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ANTI–PLANE SCATTERING BY HETEROGENEITIES IN

PIEZOELECTRIC PLANE BY BIEM

Tsviatko Rangelov and Petia Dineva

Abstract. Considered is homogeneous or functional graded piezoelectric
material with heterogeneities of different type (hole, crack, inclusion, nano–
hole, nano–inclusion) subjected to time–harmonic wave. With respect to
the boundary conditions along the interface between the heterogeneity and
the infinite matrix different boundary value problems are formulated and
solved. Boundary Integral Equation Method is applied to evaluate both:
(a) the wave far–field due to the wave scattering and diffraction; (b) the
stress concentration field near heterogeneities.

The obtained results are applicable in the field of non–destructive testing,
material science and fracture mechanics of multi–functional materials and
structural elements based on them.

1. Introduction

Computational mechanics of multi–functional materials has a high priority in en-
gineering society, because it concerns the development and creation of new smart
materials and intelligent structures based on them. The field includes new me-
chanical models taking into consideration the role of the heterogeneity shape and
size in macro and nano-scale range, the new type of the boundary conditions
along the interfaces between the inhomogeneities and the matrix following by
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corresponding computational techniques, software, new simulations and interpre-
tation work.

The aim of this study is to propose an efficient boundary integral equation
method (BIEM) for solution of 2D anti-plane dynamic problem of piezoelectric
solids with heterogeneities of different type and size as macro (at length scales
greater than 10−6m) and nano (within the interval 10−7m to 10−9m) inclusions or
holes. The modeling approach is in the frame of continuum mechanics of coupled
fields, wave propagation theory, piezoelectricity and surface/interface elasticity
theory of Gurtin and Murdoch [4]. Heterogeneities are considered in two as-
pects as wave scatters provoking scattered and diffraction wave fields and also as
stress concentrators in the considered solid. The numerical modeling via BIEM
has the potential to reveal the dependence of the scattered wave far-field and
stress concentration near field on the electromechanical coupling, on the type and
characteristics of the dynamic load, on the material characteristics and on the
geometric shape and size of the heterogeneities.

2. Statement of the problem

In a Cartesian coordinate system Ox1x2 consider a bounded domain of an inclu-
sion I with arbitrary shape with C1 interface boundary ∂I = S with an infinite
piezoelectric matrix M = R2\I, see Figure 2. The combined time–harmonic
electro–mechanical load with a prescribed frequency ω is applied in the form of
incident SH-wave in M and additionally electric load is applied on the boundary
S. The displacements are: the anti–plane mechanical displacement uN

3
(x, ω) and

the in-plane electrical displacements DN
j (x, ω), j = 1, 2, N = M, I, x = (x1, x2).

The following notations are used: (a) for x ∈ M we have uM
3
(x, ω),DM

j (x, ω); b)

for x ∈ I we have uI
3
(x, ω),DI

j (x, ω).
Heterogeneities can be inclusions or holes at macro and nanoscale.

2.1. Governing equations

The coupled field equations in absence of body forces consist of the following
constitutive equations:

(1)
σN
i3 = cN

44
sNi3 − eN

15
EN

i ,

DN
i = eN

15
sNi3 + εN

11
EN

i ,

the strain-displacement and electric field–potential relations:

(2) sNi3 = uN3,i, EN
i = −φN

,i ,
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Figure 1- The geometry: PEM inclusion in an infinite PEM matrix under SH
wave

and the balance equations in the frequency domain:

(3) σN
i3,i + ρNω2uN3 = 0, DN

i,i = 0.

Here N = M, I, σN
i3 , sNi3 , EN

i , φN are the stress tensor, strain tensor, electric
field vector and electric potential, respectively i = 1, 2; ρN is the mass density,
cN
44

is the shear stiffness, eN
15

is the piezoelectric constant and εN
11

is the dielectric
permittivity for the matrix N = M , or inclusion N = I.

Let us introduce the notation of the generalized displacement as uNJ =
(uN

3
, φN ), J = 3, 4, then the field equations are written in the following com-

pact form

(4) σN
iJ,i + ρNJKω2uNK = 0, J,K = 3, 4, N = M, I,
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where
(5)

ρNJK =

{

ρN , J = K = 3,

0, J = 4 or K = 4,
σN
iJ =

{

σN
ij , J = 3,

DN
i , J = 4,

σN
iJ = CN

iJKlu
N
K,l,

CN
i33l =

{

cN
44
, i = l,

0, i 6= l,
CN
i34l =

{

eN
15
, i = l

0, i 6= l,
CN
i44l =

{

−εN
11
, i = l

0, i 6= l.

