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STUDIA MATHEMATICA

CONTRIBUTIONS TO THE CLASS OF BRANCHING

PROCESSES IN VARYING ENVIRONMENTS*

Manuel Molina, Manuel Mota, Alfonso Ramos

In this work we provide a survey on the main probabilistic contributions de-

rived in the literature for the class of asexual branching processes in varying

environments.

1. Introduction

The asexual branching process in varying environments was motivated by I. J.

Good in the discussion at the Symposium on Stochastic Processes organized by

the Royal Statistical Society in 1949 (see [13] for details). It generalizes the

classical Galton-Watson process by allowing that the offspring probability distri-

bution, which governs the reproduction phase, can be different over time. In the

same way, but considering sexual reproduction, the two-sex branching process in

varying environments, introduced in [17], generalizes the bisexual Galton-Watson

process, studied by Daley [5]. In both cases, asexual and sexual reproduction,

the main motivation is to develop mathematical models to adequately describe
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the demographic dynamics of biological populations in which, due to various en-

vironmental or social factors, the reproduction law can be different in successive

generations. Many authors have investigated this issue and have provided several

interesting contributions. In particular, conditions guaranteeing almost sure ex-

tinction or positive probability of survival in populations with demographic dy-

namics modeled by such branching processes in varying environments have been

established. In [18] a survey about the main contributions derived for sexual re-

production was provided. We focus here our attention on the main contributions

derived for the asexual case. In Section 2, we formally describe the probability

model. Section 3 is devoted to stating the results obtained for the possible extinc-

tion of the process. The most important results established about the asymptotic

behaviour of the process are presented in Section 4.

2. The probability model

One of the essential characteristics of the Galton-Watson process is its extinction-

explosion duality, namely, either it becomes extinct or it grows unboundedly.

However, it is well-known that in many biological species, the population size

stabilizes when time passes. As consequence, the demographic dynamics of such

populations is not well-described through the outline of the Galton-Watson pro-

cess. One of the possible reasons for the stabilization is that the probability

distribution governing the reproduction phase is not the same in each generation.

This reason motivated the introduction of the following branching process:

Definition 1. Let {Xni : n = 0, 1, . . . ; i = 1, 2, . . .} be a sequence of integer-

valued, non-negative, and independent random variables such that for each n ≥ 0,

{Xni}
∞
i=1 is a sequence of identically distributed random variables with probability

distribution {pnk}
∞
k=0, pnk := P (Xn1 = k). The branching process in varying en-

vironments (BPVE), also called the inhomogeneous branching process, {Zn}
∞
n=0,

is then defined in the recursive form:

(1) Z0 = 1, Zn+1 =

Zn
∑

i=1

Xni , n = 0, 1, . . .

where

0
∑

1

= 0. Without loss of generality, it is assumed that the process is

initiated with Z0 = 1 individual.
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Intuitively, the variables Xni and Zn have the same interpretation as in the

Galton-Watson process, namely, Xni is the number of individuals produced by the

i-th individual at time (generation) n, and Zn is the total number of individuals

in this generation. The crucial difference in this new branching process defined

in (1) is that the probability distribution governing the reproduction phase is not

necessarily the same over time. The probability distribution {pnk}
∞
k=0 is referred

to as the offspring distribution in the n-th generation. It can be verified that the

BPVE is a Markov chain with transition probabilities not necessarily stationary.

For the Galton-Watson branching process the probability generating function

concerning the total numbers of individual in the n-th generation is determined

by the n-fold composition of the probability generating function associated to the

offspring distribution. This result was generalized for the BPVE by Fearn [9]:

Proposition 1. (Fearn (1971)) For n ≥ 0, let gn(s) := E[sXn1 ] and fn(s) :=

E[sZn ], 0 ≤ s ≤ 1, be the probability generating functions of Xn1 and Zn, respec-

tively. Then:

fn+1(s) = fn(gn(s)), 0 ≤ s ≤ 1, n = 0, 1, . . .

From this result, by using an iterative procedure, it is deduced that:

fn(s) = (g0 ◦ · · · ◦ gn−1)(s), 0 ≤ s ≤ 1, n = 1, 2, . . .

Hence, if for n ≥ 0, µn := E[Xn1] and σ2
n := Var[Xn1], assumed to be finite,

then it is derived that:

E[Zn] =

n−1
∏

j=0

µj, Var[Zn] =

n−1
∏

j=0

µ2
j

n−1
∑

k=0

σ2
k

µ2
k

∏k−1

j=0
µj

, n = 1, 2, . . .

