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SUBCRITICAL MARKOV BRANCHING PROCESSES

WITH NON-HOMOGENEOUS POISSON IMMIGRATION*

Ollivier Hyrien, Kosto V. Mitov, Nikolay M. Yanev

The paper proposes an extension of Sevastyanov (1957) model based on a

Markov branching process allowing an immigration component in the mo-

ments of a homogeneous Poisson process. Now Markov branching processes

are also considered but assuming a time-nonhomogeneous Poisson immigra-

tion. These processes could be interpreted as models in cell proliferation

kinetics with stem cell immigration. Limit theorems are proved in the sub-

critical case and new effects are obtained due to the non-homogeneity.

1. Introduction

The first model of branching process with immigration was proposed by Sev-

astyanov (1957). He investigated a Markov branching process admitted an im-

migration component in the moments of a homogeneous Poisson process.

One of the goals of this paper concerns modeling of renewing cell population.

The considered models are based on Markov branching processes allowing im-

migration in the moments of a time-inhomogeneous Poisson component. For a

comprehensive review of branching processes and their biological applications, the

reader is referred to Harris (1963), Sevastyanov (1971), Athreya and Ney (1972),

Jagers (1975), Yakovlev and Yanev (1989), Kimmel and Axelrod (2002), Hac-

cou et al. (2005) and Ahsanullah and Yanev (2008). Some problems of biological
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models using branching processes with nonhomogeneous Poisson immigration are

considered in Yakovlev and Yanev (2006, 2007), and Hyrien and Yanev (2010,

2012).

Now we consider the asymptotic behaviour of subcritical Markov branching

processes with non-homogeneous Poisson immigration. Note that a supercritical

case was investigated in Hyrien et al. (2013). The critical case was studied in

Mitov and Yanev (2013) for more general situation of Sevastyanov branching

processes allowing non-homogeneous Poisson immigration.

The paper is organized as follows. In Section 2 the biological background

and motivation are proposed which gives the general ideas for constructing the

corresponding models in Section 3. The basic equations for the p.g.f. and the

moments are considered also in Section 3. The asymptotic behaviour for the

means, variances and covariances of the subcritical processes with immigration is

investigated in Section 4 and limit theorems are also proved. Two general cases

for the immigration rate are considered, r(t) = reρt, ρ ∈ R, and r(t) = rtθ, θ ∈ R.

Note that ρ = 0 and θ = 0 correspond to the case of a homogeneous Poisson

immigration where Sevastyanov (1957) obtained a stationary limiting distribution

in the subcritical case. Now new effects are obtained due to the non-homogeneity.

Thus for ρ < 0 and θ < 0 conditional limiting distributions are obtained (Theorem

1 and Theorem 4) under the condition of non-extinction. In Theorem 4 the

obtained distribution is just the same as in the classical Bienaymé-Galton-Watson

branching process but as a contrast the asymptotic behaviour of the probability

of non-extinction is quite different (∼ Ctθ). In the cases ρ > 0 and θ > 0 we

proved LLN (Theorem 2 and Theorem 5) and also CLT (Theorem 3 and Theorem

6). Finally in the case r(t) → r > 0 the classical Sevastyanov result is confirmed

(Theorem 7).

2. Biological background and motivation

Continuous-time branching processes have been used to quantify the development

of cell populations in cell kinetics studies. For example, when studying tissue

development during embryogenesis, it is reasonable to set the initial number

N0 = 0 if the experiment begins before the first cell of the tissue has been

generated. As time increases, cells will begin populating the tissue of interest once

precursor cells have started differentiating. We refer to these cells as immigrants

and describe their influx using a non-homogeneous Poisson process with arrival

rate r(t). Upon arrival, these immigrants are assumed to be of age zero. Upon

completion of its life-span, every cell of the population either divides into two
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new cells, or it exits the population (due to cell differentiation or cell death).

