1,2(Ω)

)

vk → v weak-star in L∞
(
0, T ;J(Ω)

)

πk → π weakly in L
7
6

(
0, T ;L2(Ω)

)

Moreover, by Friederichs Lemma, we obtain that

vk → v strongly in L2
(
0, T ;L2(Ω′)

)

for any bounded domain Ω′ ⊆ Ω.
Considering the summability properties (36) of (vk,∇πk), for 0 ≤ t ≤ T , we

can multiply both sides of (35a)1 by ϕ ∈ C(ΩT ) in L2
(
Ω× (0, t)

)
. Integrating by

parts with respect to x and t, we obtain

∫ t

0

[
〈vk, ϕt〉 − 〈∇vk,∇ϕ〉 − 〈(F k ·∇)vk, ϕ〉

]
dt = 〈vk(t), ϕ(t)〉 − 〈vk0 , ϕ0〉

If we let k → ∞, we obtain that v satisfies the weak formulation (9) of the Navier-
Stokes equations, with test functions ϕ ∈ C(ΩT ).
Analogously in [6] and in the Appendix of [3] (see also [12, 24]), if we let k → ∞
in (37) and (38), we deduce for v both the usual (5) and the generalized (12)
energy inequalities.

Finally, since v is in particular a Hopf weak solution, from Theorem 1 we can
deduce the summability properties (32) – (33). �
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[18] G. Prodi. Un teorema di unicità per le equazioni di Navier-Stockes. Ann.

Mat. Pura Appl. 48, 1 (1959), 173–182.

[19] J. Serrin. The initial value problem for the Navier-Stokes equations, R. E.
Langer ed. Nonlinear Problems, University of Wisconsin Press, Madison 9,
(1963), 69–98.

[20] H. Sohr. The Navier-Stokes Equations, An Elementary Functional Analytic
Approach. Springer, Basel Heidelberg New York Dordrecht London, 2001.

[21] H. Sohr and W. von Wahl. On the regularity of the pressure of weak
solutions of Navier-Stokes equations. Arch. Math. 46, 5 (1986), 428–439.

[22] V. A. Solonnikov. Estimates for solutions of nonstationary Navier-Stokes
equations. J. Soviet Math. 8, 4 (1977), 467–529.

[23] E. M. Stein. Singular integrals and differentiability properties of functions.
Princeton University Press, Princeton, New Jersey, 1970.

[24] Y. Taniuchi. On generalized energy equality of the Navier-Stokes equations.
manuscripta math. 94, 1 (1997), 365–384.

[25] R. Temam. Navier-Stokes equations. Theory and numerical analysis, third
(revised) edition. Noth-Holland publishing company, Amsterdam and New
York, 1984.



118 Jmmy Alfonso Mauro

Jmmy Alfonso Mauro
Institute of Mathematics and Informatics
Department of “Mathematical Modelling and Numerical Analysis”
Bulgarian Academy of Sciences
Sofia, Bulgaria.
email: jmmyamauro@math.bas.bg


