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CRITICAL CONTROLLED BRANCHING PROCESSES

AND THEIR RELATIVES*

George P. Yanev

This survey aims at collecting and presenting results for one-type, discrete

time branching processes with random control functions. In particular, the

subclass of critical migration processes with different regimes of immigration

and emigration is reviewed in detail. Critical controlled branching processes

with continuous state space are also discussed.

1. Introduction

The independence of individuals’ reproduction is a fundamental assumption in

branching processes. Since the 1960s, a number of authors have been studying

models allowing different forms of population size dependence. Sevastyanov and

Zubkov (1974) proposed a class of branching processes in which the number

of reproductive individuals in one generation decreases or increases depending

on the size of the previous generation through a set of control functions. The

individual reproduction law (offspring distribution) is not affected by the control

and remains independent of the population size. These processes are known as

controlled or ϕ-branching processes (CBP). N. Yanev (1975) (no relation to the

author) extended the class of CBP by introducing random control functions. The

so called ϕ-processes with random ϕ can be defined as follows.
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Definition. The process {Zn, n= 0, 1, . . .} is called controlled branching

process (CBP) if

(1) Zn+1 =
∑

i∈I

ϕi,n(Zn)
∑

j=1

ξj,n(i), n ≥ 0; Z0 = z0 > 0,

where I is an (finite or infinite) index set and for i ∈ I

(i) ξi = {ξj,n(i), j = 1, 2, . . . ; n = 0, 1, . . .} are i.i.d., non-negative, integer-

valued r.v.’s, (independent for different i’s). Denote ξ := ξ1.

(ii) ϕi = {ϕi,n(k), k = 0, 1, . . . ; n = 0, 1, . . .} are non-negative, integer-valued

r.v.’s, independent from ξi, (independent for different i’s), and such that

P (ϕi,n(k) = j) = pk(j), for j = 0, 1, . . . Denote ϕ(k) := ϕ1(k).

The recurrence (1) describes a very large class of stochastic processes in-

cluding, for instance, all Markov chains with discrete time. Among the par-

ticular cases of CBPs is the classical Galton-Watson process (GWP) as well as

popular discrete time branching processes such as: (i) processes with immigra-

tion: I = {1, 2}, ϕ1,n(k) = k, and ϕ2,n(k) ≡ 1; (iii) processes with state-

dependent immigration: I = {1, 2}, ϕ1,n(k) = k, and ϕ2,n(k) = max{1 − k, 0};

and (iii) processes with random migration (to be discussed in Sections 3–5):

I = {1, 2}, ϕ1,n(k) = max{min{k, k + βn}, 0}, and ϕ2,n(k) = max{βn, 0}, where

for p + q + r = 1 we have P (βn = −1) = p, P (βn = 0) = q, and P (βn = 1) = r.

In all these subclasses of CBPs, the controlled functions satisfy the condition

lim
n→∞

∑

i∈I

ϕi,n(k) = ∞ a.s., k ≥ 1,

which can be identified as a general property of CBPs.

In Section 2 we present a classification of CBPs into subcritical, critical, and

supercritical based on their mean growth rate. Two sets of conditions for extinc-

tion and non-extinction are presented in relation to this classification. Finally,

limit theorems for the critical CBPs are given. The next three sections, are

devoted to critical processes with different regimes of migration. In Section 3,

processes with migration, stopped and non-stopped at zero, are defined and limit

theorems in the critical case are discussed. Processes with time non-homogeneous

migration are treated in Section 4. In Section 5, a more general type of migration

is considered, utilizing a regenerative construction. CBPs with continuous state
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space are discussed in Section 6. Finally, the paper ends with some concluding

remarks and a list of references.

2. General Class of Controlled Branching Processes

In this section we shall discuss a classification of CBPs, which is similar to that

of the classical Galton-Warson processes. Then we will focus our attention on

the critical case.

As it will become clear below, the asymptotic behavior of the CBPs depends

crucially on the so-called mean growth rate. Following Bruss (1984), we define

the mean growth rate per individual in a population with k mothers by

τk := k−1E[Zn+1 | Zn = k] = k−1E[ϕ(k)]E[ξ].