These events occur with probability p and q = 1 − p, respectively. The lifespan

of any cell is described by a non-negative random variable τ with cumulative

distribution function (c.d.f.) G(x) = P{η ≤ x} that satisfies G(0) = 0. Cells are

assumed to evolve independently of each other. The work presented in this paper

was motivated by this example, and we investigate properties of a more general

class of Markov branching processes with non-homogeneous Poisson immigration.

3. Models and Equations

We consider cell populations (in vivo) whose proliferation kinetics can be de-

scribed as follows. The process begins with immigration of stem cells which

appear at the moments of immigration as progenitors at zero age. Then every

cell has a life-time c.d.f. G(t) = P (η ≤ t) = 1 − e−t/µ, t ≥ 0, and at the end of

its mitotic cycle η produces an offspring ξ with a p.g.f. h(s) = E{sξ}, |s| ≤ 1.
We assume that all new born cells are at zero age and continue their evolutions

independently and in the same way. Therefore the development of this popu-

lation can be described in the framework of a Markov branching process with

immigration.

The offspring moments

m = E{ξ} =
dh(s)

ds

∣

∣

∣

∣

s=1

and m2 = E{ξ(ξ − 1)} =
d2h(s)

ds2

∣

∣

∣

∣

s=1

play further an important role as well as the life-span mean µ =

∫ ∞

0
xdG(x),

assuming that all these characteristics are finite.

The models with an offspring p.g.f. h(s) = 1 − p + ps2, m = 2p = m2, are
very interesting from biological point of view. It means that at the end of the

mitotic cycle every cell can die with probability 1− p or it can divide in two cells

with probability p. This example may be treated more carefully but now we will

investigate the general case.

Let us first consider the process without immigration Z(t) (which denotes

the number of cells at the moment t) and introduce the corresponding p.g.f.

F (t; s) = E{sZ(t)|Z(0) = 1}. Under the assumptions, it is not difficult to realize

that {Z(t), t ≥ 0} can be considered as Markov branching process well determined

by the following nonlinear differential equation:

∂

∂t
F (t; s) = f(F (t; s)), F (0; s) = s,(1)
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where f(s) = [h(s)− s]/µ (see e.g. Harris, 1963).

Note that the Malthusian parameter α is determined as usually from the

equation m

∞
∫

0

e−αxdG(x) = 1 and in the Markov case α = f ′(1) = [m − 1]/µ.

Introduce also β = f ′′(1) = m2/µ.

Further on we will consider only the subcritical case α < 0.

For the moments one has (see e.g. Harris, 1963):

A(t) =
∂

∂s
F (t; s)|s=1 = E{Z(t)|Z(0) = 1} = eαt,(2)

B(t) =
∂2

∂s2
F (t; s)|s=1 = E{Z(t)(Z(t) − 1)|Z(0) = 1} = βeαt(eαt − 1)/α,

V (t) = V ar{Z(t)|Z(0) = 1} = (β/α − 1)eαt(eαt − 1).(3)

Let us now describe the process with immigration. First we will assume that

0 = S0 < S1 < S2 < S3 < · · · are the time-points of the immigration which form

a non-homogeneous Poisson process Π(t) with a rate r(t), i.e. the cumulative

rate is R(t) =

∫ t

0
r(u)du, r(t) ≥ 0, and Π(t) ∈ Po(R(t)). Let Ui = Si − Si−1 be

the inter-arrival times. Then Sk =

k
∑

i=1

Ui, k = 1, 2, ....

We will assume also that at every point Sk there is an independent immi-

gration component Ik of cells at zero age, where { Ik} are i.i.d. r.v’s with a

p.g.f. g(s) = E{sIk} =

∞
∑

i=0

gis
i, |s| ≤ 1. Let γ = E{Ik} =

dg(s)

ds

∣

∣

∣

∣

s=1

be the im-

migration mean and introduce the second factorial moment γ2 =
d2g(s)

ds2

∣

∣

∣

∣

s=1

=

E{Ik(Ik − 1)}.