2.2. Electro–mechanical load

The electro–mechanical load uinJ is composed by mechanical load umech
J in M and

pure electrical load uelJ on S, so uinJ = umech
J + uelJ on S.

The mechanical load is given by time-harmonic SH wave with an incident
angle θ with respect to the x1 axis. The generalized displacement umech

J due to
this mechanical load satisfies the wave equation (4) for N = M , i.e. outside
the heterogeneity. The generalized traction is tmech

J = CM
iJKlu

mech
K,l nM

i , nM =

(nM
1
, nM

2
) is the outward for the matrix M normal vector on S.

Let us denote by η = (η1, η2) the wave propagation vector, where η1 = cos θ,
η2 = sin θ. Then the following expressions for the mechanically induced displace-
ment components in the incident wave is obtained, see Shindo et al. [5]

(6) umech
3 = u03e

−ikM 〈x,η〉, umech
4 = u03

eM
15

εM
11

e−ikM 〈x,η〉.

where u03 is the unit amplitude of the incident wave, kM =

√

ρM

cM
ω and cM =

cM
44
+
(eM

15
)2

εM
11

and 〈.., ..〉 means the scalar product in R2. The corresponding incident

traction on the interface S is

(7) tmech
3 = −ikMcMu03〈η, n〉e−ik〈x,η〉, tmech

4 = 0.

An applied time-harmonic pure electric in-plane load with an magnitude E0 along
the interface S induces electrically reduced generalized displacement components

(8) uel3 = 0, uel4 = −E0〈x, η〉.

The corresponding applied traction telJ along the interface S is

(9) tel3 = −eM15E0〈nM , η〉, tel4 = εM11E0〈nM , η〉.
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The incident generalized displacement and traction fields on the interface bound-
ary S can be presented as a superposition of the incident filed due to the propa-
gating SH–wave and applied electrical load along this boundary.

(10) uinJ = umech
J + uelJ , tinJ = tmech

J + telJ .

The total generalized displacement and traction fields inside the matrix M and
along the interface boundary S taking into consideration the scattered by the
heterogeneities waves are

(11) uMJ = uinJ + uM,sc
J , tMJ = tinJ + tM,sc

J ,

while inside the heterogeneity I and along the interface S the corresponding total
wave field is

(12) uIJ = uI,scJ , tIJ = tI,scJ ,

2.3. Boundary conditions

The BVPs are defined for the vector–function, displacement uJ(x, ω) denoted by

uJ(x, ω) =

{

uMJ (x, ω), x ∈ M
uIJ(x, ω), x ∈ I

where uJ(x, ω) satisfies (4) for uMJ (x, ω)

inside the matrix M and for uIJ(x, ω) inside the inclusion I. On the interface
boundary S the displacement is continuous, i.e.

(13) uMJ (x, ω) = uIJ(x, ω), for x ∈ S.

The generalized traction on S is defined in two ways: first, using the stress
σM
iJ in M and normal vector nM on S, then tinJ + tscJ = tMJ = σM

iJ n
M
i , and second

using the stress σI
iJ in I and normal vector nI on S, then tIJ = σI

iJn
I
i .

For the considered anti–plane piezoelectric problem there are in general two
types of boundary conditions on S for generalized stresses or traction, depending
on the size of the heterogeneity.

2.3.1. Heterogeneity of nano–scale

In this case the interface equilibrium conditions along the undeformed interface
boundary should take into consideration the surface effect appearing due to the
nano-size of the inclusion, see Fang et al. [2]

(14) tMJ (x, ω) + tIJ(x, ω) = FS(x, ω) 6= 0, for x ∈ S.
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where FS(x, ω) is determined following the theory of Gurtin and Murdoch [4] and
it will be specified below.

Since S is C1 curve, then in every point x ∈ S there are defined two unit
vectors: outward normal nN (x) (i.e., directed out of the domain N , where N =
MorI and the corresponding tangent vector lN (x) directed such that the domain
remains to the right hand side. For the stress on S at every point is defined
normal and tangential stress as:

(15) tNJ = σN
nJ = 〈σN

J , nN 〉, σN
lJ = 〈σN

J , lN 〉

here stress σN
J = (σN

1J , σ
N
1J ), J = 3, 4 means the limit of the stress in domain N

over S.
Tangential derivative of the tangential stress is defined as

(16) 〈∇σN
lJ , l〉 =

∂σN
lJ

∂l
.