In the particular case of GWP, we have τk = E[ξ], i.e., the mean growth rate

equals the offspring mean and remains constant for any k.

2.1. Extinction and Classification of CBPs

Extinction, along with growth and composition of the population, is a principal

subject of interest in the theory of branching processes. If the control functions

satisfy ϕn(0) ≡ 0 a.s., then {Zn} is a Markov chain with absorption state 0.

Furthermore, it can be proven (see [33]) that if P (ξ = 0) > 0 or P (ϕ(k) = 0) > 0

for k = 1, 2, . . ., then the classical extinction-explosion duality

P (Zn → 0) + P (Zn → ∞) = 1

holds. The following key theorem for the extinction probability of CBPs is proven

in Gonzales et al. (2002).

Theorem 2.1 ([9]).

(i) If lim sup
k→∞

τk < 1, then P (Zn → 0 | Z0 = N) = 1 for N ≥ 1.

(ii) If lim inf
k→∞

τk > 1, then there exists N0 such that for N ≥ N0 we have

P (Zn → 0 | Z0 = N) < 1.

Referring to Theorem 2.1, Gonzalez et al. (2005) classify the CBPs as follows.

Definition. The class of CBPs can be partitioned into three subclasses:
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(i) subcritical if lim sup
k→∞

τk < 1;

(ii) critical if lim inf
k→∞

τk ≤ 1 ≤ lim sup
k→∞

τk;

(iii) supercritical if lim inf
k→∞

τk > 1.

Unlike the supercritical GWP, if the number of ancestors in the supercritical

CBP is not sufficiently large, then the extinction probability might be one. This

resembles the situation with the two–sex branching processes (e.g., [11]). On the

other hand, the critical CBP does not always have extinction probability one, as

it is seen in (4) below.

Gonzalez at al. (2005) study in detail the extinction probability of the critical

CBP considering different rates of convergence of τk to one. Their findings rely

on analysis of the stochastic difference equation

(2) Zn+1 = Zn + h(Zn) + δn+1 a.s., n = 0, 1, . . . ,

where h(k) = E[ϕ(k)]E[ξ]− k and δn+1 = Zn+1 −E[Zn+1|Zn] (martingale differ-

ence). Denote

2σs(k) := E[|δn+1|
s|Zn = k] s > 0.

It is proven in [10] that if

(3) lim
k→∞

τk = 1 and τ(k) ≥ 1,

then for N ≥ 1

(4) P (Zn → 0 | Z0 = N)















= 1 if lim sup
k→∞

(τk − 1)k2(σ2(k))
−1 < 1;

< 1 if lim inf
k→∞

(τk − 1)k2(σ2(k))
−1 > 1.

A different set of conditions for extinction and non-extinction of {Zn} is obtained

by N. Yanev (1975) using a random walk construction. It is proven in [33] that

if the control functions have a linear growth a.s., that is

ϕn(k) = αnk (1 + o(1)) a.s. k → ∞,
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where {αn} are i.i.d. and independent of the reproduction, then for N ≥ 1

P (Zn → 0 | Z0 = N)







= 1 if E[log(α1Eξ)] < 0;

< 1 if E[log(α1Eξ)] > 0.

Bruss (1980) shows that the independence of reproduction assumption for {αn}

can be removed.

2.2. Limit Theorems for Critical CBPs

Assuming (3), let us turn to the critical CBPs. It follows from (4) that, depending

on the rate of convergence of τk to one, the extinction probability is either one or

less than one. We will consider these two cases separately. Utilizing a gamma–

limit theorem (see [14]) for the stochastic difference equation (2), Gonzalez et al.

(2005) prove the following two theorems.

Case A. The extinction is almost sure, i.e., P (Zn → 0 | Z0 = N) = 1.