3. Extinction probability

If, for some n ≥ 1, Zn = 0 then, from (1), it is deduced that Zn+m = 0, m ≥ 1,

which implies the extinction of the process. Let

Q := P ( lim
n→∞

Zn = 0 | Z0 = 1)

be the probability of extinction. Several authors ([1], [3], [8] and [10]) have

investigated conditions for the almost sure extinction of the process or for its
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survival with positive probability. Firstly, Church [3] established the following

result concerning the extinction-explosion property of the BPVE (an alternative

proof of this result was also proposed by Athreya and Karlin [2]):

Theorem 1. (Church (1971)) Assume that pn0 < 1, n ≥ 0. Then:

P ( lim
n→∞

Zn = ∞ | Z0 = 1) = 1−Q if and only if

∞
∑

n=0

(1− pn1) = ∞.

Taking into account that Q = lim
n→∞

fn(0), Agresti [1] studied the extinction

problem of the process by considering appropriate lower and upper bounds for

fn(0), n ≥ 0.

Theorem 2. (Agresti (1975)) Assume that σ2
n < ∞, n ≥ 0. Then:

1−





1

mn

+
1

2

n−1
∑

j=0

g′′j (0)

µjmj+1





−1

≤ fn(0) ≤ 1−





1

mn

+

n−1
∑

j=0

g′′j (1)

µjmj+1





−1

where mn :=

n−1
∏

j=0

µj.

From Theorem 2, it is derived that:

• If inf
n≥0





1

mn

+
1

2

n−1
∑

j=0

g′′j (0)

µjmj+1





−1

= 0 then Q = 1.

• If Q = 1 then lim
n→∞





1

mn

+

n−1
∑

j=0

g′′j (1)

µjmj+1





−1

= 0.

Agresti [1] established also the following necessary and sufficient condition

for the almost sure extinction of a BPVE:

Theorem 3. (Agresti (1975)) Assume that

sup
n≥0

g′′n(0)

g′′n(1)
< ∞ and inf

n≥n0

g′′n(0)

g′′n(1)
> 0, for some n0 ≥ 0.
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Then:

Q = 1 if and only if

∞
∑

n=1

1

mn

= ∞.

Note that, the classical Steffensen’s result on the extinction probability for

the Galton-Watson process is obtained as particular case of Theorem 3 when µj

is a constant independent of j.

A similar result, assuming a functional relation among the means and the

variances of the offspring distribution, was obtained by Fujimagari [10]:

Theorem 4. (Fujimagari (1980)) Assume the existence of µ := lim
n→∞

µn.

(a) If µ < 1 then Q = 1.

(b) If µ > 1 and there exits b ∈ (0,∞) such that µn ≥ bσ2
n, n ≥ 0, then Q < 1.

Fujimagari’s result was improved by D’Souza and Biggins [8], assuming weaker

conditions on the offspring mean. They considered uniformly supercritical BPVE.

Definition 2. A BPVE is said to be uniformly supercritical if there exist

constants A > 0 and c > 1 such that:

(2)
mn+k

mk

≥ Acn, k, n = 0, 1, . . .

Remarks.

• For k = 0, it is deduced that mn ≥ Acn for all n. In particular, when n = 0,

using the fact that m0 = 1, it is derived that A ≤ 1.

• The inequality (2) is verified if, for example, lim inf
n→∞

µn > c > 1.

• If (2) holds then lim sup
n→∞

µn > c > 1.

Theorem 5. (D’Souza and Biggins (1992)) Assume a BPVE uniformly su-

percritical and the existence of a random variable X, with E[X] < ∞, stochasti-

cally bigger than Xn1µ
−1
n , for all n ≥ 0. Then:

(a) Q ≤ η < 1 for certain η which depends of A, c and X.
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(b) 1−Q = P ( lim
n→∞

Zn = ∞ | Z0 = 1).

The second part of Theorem 5 is an application of the criteria given in The-

orem 1 of [3]. Note that to this end, it is sufficient to verify that lim sup
n→∞

pn1 > 0

which implies that

∞
∑

n=0

pn1 = ∞.

4. Asymptotic behaviour

In order to present the main results derived about the asymptotic behaviour

of the BPVE, we will distinguish two periods, clearly differentiated. The first

one, corresponding to those works developed in the seventies ([3], [9], [11], [12],

[14]). In those works, the asymptotic behaviour was investigated by using some

analytic results based on probability generating functions and martingale theory.

