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SPECTRAL FINITE DIFFERENCE ANALYSIS OF
NATURAL CONVECTION IN A TWO-DIMENSIONAL
ENCLOSURE OF A THREE-FINS TYPE

Yoshihiro MOCHIMARU

ABSTRACT. Spectral finite difference scheme is applied to two-dimensional
natural laminar convection around a three-fins type enclosure, includ-
ing a shape control parameter supplemented with a condition of doubly-
connectedness. Streamlines, characteristics for the maximum stream func-
tion and the mean Nusselt number against a Grashof number are presented.

1. Introduction Fin type heat transfer is encountered at an element of
latent thermal energy storage [1], which is a basically unsteady phenomenon,
nevertheless natural convection in melting phase can be treated as quasi-steady
state, since in such cases Stefan number Ste (= ¢;AT/(Ah),cs : specific heat in
a liquid state, AT temperature difference between surfaces, Ah: latent heat-of-
fusion ) is generally small for phase change materials. Treated is a steady-state
two-dimensional laminar natural convection enclosed in doubly-connected region
with a three-fins type, using a spectral finite difference scheme.

2. Analysis

2.1 General

Fluid is assumed to be substantially incompressible except for density, for which
Boussinesq approximation applies. Treated is a steady-state natural convection
enclosed in a two-dimensional configuration ( in a vertical plane ) possessing a
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three-fins type inside. For the Cartesian coordinate (x,y) (v : vertically upward),
the following conformal mapping is introduced:

€ 1€
1 =3 14+ — — 2
(1) z zw<—|—w3 5w6>’
z=a+iy, w=eTP 0<a<asn, —7<B<T,

where € is a real non-negative control parameter for a fin shape. Heated fin surface
is given by o = 0 and far away boundary is by a = as. The dimensionless
coordinate z is based on the reference length L such that the height of the fin (
the length between the location of the top and that at the bottom on the central
axis ) /L =2 (1—¢€?/5). For univalence of the mapping

0<e< €0 ,
for which
1
(2) 1—2600089+5602(1—1200529+1600s49):0,
in 260
Sl? = 2cosf, (assuming sinf # 0) ,
sin @
in 56
Sl? =1—12cos?6 + 16 cos 6 .
sin 0

The limit €q is specified by the condition of the multiplicity of the roots

1
(3) -2+ 5 €0 (—24(:0594—640083 ) =0.
Thus eliminating cos § between Eqgs.(2) and (3), the resultant of Sylvester gives
16 0 —12 —10/¢p 1+ 5/ey? 0 0
0 16 0 -12 —10/ep 1+ 5/ep? 0
0 0 16 0 —12 —10/eg 14 5/eo?
(4) 64 0 —24 —10/e 0 0 0 =0,
0 64 O —24 —10/eq 0 0
0 0 64 0 —24 —10/¢q 0
0 0 0 64 0 —24 —10/e

which is a cubic equation with respect to €y2. The root eg(> 0) ,satisfying cos 6
is real, is

31 34226
(5) €0 = T + 5

sin ,
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©) L 1( 29 x 197 >
= ——sin —_— ] .
v=73 4 x 113226
Eventually ¢y ~ 0.617.

2.2 Basic equations
Basic governing equations under Boussinesq approximation with neglecting dissi-
pation terms are

o A 1 (@ PN ATy
@) Jat*@(a,m‘@( * >“

0a? =~ 0p? (o, B)
2 o
(8) JC"‘(W‘Fa—ﬁQ)l/}:(%
or ofT,y) 1 0? 0?
®) TG+ 5 = P e o) T
B dz 2
. |zl

where (: dimensionless vorticity, ¥: dimensionless stream function, 7T dimen-
sionless temperature, Pr: Prandtl number, Gr: Grashof number. Dimensionless
temperature is based on the temperature difference between the assumed constant
fin surface temperature and that at « = a,. Reference velocity U is defined such
that UL /v = V/Gr, v : kinematic viscosity of the fluid. Dimensionless vorticity ¢
and stream function ¢ are based on velocity U and length L, and time ¢ is based
on (L/U).