Theorem 2.2 ([10]). Assume

(i) τk = 1 + ck−1, c > 0, k = 1, 2, . . .;

(ii) σ2(k) = 2ak +O(1), a > 0, as k → ∞;

(iii) sup
k≥1

(

g
1/k
k

)′′′

(1) < ∞, where gk(s) := E
[

sϕ(k)
]

, 0 ≤ s ≤ 1.

If c ≤ a, then

(5) lim
n→∞

P

(

Zn

an
≤ x|Zn > 0

)

= 1− e−x.

Note that the limiting distribution in (5) is exponential as in the critical

GWP. However, one difference is that P (Zn > 0) ∼ c1n
−(1−c/a), c1 > 0 whereas

the survival probability in the GWP has a decay rate (bn)−1.

Case B. Positive non-extinction probability, i.e., P (Zn → 0 | Z0 = N) < 1.

Theorem 2.3 ([10]). Assume as k → ∞

(i) τk = 1 + ck−(1−α) + o
(

k−(1−α)
)

, c > 0, 0 < α < 1;
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(ii) σ2(k) = 2ak1+α + o
(

k1+α
)

, a > 0;

(iii) σ2+s(k) = O
(

(σ2(k))
1+s/2

)

for some s > 0.

If c > a, then

(6) lim
n→∞

P

(

Z1−α
n

(1− α)2an
≤ x | Zn > 0

)

=
1

Γ(γ)

∫ x

0
tγ−1e−t dt,

where γ = (c− aα)/(a(1 − α)) and Γ(x) is the Gamma function.

Obviously, if α = 0 and c = a, then (6) coincides with (5).

3. Branching Processes with Migration

In the context of queueing theory, stochastic models with migration were dis-

cussed in [12]. A model of branching process with emigration-immigration (mi-

gration) was introduced in Nagaev and Han (1980). The readers are referred

to the survey [23] and the monograph [20] for a detailed account of results for

processes with a variety of immigration and emigration regimes.

In Sections 3–5 we shall review results for a class of CBPs, called branching

processes with migration, introduced by N. Yanev and Mitov in 1980 when a

detailed study of these branching models began. These processes were already

mentioned in Section 1 as a special class of CBPs. The particular choice of control

functions ϕ(k) allows for a detailed analysis which in turn leads to interesting new

findings. On the other hand, branching processes with migration are sufficiently

general to include as subclasses previously studied models with different regimes

of immigration and emigration.

Definition. The process {Yn, n = 0, 1, . . .} is called a branching process with

migration if Y0 > 0 and for n = 0, 1, . . .

(7) Yn+1 =



















Yn
∑

k=1

ξk,n +M+
n if Yn > 0;

M0
n if Yn = 0,

where for p+ q + r = 1

(8) M+
n =







−ξ1,n probab. p, (emigration)

0 probab. q, (no migration)

ηn probab. r, (immigration)
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is the migration outside zero and

M0
n =

{

0 probab. 1− r, (no migration)

ηn probab. r, (immigration at 0),

is the migration at zero. The number of immigrants {ηn, n = 1, 2, . . .} are i.i.d.

non-negative, integer-valued, and independent from the offspring variables.

The process {Yn} can be interpreted as follows. Three scenarios are possible:

(i) the offspring of one individual is removed (emigration) with probability p; (ii)

there is no migration with probability q; or (iii) ηn individuals join the population

(immigration) with probability r. The state zero is a reflecting barrier for {Yn}.

The emigration here can be regarded as “reversed” (negative) immigration since

the branching process is modified to allow both positive and negative increments.

See [19] and the references within for other approaches to emigration.

3.1. Branching Migration Processes with Reflection Barrier at Zero

In Sections 3–5 we assume (unless stated otherwise) that {Yn} is critical with

finite offspring variance and finite immigration mean, i.e.,

(9) E[ξ] = 1, 2b := V ar[ξ] < ∞, and d := E[ηn] < ∞.

The long-term behavior of the critical {Yn} depends crucially on the parameter

(10) θ :=
EM+

n

(V ar[ξ])/2
=

rE[ηn]− pE[ξ]

(V ar[ξ])/2
=

rd− p

b
,

i.e., the ratio of the mean migration outside zero over half of the offspring variance.