The second period corresponding to works obtained in the nineties ([4], [6], [7],

[8] and [15]). In those works, the methodology used was different. It was based

on some conditions about the growth of the offspring means and appropriate

conditions about the tails of the offspring distributions.

4.1. Results developed in the 70s

First, Church [3] proved the convergence in distribution of {Zn}
∞
n=0 to a random

variable Z (possibly null or infinite). Unlike the extinction-explosion property of

the Galton-Watson process, it was showed that the BPVE can eventually become

stable over time. Later on, Lindvall [14] proved the almost sure convergence of

{Zn}
∞
n=0 to Z.

On the other hand, Fearn [9] studied the limiting behaviour of the sequence

{Wn}
∞
n=0, Wn := Zn(E[Zn])

−1. He showed that it is a non-negative martingale,

relative to the sequence of σ-algebras {Fn}
∞
n=0, Fn := σ(Z0, . . . , Zn). Hence, he

proved its almost sure convergence to a random variable W such that P (0 ≤

W < ∞) = 1. The interest was then focussed on the research of necessary and

sufficient conditions which guarantee that P (W = 0) < 1. This issue was also

studied in [9], along with the convergence of {Wn}
∞
n=0 to W in quadratic mean.

Theorem 6. (Fearn (1971)) The following statements are equivalent:

(a) Wn converges in L2 to W with E[W ] = 1 and Var[W ] =

∞
∑

k=0

σ2
k

µ2
k mk

< ∞.
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(b) lim
n−→∞

Var[Wn] =

∞
∑

k=0

σ2
k

µ2
k mk

< ∞.

Clearly, if lim
n→∞

Var[Wn] < ∞ then W is a non-degenerate at 0 random vari-

able. Also, if for some n, σ2
n > 0, then W is, almost surely, a non-degenerate

variable.

Other authors have looked for conditions for P (W = 0) < 1. In this sense,

we can highlight during this same period the work by Goettge [11] who proved

that E[W ] = 1, under strictly weaker conditions than those of Fearn. To this

end, he used analytic techniques similar to those considered in [2]. However, he

was not able to prove that {W > 0} = {Zn → ∞} almost surely.

It is worth mentioning two important contributions provided by Jagers [12] in

this period, which are the homologous to the results for the critical and subcritical

branching processes, respectively, due the Russian School. The proofs of both

results are based on a formula for Var[W ] and under certain additional conditions

on the growth of the means associated to the process {Zn}
∞
n=0.

Theorem 7. (Jagers (1974)) Assume that E[Z2
n] < ∞, n ≥ 1. Assume also

that 0 < inf
n≥0

mn ≤ sup
n≥0

mn < ∞ and inf
n>0

g′′n(1) > 0. Then:

(a) lim
n→∞

d−1
n P (Zn > 0) = 1.

(b) lim
n→∞

P

(

Zn

dnmn

≤ u

∣

∣

∣

∣

Zn > 0

)

= 1− e−u, u ≥ 0.

where dn :=

n−1
∑

k=0

(2mkµ
2
k)

−1g′′n(1).

Theorem 8. (Jagers (1974)) Assume lim sup
n→∞

mn

n
∑

k=1

(mk+1)
−1g′′n(1) < ∞.

Then:

(a) lim
n→∞

m−1
n P (Zn > 0) exists and it is finite and positive.

(b) bk := lim
n→∞

P (Zn = k|Zn > 0) exists,

∞
∑

k=1

k bk = lim
n→∞

(P (Zn > 0))−1mn and

∞
∑

k=1

bk = 1.
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4.2. Results developed in the 90s

Lyons [15] investigates some properties of the limit variable W . More specifically,

using techniques based on random walks this author provides new conditions

under which P (W = 0) < 1, i.e. W is non-degenerated at 0. Following this line,

D’Souza and Biggins [6] studied the asymptotic behaviour of the BPVE, looking

for a certain regularity in the behaviour of the offspring means and also in the tails

of the offspring distributions. They provided the following result, which requires

a very similar condition to the logarithmic of Kesten-Stigum for the supercritical

Galton-Watson branching process. They were the first authors that determined

sufficient conditions which guarantee that {W > 0} = {Zn → ∞} almost surely.

Theorem 9. (D’Souza and Biggins (1992)) If the BPVE is uniformly super-

critical and there exists a random variable X with E[X log+X] < ∞ stochastically

bigger than Xn1(µn)
−1, for all n ≥ 0, then:

E[W ] = 1 and {W > 0} = {Zn → ∞} a.s.