Let now Y (t) be the number of cells at the moment t in the process with

immigration, where the cell evolution is determined by a (G,h) - Markov branch-

ing processes defined above. Then the considered process admits the following

representation

Y (t) =

Π(t)
∑

k=1

ZI
k(t− Sk) if Π(t) > 0 and Y (t) = 0 if Π(t) = 0,(4)
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where ZI
k(t) are i.i.d. branching processes with a given evolution of the cells as

Z(t) but started with a random number of ancestors Ik.We assume that Y (0) = 0,
but in fact, the process Y (t) begins from the first non-zero immigrants.

Introduce the p.g.f. Ψ(t; s) = E{sY (t)|Y (0) = 0}. Using (4) Yakovlev and

Yanev (2007, Theorem 1) obtained that

Ψ(t; s) = exp

{

−

∫ t

0
r(t− u)[1 − g(F (u; s))]du

}

,Ψ(0, s) = 1,(5)

where in our case the p.g.f. F (u; s) satisfies the equation (1). One has to point

out that {Y (t), t ≥ 0, } is a time non-homogeneous Markov process.

Remark that if {Ui} are i.i.d. r.v. with c.d.f. G0(x) = P (Ui ≤ x) = 1 −
e−rx, x ≥ 0, then Π(t) reduces to an ordinary Poisson process with a cumulative

rate R(t) = rt and we obtain the first model with immigration proposed and

investigated by Sevastyanov (1957).

Introduce the moments of the process with immigration

M(t) = E{Y (t)|Y (0) = 0} =
∂

∂s
Ψ(t; s)

∣

∣

∣

∣

s=1

,

M2(t) = E{Y (t)(Y (t)− 1)|Y (0) = 0} =
∂2

∂s2
Ψ(t; s)

∣

∣

∣

∣

s=1

,

W (t) = V ar{Y (t)|Y (0) = 0} = M2(t) +M(t)[1−M(t)].

Then from (5) it is not difficult to obtain that

M(t) = γ

∫ t

0
r(t− u)A(u)du,(6)

M2(t) = γ

∫ t

0
r(t− u)B(u)du

+

[

γ

∫ t

0
r(t− u)A(u)du

]2

+ γ2

∫ t

0
r(t− u)A2(u)du,

W (t) =

∫ t

0
r(t− u)

[

γV (u) + (γ + γ2)A
2(u)

]

du.(7)

To derive also equations for the covariances we have to consider first the joint

p.g.f. F (s1, s2; t, τ) = E{s
Z(t)
1 s

Z(t+τ)
2 |Z(0) = 1}, τ ≥ 0.
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Conditioning on the evolution of the initial cell and applying the law of the

total probability one can obtain the equation:

F (s1, s2; t, τ) =

∫ t

0
h(F (s1, s2; t− u, τ))dG(u)(8)

+s1

∫ t+τ

t

h(F (1, s2; t, τ − v))dG(v) + s1s2(1−G(t+ τ)),

with the initial condition F (s1, s2; 0, 0) = s1s2 (see also Harris (1963) ).

Let us now introduce the joint p.g.f. for the process with immigration Y (t)
defined by (4)

Ψ(s1, s2; t, τ) = E{s
Y (t)
1 s

Y (t+τ)
2 |Y (0) = 0)}, τ ≥ 0.

Similarly to (5) one can obtain that

Ψ(s1, s2; t, τ) = exp

{

−

∫ t

0
r(u)[1− g(F (s1, s2; t− u, τ))]du(9)

−

∫ t+τ

t

r(v)[1 − g(F (1, s2; t, τ − v))]dv

}

.

For the proof one has to consider definition (4) and to follow the method

developed in Theorem 1 (Yakovlev and Yanev(2007)) for (5).