Depending on the values of θ, the aperiodic and irreducible Markov chain {Yn}

can be classified as

{Yn} =







non-recurrent θ > 1

null-recurrent 0 ≤ θ ≤ 1

positive-recurrent θ < 0.

The following limiting results are obtained in [30].

Theorem 3.1 ([30]). Assume (9).

(A) If θ > 0 (dominating immigration) and V ar[ηn] < ∞, then

lim
n→∞

P

(

Yn

bn
≤ x

)

=
1

Γ(θ)

∫ x

0
tθ−1e−t dt.
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(B) If θ = 0 (zero average migration), then

lim
n→∞

P

(

log Yn

log n
≤ x

)

= x, 0 < x < 1.

(C) If θ < 0 (dominating emigration), then there is a limiting-stationary distri-

bution, i.e.,

lim
n→∞

P (Yn = k) = vk,

∞
∑

k=0

vk = 1

and V (s) =

∞
∑

k=0

vks
k is the unique p.g.f. solution of a functional equation.

Remark. It is worth pointing out here a limit theorem due to Dyakonova

(1997) for the “close to critical” process {Yn}, i.e., assuming that the offspring

mean m := E[ξ] ↑ 1. It is known that if m < 1, then {Yn} has a limiting-

stationary distribution. Let V be the limiting random variable with this distri-

bution. Then it is proven in [8] that

lim
m↑1

P

(

log V

log 1
1−m

≤ x

)

= x, x ∈ (0, 1).

3.2. Branching Migration Processes with Absorbing State Zero

In this subsection we shall consider the branching process with no migration when

it hits zero, i.e., M0
n = 0 a.s. in (7) and hence zero is an absorbing state.

Definition. Let Y 0
0 > 0 and for n = 1, 2, . . .

Y 0
n = YnI{Yn>0} a.s.,

where IA denotes the indicator of the event A. Then {Y 0
n } is called a migration

process with absorption at zero.

It is shown in [29] and [32], under some additional finite moment conditions,

that the probability of the process surviving to time n satisfies as n → ∞

P (Y 0
n > 0) ∼















cθ > 0 θ > 1

cθ (log n)−1 θ = 1

cθ n−(1−|θ|) 0 ≤ θ < 1,

cθ n−(1+|θ|) θ < 0.
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Referring to these results, one can adopt the following classification for the critical

process {Y 0
n }: (i) critical-supercritical for θ > 1; critical-critical for 0 ≤ θ ≤ 1;

and (iii) critical-subcritical for θ < 0.

The next two limit results were proven in [38] (for θ > 0) and [29] (for θ ≤ 0).

Theorem 3.2 ([38], [29]). Assume (9).

(A) If θ > 1 (strongly dominating immigration), then

lim
n→∞

P

(

Y 0
n

bn
≤ x|Y 0

n > 0

)

=
1

Γ(θ)

∫ x

0
tθ−1e−t dt.

(B) Assume θ ≤ 1 and some additional moment conditions when θ < 0 (see

[29]). Then

lim
n→∞

P

(

Y 0
n

bn
≤ x|Y 0

n > 0

)

= 1− e−x.

Remarks. (i) If the rate of migration is not too high, i.e., θ ≤ 1, then the

long-term behavior of {Y 0
n } over the non-extinction trajectories is the same as in

the critical GWP. The observation made after (5) applies here too.

(ii) One extension of Theorem 3.2(A), when the distribution of the initial

number of ancestors Y 0
0 belongs to the domain of attraction of a stable law with

parameter in (0, 1], is given in [31].

4. Time Non-Homogeneous Migration

N. Yanev andMitov (1985) study branching processes with time non-homogeneous

migration defined as follows.

Definition. The process {Ỹn : n = 0, 1, . . .} is called a branching process

with non-homogeneous migration if Ỹ0 > 0 and for n = 1, 2, . . .