Later on, D’Souza[8] investigated the asymptotic behaviour of the sequence

{P (Zn > 0)}∞n=0 under conditions which guarantee the existence of a positive

probability for the extinction of the process. Such a behaviour is very similar to

the one of the subcritical Galton-Watson branching process, as we can check in

the following result:

Theorem 10. (D’Souza (1994)) Given a BPVE {Zn}
∞
n=0 such that {mn}

∞
n=0

converges to 0 and for all n, k ≥ 0 it is verified that:

mn+k

mk

≤
A

g(n)

being A > 0 and g : R → R a differentiable function with g(0) = 1 and strictly

increasing to infinity. If there exists a random variable X with E[X] < ∞ such

that for all x, P (X ≥ x) ≥ P (Xn1 ≥ x|Xn1 > 0), n = 0, 1, . . ., then:

lim
n→∞

(

P (Zn > 0)

mn

)1/n

= 1.

Remark. To show that the asymptotic behaviour of the BPVE is similar

to that one corresponding to the subcritical Galton-Watson branching process, it
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is sufficient to consider in Theorem 10 the particular function g(x) = m−x with

m < 1, where m denotes the corresponding offspring mean of the Galton-Watson

process.

Other interesting question investigated for the BPVE concerns its rates of

growth.

Definition 3. A sequence of constants {Cn}
∞
n=0 is a rate of growth of a

BPVE {Zn}
∞
n=0 if the sequence {C−1

n Zn}
∞
n=0 converges almost surely to a finite

limit which is strictly positive on the set {Zn → ∞}.

Macphee and Schuh [16] presented an example where lim
n→∞

µn > 4, σ2
n < ∞,

n ≥ 1, E[W ] = 1, and nevertheless, {Zn}
∞
n=0 has two rates of growth. This

example motivated the study by D’Souza [7] searching sufficient conditions in

order that the BPVE had only one rate of growth. He also investigated what

processes admit more than one rate of growth. To this end, he introduced the

two following conditions:

(A) There exists A > 0 and γ > 1 such that for all n ≥ 0 and k ≥ 1,

(3)
mn+k

mk

≥ A

(

n+ k

k

)γ

(B) Provided γ > 1, there exist p > 1 + γ−1 and K < ∞ such that

E

[

Xn1

µn

]p

≤ K.

Taking n = 0 in (3), it is deduced that A ≤ 1. Also, from (3), it is deduced

that mn ≥ Am1n
γ , n ≥ 0 . On the other hand, from condition (B) and Jensen’s

inequality, it is derived that K ≥ 1 and that E[Xn1(µn)
−1]s ≤ K for 1 < s < p.

Theorem 11. (D’Souza (1994)) Let γ > 1 and p > 1 + γ−1 be given. For

any α ∈ (0, β), where β = (p − 1)−1, it is possible to construct a BPVE satis-

fying conditions (A) and (B) such that {nα}∞n=0 is a rate of growth of {Zn}
∞
n=0.

Furthermore, if α > 1 (this requires p < 2) we can construct the process so that

lim inf
n→∞

P (Xn1 ≥ 2)(µn)
−2 > 0 is satisfied.

The next result provides a sufficient condition for the BPVE to have an only

rate of growth.
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Theorem 12. (D’Souza (1995)) Assume that {Zn}
∞
n=0 is an BPVE satisfy-

ing conditions (A) and (B) (for p = 2) and lim inf
n→∞

P (Xn1 ≥ 2)(µn)
−2 > 0. Then

{mn}
∞
n=0 is the only rate of growth of the process.

Remarks.

• Under the conditions in Theorem 9, the sequence {mn}
∞
n=0 is a rate of

growth of the BPVE. In fact, under conditions in Theorem 12, it is the

only rate of growth of the process.

• Theorem 11 shows that the last conditions in Theorem 12 are not sufficient

to ensure that the process has only one rate of growth.

• D’Souza and others authors have presented some examples of BPVE’s with

infinitely many rates of growth. This happens because the conditions (A)

and/or (B) are not verified.

Finally it is worth mentioning here the work by Cohn [4], which investigates

the continuity of the distribution of the limit variable W on the set of non extinc-

tion, providing also some conditions for such a distribution to have some jumps

in the positive real numbers. In this work plays a essential role the quantity

M = lim
n→∞

max
i>0

P (Zn = i).
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