Introduce the moments

A(t, τ) = E{Z(t)Z(t+ τ) | Z(0) = 1} =
∂2

∂s1∂s2
F (s1, s2; t, τ)

∣

∣

∣

∣

s1=s2=1

,

M(t, τ) = E{Y (t)Y (t+ τ) | Y (0) = 0} =
∂2

∂s1∂s2
Ψ(s1, s2; t, τ)

∣

∣

∣

∣

s1=s2=1

.
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Then from (8) and (9) the following equations hold

A(t, τ) = m

∫ t

0
A(t− u, τ)dG(u) +m2

∫ t

0
A(t− u)A(t+ τ − u)dG(u)(10)

+m

∫ t+τ

t

A(t+ τ − u)dG(u) + 1−G(t+ τ),

M(t, τ) =

∫ t

0
r(u)[γA(t− u, τ) + γ2A

2(t− u)]du

+γ2
[∫ t

0
r(u)A(t− u)du

]2

,

C(t, τ) = Cov{Y (t), Y (t+ τ)} =
∂2

∂s1∂s2
logΨ(s1, s2; t, τ)

∣

∣

∣

∣

s1=s2=1

(11)

=

∫ t

0
r(u)[γA(t − u, τ) + γ2A(t− u)A(t+ τ − u)]du

with initial conditions A(0, τ) = A(τ) and M(0, τ) = 0 = C(0, τ).

4. Limit theorems

Recall that we consider the subcritical case α < 0. From (6) one has

M(t) = γeαtr̂t(α),

where r̂t(α) =

∫ t

0
e−αur(u)du.

If we assume first that

lim
t→∞

r̂t(α) = r̂(α) < ∞.

then

M(t) ∼ γr̂(α)eαt → 0, t → ∞.(12)

Remark 1. The relation (12) is fulfilled if, for example, the intensity has the

form r(t) = O(eρt), ρ < α.
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Let us now consider more carefully the case

r(t) = reρt, r > 0.

Then from (6) and (2) one has

M(t) = γrteαt → 0, for ρ = α,

and

M(t) = γr(eρt − eαt)/(ρ − α), for ρ 6= α.

Therefore

M(t) ∼ γreαt/(α − ρ) → 0, if ρ < α,

and

M(t) ∼ γreρt/(ρ− α), if ρ > α.(13)

Note that in the case ρ > α one has that M(t) → 0 for ρ < 0, M(t) → ∞ for

ρ > 0 and M(t) → γr/(−α) for ρ = 0 (homogeneous Poisson immigration).

Let us now assume that for some r > 0

r(t) = rtθ, 0 < θ < ∞, or r(t) = r(t+ 1)θ, −∞ < θ < 0.(14)

Then it is not difficult to obtain from (6) and (14) that

M(t) ∼ γrtθ/(−α), t → ∞.(15)

Therefore M(t) → 0 for θ < 0 and M(t) → ∞ for θ > 0. Note that θ = 0 implies

the homogeneous Poisson case r(t) ≡ r and M(t) → γr/(−α), t → ∞.

Remark 2. If lim
t→∞

M(t) = 0 then Y (t) → 0 in probability when t → ∞, and

one can conjecture conditional limit theorems, i.e. to check when lim
t→∞

P{Y (t) =

k|Y (0) > 0} = P ∗
k ,

∞
∑

k=1

P ∗
k = 1 (like in the subcritical case without immigration).

On the other hand, when M(t) → ∞ one can consider the asymptotic behaviour

of Y (t)/M(t) (like in the supercritical case).
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Theorem 1. Let r(t) = reρt, r > 0, ρ < 0. Assume that γ < ∞ and

0 < − logK =

∫ 1

0
{[αx+ f(1− x)]/xf(1− x)}dx < ∞.(16)

Then

lim
t→∞

P{Y (t) = k|Y (0) > 0} = P ∗
k ,

∞
∑

k=1

P ∗
k = 1.(17)

P r o o f. Introduce the conditional p.g.f.

Ψ∗(t; s) = E{sY (t)|Y (t) > 0} = 1−
1−Ψ(t; s)

1−Ψ(t; 0)
.(18)

Note first that Ψ(t; 0) = exp{−reρtJ(t)}, where

J(t) =

∫ t

0
e−ρu[1− g(F (u; 0))]du}.