(11) Ỹn+1 =























Ỹn
∑

k=1

ξk,n + M̃+
n if Ỹn > 0;

M̃0
n if Ỹn = 0,
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where the migration is given for pn + qn + rn = 1 by

(12) dM̃+
n =







−ξ1,n probab. pn, (emigration)

0 probab. qn, (no migration)

ηn probab. rn, (immigration)

and

M̃0
n =

{

0 probab. 1− rn, (no migration)

ηn probab. rn, (immigration at 0).

Unlike (8), here the probabilities pn, qn and rn controlling the migration are

time-dependent. Thus, {Ỹn} is a non-homogeneous Markov chain. In addition to

(9), suppose that the immigration variance is finite, i.e.,

(13) V ar[ηn] < ∞.

In the rest of this section we also assume that the migration decreases to 0, i.e.,

lim
n→∞

qn = 1.

Case A. Decreasing to Zero Migration and pn = o(rn).

Theorem 4.1 ([35], see also [36]). Suppose (9) and (13). If as n → ∞

rn ∼
r

log n
, pn = o(rn),

then

lim
n→∞

P

(

logZn

log n
≤ x

)

= e−rd(1−x)/b 0 ≤ x ≤ 1.

Theorem 4.2 ([37], see also [36]). Suppose (9) and (13). If as n → ∞

rn ∼
ln

log n
and pn = o(rn),

where ln ∼ o(log n) → ∞, then for x ≥ 0

lim
n→∞

P

(

ln

(

1−
logZn

log n

)

≤ x

)

= 1− e−dx/b.
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Case B. Decreasing to Zero Migration and pn = drn.

If both immigration and emigration decrease to zero at the same rate, then

a key role for the limiting behavior of the process is played by the series

∞
∑

n=0

pn

and

∞
∑

n=0

rn. This observation is made precise in the next three theorems.

Theorem 4.3 ([36], [7]). Suppose (9), (13), and pn = drn. If one of the

following two conditions holds as n → ∞

(i) pn ∼ lnn
−v for 0 < v < 1 where ln is a s.v.f. at ∞.

(ii) pn = O
(

(log n)−1
)

,

then

lim
n→∞

P

(

log Ỹn

log n
≤ x|Ỹn > 0

)

= x, x ∈ (0, 1).

Theorem 4.3 is an analog of Foster’s result for processes with immigration at

zero only. Unlike Foster’s model, {Ỹn} is a non-homogeneous Markov chain.

Theorem 4.4 ([36]). Suppose (9), (13), and pn = drn. Assume as n → ∞

(i) pn ∼ lnn
−1, where ln is a s.v.f. at ∞;

(ii) lim
n→∞

pnn log n
∑n

k=1 pk
= C for 0 ≤ C ≤ ∞.

Then,

(14) lim
n→∞

P

(

log Ỹn

log n
≤ x|Ỹn > 0

)

=
C

1 + C
x =: G1(x) 0 < x < 1

and

(15) lim
n→∞

P

(

Ỹn

bn
≤ x|Ỹn > 0

)

=
C

1 + C
+

1

1 + C

(

1− e−x
)

=: G2(x) x > 0.
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It is worth pointing out that, since lim
x→1

G1(x) = lim
x→0

G2(x), the limiting

distributions in (14) and (15) represent the two different types of non-degenerate

trajectories of {Ỹn}:

(A) Ỹn ∼ nη1 , where η1 ∈ U(0, 1) with probab.
C

1 + C
;

(B) Ỹn ∼ η2n, where η2 ∈ Exp(b) with probab.
1

1 +C
.

We will have a similar situation with the processes considered in Section 6.

Theorem 4.5 ([36]). Suppose (9), (13), and pn = drn. If

∞
∑

k=1

pk < ∞, then

lim
n→∞

P

(

Ỹn

bn
≤ x|Ỹn > 0

)

= 1− e−x, x ≥ 0.

Theorem 4.5 is an analog of the classical Kolmogorov–Yaglom result for

GWPs. It turns out that the convergence of

∞
∑

n=0

pn and

∞
∑

n=0

rn ensure that the mi-

gration disappears without a trace so fast that the process with non-homogeneous

migration has the same asymptotic behavior as the standard GWP.