Denote with super–index S the displacement and the stress on S and let the
constitutive equation for the surface stress and surface displacement, see Gurtin
and Murdoch [4], Fang et al. [2] is given by

(17) σS
pK = CS

pKJju
S
J,j = CS

pKJju
M
J,j,

where for the last equality we use (13). In the mechanical model of Gurtin and
Murdoch [4], the interface between the nano–inhomogeneity and the surrounding
matrix is regarded as a thin membrane that possesses its own mechanical prop-
erties and own surface tension. The boundary conditions with accounting for the
surface effect is given as:

(18) σI
nJ − σM

nJ =
∂σS

lJ

∂l
.

Note that at zero membrane interface parameters, the boundary condition (18)
transforms into the classical boundary equilibrium condition for traction continu-
ity. Also, in the case of nano–hole the first term in (18) is equal to zero.

2.3.2. Heterogeneity of macro-scale

In this case the classical equilibrium boundary condition along the interface
boundary is satisfied, see Shindo et al. [5]

- for inclusion

(19) tMJ (x, ω) + tIJ(x, ω) = 0, for x ∈ S.
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- for hole

(20) tMJ (x, ω) = 0, for x ∈ S.

2.4. Boundary value problems formulation

The following three BVP are defined due to different types of equilibrium bound-
ary conditions for the stress:

A) Equations (4), (13) and (18) in the case of nano–inclusion/nano–hole;

B) Equations (4), (13) and (19) in the case of inclusion at macro scale;

C) Equations (4), (13) and (20) in the case of hole at macro scale.

Our aim is to solve both BVP A) and B) using the BIEM, see Dineva et al.
[1]. The first step is to determine the displacement and the traction on the inter-
face boundary S. The second step is using the boundary integral representation
formulae to evaluate the displacement field inside the matrix M and inside the
inclusion I as well as to compute the stress concentration factor (SCF) on S.

For the first step we have two vector–functions as unknowns: uscJ (x, ω) and
uIJ(x, ω) for x ∈ S since uMJ (x, ω) = uinJ (x, ω)+uscJ (x, ω) for x ∈ M and uinJ (x, ω)
is known for both BVP A) and B).

3. Fundamental solutions and derivatives

Fundamental solution of (4) is a matrix-value solution of the following partial
differential equation

(21) Σ∗,N
iJQ,i(x, ξ, ω) + ρNJKω2U∗,N

KQ (x, ξ, ω) = −δJQδ(x, ξ),

where J,K = 3, 4, N = M, I, δJQ is Kroneker symbol, δ(x, ξ) is Dirak’s delta

function, Σ∗,N
iJQ = CN

iJKlU
∗,N
KQ,l. The corresponding traction of the fundamental

solution over the line with normal vector n = (n1, n2) is defined as T ∗,N
JQ (x, ξ) =

Σ∗,N
iJQni.

Proceeding as in Dineva et al. [1] we can find the fundamental solution using
the Radon transform or the Fourier transform. In the present study we will apply
the later method.

In a matrix and coordinate notations (21) has the form
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(22)

cN
44
∆U∗,N

33
(x, ξ) + eN

15
∆U∗,N

43
(x, ξ) + ρNω2U∗,N

33
(x, ξ) = −δ(x, ξ),

cN
44
∆U∗,N

34
(x, ξ) + eN

15
∆U∗,N

44
(x, ξ) + ρNω2U∗,N

34
(x, ξ) = 0,

eN
15
∆U∗,N

33
(x, ξ)− εN

11
∆U∗,N

43
(x, ξ) = 0,

eN
15
∆U∗,N

34
(x, ξ)− εN

11
∆U∗,N

44
(x, ξ) = −δ(x, ξ).

where ∆ =
∂2

∂x2
1

+
∂2

∂x2
2

is Laplace operator, and we omit the super-index N for

simplicity.

Multiplying the third equation in (22) by
eN
15

εN
11

and adding to the first equation

we obtain Helmholtz equation for U∗,N
33

(x, ξ)

(23) ∆U∗,N
33

(x, ξ) + kN2U∗,N
33

(x, ξ) = − 1

cN
δ(x, ξ),

where kN2 =
ρN

cN
ω2, cN = cN

44
+

(eN
15
)2

εN
11

. Solution of (23), see Vladimirov [6] is

U∗,N
33

(x, ξ) =
i

2πa
K0(−ikNr),

where r =
√

(x1 − ξ1)2 + (x2 − ξ2)2 and K0(z) is Kelvin function of 0 order, see
Gradshteyn and Ryzhik [3]. Using the equations (23) we obtain for the other
elements of the matrix of fundamental solution

U∗,N
43

(x, ξ) = U∗,N
34

(x, ξ) =
eN
15

εN
11

U∗,N
33

(x, ξ);

U∗,N
44

(x, ξ) =

(

eN
15

εN
11

)2

U∗,N
33

(x, ξ) +
1

2πεN
11

ln r.