As u → ∞ one has

1− g(F (u; 0)) ∼ γ[1− F (u; 0)] ∼ γKeαu,

because of the condition (16) (see also Sevastyanov, 1971). Now it is not difficult

to check that for t → ∞

J(t) → C1 if ρ > α;

J(t) ∼ C2t if ρ = α;

J(t) ∼ C3e
(α−ρ)t if ρ < α,

where Ci, i = 1, 2, 3, are some positive constants.

Therefore

1−Ψ(t; 0) ∼















rC1e
ρt if ρ > α

rC2te
αt if ρ = α;

rC3e
αt if ρ < α.

(19)

It is known also that (see Sevastyanov, 1971)

lim
u→∞

{[1− F (u; s)]/[1 − F (u; 0)]} = exp

{

α

∫ s

0
dx/f(x)

}

.(20)
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Hence as u → ∞

1− g(F (u; s)) ∼ γ[1− F (u; s)] ∼ γKeαu exp

{

α

∫ s

0
dx/f(x)

}

.

Then for J(t; s) =

∫ t

0
e−ρu[1− g(F (u; s))]du} one obtains as t → ∞

J(t; s) → C1(s) if ρ > α;

J(t; s) ∼ C2(s)t if ρ = α;

J(t; s) ∼ C3(s)e
(α−ρ)t if ρ < α,

where Ci(s), i = 1, 2, 3, are some positive functions.

Since Ψ(t; s) = exp{−reρtJ(t; s)} then as t → ∞

1−Ψ(t; s) ∼















rC1(s)e
ρt if ρ > α,

rC2(s)te
αt if ρ = α,

rC3(s)e
αt if ρ < α.

Now applying also (18) and (19) one obtains

lim
t→∞

Ψ∗(t; s) = Ψ∗(s),(21)

where

Ψ∗(s) =















1− C1(s)/C1 if ρ > α,

1− C2(s)/C2 if ρ = α,

1− C3(s)/C3 if ρ < α.

Then (17) follows from (21) by the continuity theorem for p.g.f.’s. �

Theorem 2. Let r(t) = reρt, r > 0, ρ > 0, and β < ∞, γ2 < ∞. Then as

t → ∞

ζ(t) = Y (t)/M(t) → 1, a.s. and in L2.
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P r o o f. For the convergence in L2 it will be sufficient to show that as t → ∞,

∆(t, τ) = E{ζ(t+ τ)− ζ(t)}2 → 0,(22)

uniformly for τ ≥ 0. Note that E{ζ(t)} ≡ 1,

∆(t, τ) = V arζ(t+ τ) + V arζ(t)− 2Cov{ζ(t), ζ(t + τ)},(23)

V arζ(t) = W (t)/ M2(t) and Cov{ζ(t), ζ(t+ τ)} = C(t, τ)/M(t)M(t + τ).

One can obtain from (2), (3), and (7) that under the conditions of the theorem

as t → ∞

W (t) ∼ K1e
ρt, K1 = r

γ(β − α) + (γ + γ2)(ρ− α)

(ρ− α)(ρ− 2α)
.(24)

From (10) and (2) it is not difficult to show that

A(t, τ) = eα(t+τ)[
β

α
(eαt − 1) + 1].(25)

Therefore, from (11), (25), and (2) one gets as t → ∞

C(t, τ) ∼ K2e
ρt+ατ , K2 = r

γβ − γ2α

(−α)(ρ − 2α)
.(26)

Now (22) follows from (23) applying (13), (24), and (26). Similarly to (24) and

(26) one can calculate that

W (t+ τ)/ M2(t+ τ) ∼ K∗
1e

−ρt−ρτ → 0, τ → ∞,

C(t, τ)/M(t)M(t + τ) ∼ K∗
2e

−ρte−(ρ−α)τ → 0, τ → ∞,

where K∗
1 and K∗

2 are some positive constants.