2.3 Boundary conditions

Dynamic boundary conditions are given without loss of generality through no slip
flow conditions by

Q/)(OZIO,IB):O, a

00 = . §) = const, (e = 0, ) = 0.
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The following isothermal boundary conditions are introduced:
T(a = 07 IB) = 1 Y

T(o =0, 5)=0.

2.4 Auxiliary condition
Doubly-connectedness of the configuration is

Ip Ip

— (=0,8) d3 =0 or — (@ =ax,B) d6 =0,
where p is a static pressure ( scalar quantity ) appearing in the original dynamic
equation of motion for substantially incompressible Newtonian fluids, which leads
to ( under the no-slip flow and iso-thermal boundary conditions )

0 0
(11) —Cdﬁ:00r7{ —Cdﬁzo.
=0 O a—as, O

2.5 Spectral decomposition of variables
The following applies:

(0 > Ysn (057 t) o Yen (a7 t)
(12) ¢ | = Z Con (a,t) | sinnf+ Z Cen (a,t) | cosnf.

T n=1 | Ty, (a,t) n=0 | Ty (o, t)

2.6 Numerical solution of the governing equations

Spectral finite difference scheme [2] applies, where numerical integration can be
executed semi-implicitly by truncating up to suitable Fourier terms, and steady-
state solution is obtained as time tends to sufficiently large.

3. Numerical results
Mean Nusselt number Nu is defined as

where Lo is a perimeter along a = 0, and Lo = ¢ |dz| = 27 (1+€°). In case
of Pr = 2,0 = In2, streamlines (63 = 0.01) at Gr = 100,e¢ = 0.5 and those
(61 = 0.0005) at Gr = 1,e = 0.3 are shown in Figs. 1 and 2 respectively. In case
of Pr = 2,00 = In2, isotherms (67 = 0.1) at Gr = 3000,¢ = 0.5 is shown in
Fig.3 .



SPECTRAL FINITE DIFFERENCE ANALYSIS 123

Fig. 1 Streamlines at ¢ = 0.5, Gr = 100

Fig. 2 Streamlines at ¢ = 0.3,Gr =1

Fig. 3 Isotherms at ¢ = 0.5, Gr = 3000
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Fig. 4 yYmax-Characteristics

In case of Pr = 2,e¢ = 0.5, maximum stream function ¥max and Nu against Gr
are shown in Figs. 4 and 5 respectively.
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Fig. 5 Nu-Characteristics

As vVGr — 0, for small non-negative € under steady-state condition

o
T:l—i—TOa—l—Ze”Tn(a,B) ,

n=1

To=—-1/ax ,
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-xe[el]

n=0

Yo = lT\/Gr —T—31n’r—|—i7“3
¢ 27 8 32

B
—|—Ar—|——+0r3—|—D<zlnr—C> sin 3,
r 2 4

where r = e and A, B, C, D are constants to be determined so that (e = 0) =
Yol = ax) = (0/0a)by(a = 0) = (0/0a)(a = ax) = 0.

(o= % Tov Gr (rlnr+8C’T+ Q) sinf3,
T

Wy = % TyV/Gr {g(a) sin 28 + h(a) sin 48} ,

16C D
g(a) = %—i— Bl ae 2 fape® 4 b e et 4 d
C D
h(a) = _e +8 % e 72 4 g9 e 4 by e 4 0y &5 - dy 72

with g(0) = ¢'(0) = g(ase) = g'(asc) = 0, 1(0) = H'(0) = h(aeo) = W (aee) =0 .

4. Discussion
The mean phase-change-surface-velocity v at o = a is approximately estimated

(13) —~—

where p;: density of liquid state, ps: density of solid state. For phase change
material under thermal energy storage system such as n-Heptadecane, Ste is
order of 0.1 and p;/ps is of unity, thus v/U < 1 if Gr > 1.

5. Conclusions

Natural convection in a two-dimensional enclosure of a three-fins type is success-
fully analyzed, using a spectral finite difference scheme, and characteristics are
estimated.
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