The kernels of the boundary integral equations discussed in Section 4. and de-
scribing the BVPs A), B) and C) are linear combination of U∗,N

JK (x, ξ), T ∗,N
JK (x, ξ)

on the line with normal vector n and Σ∗,N
iJK(x, ξ) and their derivatives up to 2-nd
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order. Using the recurrent relations for Kelvin functions, see Gradshteyn and
Ryzhik [3] we obtain the following formulae

(24)

U∗,N
33,j (x, ξ) =

ikN

2πcN
K1(−ikNr)r,j;

=
−kN2

2πcN
[

K2(−ikNr)(r,jr,l − 0.5δjl) + 0.5K0(−ikNr)δjl
]

;

(25)

Σ∗,N
j33 (x, ξ) = cNU∗,N

33,j (x, ξ), Σ∗,N
j34 (x, ξ) =

eN
15

εN
11

[

cU∗,N
33,j (x, ξ) +

1

2π
(ln r),j

]

;

Σ∗,N
j43 (x, ξ) = 0, Σ∗,N

j44 (x, ξ) = − 1

2π
(ln r),j.

(26)

T ∗,N
33

(x, ξ) = cNU∗,N
33,j (x, ξ)nj , T ∗,N

34
(x, ξ) =

eN
15

εN
11

[

cNU∗,N
33,j (x, ξ) +

1

2π
(ln r),j

]

nj;

T ∗,N
43

(x, ξ) = 0, T ∗,N
44

(x, ξ) = − 1

2π
(ln r),jnj.

4. Boundary integral equations

Using the Gauss theorem and proceeding as in Dineva et al. [1] for the BVPs A),
B) and C) a system of integro–differential equations (IDE) for the unknowns on
S are obtained. The direct BIEM is developed, employing fundamental solutions
of the Navier-Cauchy equations of dynamic equilibrium for the bulk solid.

4.1. BVP A) - for nano–heterogeneity

We will form 3 IDE for the unknowns on S: uM,sc
J , tM,sc

J and tIJ . Note here that
in the case of nano-hole the last one is zero.

In the matrix M the displacement BIE is

(27)

0.5uM,sc
J (x) = −

∫

S

T ∗,M
KJ (x, ξ)uM,sc

K (ξ)dξ

+

∫

S

U∗,M
KJ (x, ξ)tM,sc

K (ξ)dξ, x ∈ S.
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In the inclusion I the displacement IDE is

(28) 0.5uIJ (x) = −
∫

S

T ∗,I
KJ(x, ξ)u

I
K(ξ)dξ +

∫

S

U∗,I
KJ(x, ξ)t

I
K(ξ)dξ x ∈ S.

From the boundary condition (13) now (28) becomes

(29)

0.5(uM,sc
J (x) + uinJ (x)) = −

∫

S

T ∗,I
KJ(x, ξ)(u

M,sc
K (ξ) + uinK (ξ))dξ

+

∫

S

U∗,I
KJ(x, ξ)t

I
K(ξ)dξ, x ∈ S.

Applying the boundary condition (18) we obtain

(30)

tIJ = −tMJ + 〈(CS
kJQpu

M
Q,plk), l〉

= −tinJ − tscJ + 〈(CS
kJQp(u

in
Q,p + uM,sc

Q,p )lk), l〉.

So, the system of IDE for the unknowns uM,sc and tM,sc on S becomes: (27) and
(29) with the replacement (30).

4.2. BVP B) - for heterogeneity at macro–scale

In this case the unknowns are uM,sc
J , tM,sc

J we use only equations (27), (29),
replacing tIJ = −tin − tM,sc.

4.3. BVP C) - for hole at macro–scale

In this case the unknown is uM,sc
J , and we use equation (27) replacing tM,sc

J = −tin.