Hence, from (23) one obtains that

∆(t) = lim
τ→∞

∆(t, τ) = E{ζ(t)− 1}2 = W (t)/M2(t) ∼ K1e
−ρt.

Therefore

∫ ∞

0
∆(t)dt < ∞ and by Theorem 21.1 of Harris (1963) it follows

that ζ(t) converges to 1, a.s. �
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Remark 3. Theorem 2 can be interpreted as a LLN. Hence one can conjec-

ture the CLT.

Theorem 3. Let r(t) = reρt, r > 0, ρ > 0, and β < ∞, γ2 < ∞. Then

X(t) = [Y (t)−M(t)]/
√

W (t) → N(0, σ2) in distribution as t → ∞,

where

σ2 =
γβ + γ2(ρ− 2α)

γ(β − α) + (γ + γ2)(ρ− α)
.(27)

P r o o f. From (5) and (26) one can obtain the characteristic function

ϕt(z) = E{eizX(t)} = e−izM(t)/
√

W (t)E{eizY (t)/
√

W (t)}

= e−izM(t)/
√

W (t)Ψ(t; eiz/
√

W (t)).

Hence applying (5) one has

logϕt(z) = −izM(t)/
√

W (t)−

∫ t

0
r(t− u)

[

1− g(F (u; eiz/
√

W (t)))
]

du.

Now one can use the following asymptotic relations as s → 1 (see e.g. Sev-

astyanov, 1971)

1− g(s) ∼ γ(1− s)− γ2(1− s)2/2,

1− F (u; s) ∼ A(u)(1 − s)−B(u)(1− s)2/2.

Applying also that 1− ecx ∼ −cx as x → 0 one can obtain as t → ∞

logϕt( z) ∼ −izM(t)/
√

W (t)(28)

−

∫ t

0
r(t− u)

{

γ
[

1− F (u; eiz/
√

W (t))
]

− γ2

[

1− F (u; eiz/
√

W (t))
]2

/2

}

du.

Not that as t → ∞

1− F (u; eiz/
√

W (t)) ∼ A(u)(1 − eiz/
√

W (t))−B(u)(1− eiz/
√

W (t))2/2

∼ −izA(u)/
√

W (t) + z2B(u)/
√

W (t)/2.
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Therefore as t → ∞ one has

H(t) =

∫ t

0
r(t− u)

{

γ
[

1− F (u; eiz/
√

W (t))
]

− γ2

[

1− F (u; eiz/
√

W (t))
]2

/2

}

du

∼ −izγ

∫ t

0
r(t− u)A(u)du/

√

W (t) + (z2/2)γ

∫ t

0
r(t− u)B(u)du/W (t)

+ (z2/2)γ2

∫ t

0
r(t− u)A2(u)du/W (t).

Then applying the relations (6) and (7) one obtains that

H(t) ∼ −izM(t)/
√

W (t) + (z2/2)[1 −M(t)/W (t)], t → ∞.

Come back to (28) one gets

logϕt(z) ∼ −(z2/2)[1 −M(t)/W (t)], t → ∞.(29)

Now from (13) and (24) it is not difficult to see that

M(t)/W (t) → D =
γ(ρ− 2α)

γ(β − α) + (γ + γ2)(ρ− α)
,

as t → ∞.
One can also calculate that σ2 = 1−D is just given by (27).

Therefore from (29) we finally obtain that

lim
t→∞

ϕt( z) = e−z2/2σ2

which is just a characteristic function of a corresponding normal distribution.

Then by the continuity theorem (see e.g. Feller, 1971) the assertion of the theorem

follows. �

Remark 4. From Theorem 3 using (13) and (24) one can obtain the following

relation which presents more convenient interpretation for the rate of convergence:

Y (t)/eρt ∼ N(γr/(ρ− α), C2e−ρt)

where

C2 = r
γβ + γ2(ρ− 2α)

(ρ− α)(ρ − 2α)
.
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Note that this relation is also useful for constructing of asymptotic confident

intervals.

Theorem 4. Assume γ < ∞ , (16), and (14) with θ < 0. Then (17) is

fulfilled where

Ψ∗(s) =

∞
∑

k=1

P ∗
k s

k = 1− exp

{

α

∫ s

0
dx/f(x)

}

,Ψ∗(1) = 1.(30)

P r o o f. We will consider conditional p.g.f. (18). From (5) under the

conditions of the theorem one has

Ψ(t; s) = exp{−r(t+ 1)θJ(t; s)},(31)

where

J(t; s) =

∫ t

0

(

1−
u

t+ 1

)θ

[1− g(F (u; s))]du(32)

= (t+ 1)

∫ 1−1/(t+1)

0
(1− x)θ[1− g(F (x(t+ 1); s))]dx.

Note that for s = 0 as t → ∞

1− g(F (x(t + 1); 0) ∼ γ[1− F (x(t+ 1); 0))] ∼ γKeαx(t+1).

Therefore from (32) one has

J(t; 0) ∼ γK(t+ 1)

∫ 1

0
(1− x)θeαx(t+1)dx, t → ∞.

On the other hand as t → ∞

(t+ 1)

∫ 1

0
(1− x)θeαx(t+1)dx =

1

α
(θ

∫ 1

0
(1− x)θ−1eαx(t+1)dx− 1) →

1

(−α)
.

Hence

lim
t→∞

J(t; 0) = γK/(−α)

and from (31) with s = 0 one obtains
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1−Ψ(t; 0) ∼ 1− exp{(rγK/α)tθ} ∼ −(rγK/α)tθ , t → ∞.(33)

Now using (20) one has as t → ∞

1− g(F (xt; s)) ∼ γ[1− F (xt; s)] ∼ γKeαxt exp

{

α

∫ s

0
dx/f(x)

}

.

Then from (32) one gets

J(t; s) ∼ γK(t+ 1)

∫ 1

0
(1− x)θeαx(t+1)dx exp

{

α

∫ s

0
dx/f(x)

}

, t → ∞.

Therefore

lim
t→∞

J(t; s) =
γK

(−α)
exp

{

α

∫ s

0
dx/f(x)

}

and from (31) one obtains as t → ∞

1−Ψ(t; s) ∼ 1− exp

{

(rγK/α)tθ exp

{

α

∫ s

0
dx/f(x)

}}

(34)

∼ −(rγK/α)tθ exp

{

α

∫ s

0
dx/f(x)

}

.

Hence from (18) applying (33) and (34) one proves that

lim
t→∞

Ψ∗(t; s) = Ψ∗(s),

where Ψ∗(s) is just given in (30). �

Remark 5. It is interesting to point out that the limiting distribution (30) is

just the same as in the classical Markov branching process without immigration.

The difference is only in the rate of convergence of P{Y (t) > 0} obtained in (33).

Theorem 5. Assume β < ∞, γ2 < ∞ and (14) with θ > 0. Then as t → ∞,

ζ(t) =
Y (t)

M(t)
→ 1 in L2 and in probability.(35)

The convergence is almost surely if θ > 1.
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P r o o f. From (7) using (2) ,(3), and (14) it is not difficult to obtain that as

t → ∞,

W (t) ∼ K∗
1 t

θ, where K∗
1 = r[γ(2−

β

α
) + γ2]/(−2α).(36)

Similarly from (11) using (2) and (25) one can prove that uniformly for τ ≥ 0

C(t, τ) ∼ K∗
1e

ατ tθ, t → ∞.(37)

Now from (15), (36), and (37) it is easy to check that as t → ∞

V arζ(t) = W (t)/ M2(t) ∼ K1t
−θ,K1 = (−α)

[

γ

(

2−
β

α

)

+ γ2

]

/2r,(38)

Cov{ζ(t), ζ(t+ τ)} = C(t, τ)/M(t)M(t + τ) ∼ K1e
ατ (t+ τ)−θ.(39)

Then (22) follows from (23) using (38) and (39) which proves (35) with the

convergence in L2.