5. Numerical realization

5.1. Numerical scheme

The numerical solution procedure follows Dineva et al. [1]. Note that in the nu-
merical scheme we have to use quadratic or higher order BE and shifted point
method to have only CPV singular integrals in the integral equations. The fol-
lowing steps of the numerical procedure are realized:

(a) discretization by the usage of parabolic approximation of the unknowns;

(b) collection method along all boundary nodes;
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(c) analytical solution of integrals with singular kernels based on the asymp-
totic behavior of the fundamentals solution and its derivatives for small
arguments;

(d) solution of the algebraic system according to the unknowns along the inter-
face S:

(e) computation of the displacement and traction at any point in the PEM
plane by the usage of the integral representation formulae;

(f) SCF computation;

(g) creation of validated software based on Mathematica and Matlab.

Following [5] and [1], the dynamic SCF and electric field concentration factor
along the perimeter of an inclusion is defined as the ratio of the stress and electric
field amplitude along the circumference to the maximum amplitude of the incident
stress at the same point in the homogeneous material without any defects.

The normalized dynamic SCF |σγθ/τ0| and the normalized dynamic EFCF
|e15Eγθ/τ0| are calculated by using the following formulae:

(31)

σθγ = −σ1 sin(θ − γ) + σ2 cos(θ − γ), σi = σi3 + σin
i3 ,

Eθγ = −E1 sin(θ − γ) + E2 cos(θ − γ),

Ei =
e15

e2
15

+ c44ε11
(−e15σi + c44Di), Di = σi4 + σin

i4 .

Here τ0 is the amplitude of the maximal shear stress of the incident plane SH-
wave, i.e. τ0 = iω

√
cρ, where γ is the angle of the observation point, θ is the

incident wave angle and c = c44 +
e2
15

ε11
.

5.2. Validation

In this section is discussed the validation of the applied numerical solution of
the BVP C. Considered is a circular hole embedded in a piezoelectric plane,
which is loaded by a mechanical SH-wave, propagating in positive Ox1 direction
in conjunction with a time-harmonic electrical in-plane load E1 = E0e

−iωt and
E2 = 0, see [5].

Material parameters are for PZT4: elastic stiffness: c44 = cM
44

= 2.56 ×
1010N/m2; piezoelectric constant: e15 = eM

15
= 12.7C/m2; dielectric constant:
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ε11 = εM
11

= 64.6 × 10−10C/Vm; density: ρ = ρM = 7.5 × 103kg/m3. A dimen-

sionless frequency is introduced, defined as Ω = a

√

ρ

c44
ω, a is the radius of the

hole centered at the origin, greater than 10−6m.

Ω

0
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4
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Figure 2 - Dynamic SCF a) and EFCF b) at observer point A(0, c) versus nor-
malized frequency Ω of the incident plane SH-wave with incident angle θ = 0 for
different electromechanical loads E∗.

A parameter E∗ = E0

e15
τ0

is used, where E0 is the amplitude of the applied

electrical load, in order to normalize appropriately the amplitude of the applied
electrical field by the amplitude of the maximal shear stress of the incident SH-
wave. The value of E∗ is chosen to be 0.0,±0.5 and 1.0. Figure 2 a), b) shows a
comparison of the results for the normalized generalized concentration field - SCF
and EFCF versus normalized frequency Ω at the observation point A(0, c) for all
four values of E∗. As can be seen, the BIEM results agree very well with those of
[5]. The difference of both results is below 7%, indicating a high accuracy of the
obtained solution.

6. Conclusion

Considered is homogeneous piezoelectric material with heterogeneities of differ-
ent type (hole, inclusion, nano–hole, nano–inclusion) subjected to time-harmonic
electro-mechanical load. With respect to the boundary conditions along the in-
terface between the heterogeneity and the matrix different boundary value prob-
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lems are formulated by the usage of BIE. Boundary Integral Equation Method
is applied to evaluate both (*) the wave far-field due to the wave scattering and
diffraction and (**) the stress concentration field near heterogeneities. The ob-
tained results are applicable in the field of non-destructive testing and fracture
mechanics of multi–functional materials and structural elements based on them.

The BIEM demonstrates the following advantages in comparison with the
other computational techniques: (a) the semi-analytical character of the method
as far as it is based on the fundamental solution of the considered problem; (b)
high level of accuracy is achieved since numerical quadrature techniques are di-
rectly applied to the boundary integral equations, which are an exact solution
of the considered problem; (c) the method is mesh reducing computational tool
as far as the discretization is only along the interface in the considered problem;
(d) flexibility to model solids containing heterogeneities of different geometrical
shapes; (e) reduce the size of the problem dimensionality and the size of the result-
ing algebraic system in contrast to other domain discretization methods; (f) high
accuracy and efficiency for evaluation of stress concentration fields because not
mesh discretization is used close to the heterogeneity, but it is used the integral
representations for the stress and displacement.
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