Since E{ζ(t)} ≡ 1 then for each ε > 0

P{|ζ(t)− 1| ≥ ε} ≤ ε−2V arζ(t) → 0, t → ∞,

which proves the convergence in probability.

Similarly to (38) and (39) one can calculate that

W (t+ τ)/ M2(t+ τ) ∼ K1(t+ τ)−θ → 0, τ → ∞,

C(t, τ)/M(t)M(t + τ) ∼ K1e
ατ (t+ τ)−θ → 0, τ → ∞.

Hence, from (23) one obtains that

∆(t) = lim
τ→∞

∆(t, τ) = E{ζ(t)− 1}2 = W (t)/M2(t) ∼ K1t
−θ, t → ∞.

If θ > 1 then

∫ ∞

0
∆(t)dt < ∞ and by Theorem 21.1 of Harris (1963) it follows

that in this case ζ(t) converges to 1 a.s. �
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Theorem 6. Assume β < ∞, γ2 < ∞ and (14) with θ > 0. If additionally
β

−α
=

m2

1−m
>

2− (γ2 + 2γ)

γ
then

X(t) = [Y (t)−M(t)]/
√

W (t) → N(0, σ2) in distribution as t → ∞,(40)

where

σ2 =
γ(2 − β/α) + γ2 − 2

γ(2− β/α) + γ2
.(41)

P r o o f. One has to investigate the characteristic function of X(t) as it is shown
in the proof of Theorem 3. The only difference is that in (29) one has to use now

(15) and (36) to obtain that

lim
t→∞

M(t)

W (t)
=

r

(−α)K∗
1

=
2

γ(2− β
α
) + γ2

.

Then (40) with (41) follows where under the conditions of the theorem σ2 > 0.
�

Remark 6. Note that (35) can be interpreted as a LLN and (40) – as a CLT

which admits also the following presentation:

Y (t)t−θ ∼ N(γr/(−α),K∗
1 t

−θ),

where K∗
1 is given in (24).

Theorem 7. Let γ < ∞ and lim
t→∞

r(t) = r > 0. Then

lim
t→∞

P{Y (t) = k} = Qk,
∞
∑

k=0

Qk = 1

and

Q(s) =

∞
∑

k=0

Qks
k = exp

{

−r

∫ 1

s

1− g(x)

f(x)
dx

}

, Q′(1) = e−rγ/α.



52 O. Hyrien, K. Mitov, N. Yanev

P r o o f. Since |1− g(s)| ≤ γ|1− s)| and |1− F (u; s)| ≤ eαu|1− s| then

∣

∣

∣

∣

∫ t

0
r(t− u)[1− g(F (u; s))]du

∣

∣

∣

∣

≤ γ|1−s|

∫ t

0
r(t−u)eαudu → −

γr|1− s|

α
, t → ∞.

Therefore lim
t→∞

Ψ(t; s) = exp

{

r

∫ ∞

0
[1− g(F (u; s))]du

}

uniformly for |s| ≤ 1.

Now we obtain

d

ds

∫ ∞

0
[1− g(F (u; s))]du = −

∫ ∞

0

dg(F (u; s))

dF

∂F (u; s)

∂s
du

= −
1

f(s)

∫ ∞

0

dg(F (u; s))

dF

∂F (u; s)

∂u
du = −

1− g(s)

f(s)
,

where we used the well known forward Kolmogorov equation

∂

∂t
F (t; s) = f(s)

∂

∂s
F (t; s)

(see e.g. Harris, 1963) and the fact that F (∞; s) = 1 and F (0; s) = s. Hence

∫ ∞

0
[1− g(F (u; s))]du =

∫ 1

s

1− g(x)

f(x)
dx,

which completes the proof of the theorem. �
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