5. Regenerative Branching Processes with Migration

Quoting [27], “A regenerative process is a stochastic process with the property

that after some (usually) random time, it starts over in the sense that, from the

random time on, the process is stochastically equivalent to what it was at the

beginning”. Regenerative processes can be intuitively seen as comprising of i.i.d.

cycles. For classical regenerative processes, cycles and cycle lengths are i.i.d.

Consider a random vector (W,R) with non-negative and independent coor-

dinates. The sequence of its i.i.d. copies (Wj , Rj) for j = 1, 2, . . . defines an

alternating renewal process (e.g., [16]). The random variables W and R can be

interpreted as the “working” and “repairing” time periods, respectively, of an

operating system. Denote S0 = 0 and for n = 1, 2, . . .

Sn :=

n
∑

j=1

(Rj +Wj) and N(t) := max{n ≥ 0 : Sn ≤ t}.
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Define

σ(t) := t− SN(t) −RN(t)+1, t ≥ 0.

The random variable σ(t) takes on positive or negative values depending on

whether at t the system is working or repairing, respectively. Let associate with

each Wj, j ≥ 1 a cycle given by the process {Zj(t), 0 ≤ t ≤ Wj} such that

Zj(0) = 0, Zj(t) > 0 for 0 < t < Wj, Zj(Wj) = 0.

Definition. An alternating regenerative process (ARP) is defined by

Z(t) :=







ZN(t)+1(σ(t)) when σ(t) ≥ 0 (the system is working)

0 when σ(t) < 0 (the system is repairing).

Example. Recall the process with migration {Yt, t = 0, 1, . . .} defined by

(7). It is an ARP with P (R = k) =
[

P (M0
t = 0)

]k−1 [
1− P (M0

t = 0)
]

, a geomet-

rically distributed repairing time. Consider the sequence {Y 0
t,j , j = 1, 2, . . .} of

corresponding migration processes with absorption at 0 and letWj = tI{Y 0
t,j>0} for

j ≥ 0. Thus, {Yt} is an ARP with cycle process {Y 0
t,j}. It regenerates whenever

it visits state zero.

The migration process in the example above can be generalized as follows.

Definition. Define a regenerative branching process with migration by X0 = 0

and for t = 1, 2, . . .

Xt =

{

Y 0
N(t)+1,σ(t) when σ(t) ≥ 0

0 when σ(t) < 0,

where {Y 0
j,t, j = 1, 2, . . .} are migration processes with absorbing state zero.

Note that, unlike the process with migration {Yt}, in the generalized regen-

erative branching process with migration {Xt} the repairing time periods Rj are

not necessary geometrically distributed.

Possible Scenario. The queueing systems are good examples for discrete

time regenerative processes. Consider a single-server queue with Poisson arrivals.

The service periods are composed of a busy part (not–empty queue) Wj and
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an idle part (empty queue) Rj . The customers arriving during the service time

of a customer are her “offspring”. The “immigrants” (probably from another

customer pool) will be served in the end of the entire “generation”. Alternatively,

some “emigrants” may give up and leave the queue.

Let {Xt} be critical and 0 < θ < 1/2, where θ is from (10). Assume that

either E[R] is finite or P (R > t) ∼ L(t)t−α for α ∈ (1/2, 1], where L(t) is a s.v.f.

Under some additional moment assumptions for the reproduction and migration,

the following limiting results are obtained in G. Yanev, Mitov, and N. Yanev

(2006). The proofs make use of theorems from Mitov and N. Yanev (2001) for

regenerative processes.

(i) If “the working time dominates over the repairing time”, i.e.,

0 ≤ c := lim
t→∞

P (R > t)

P (W > t)
< ∞,

then for x ≥ 0

lim
t→∞

P

(

Xt

bt
≤ x

)

=
c

c+ 1
+

1

c+ 1

1

B(θ, 1− θ)

∫ 1

0
yθ−1(1− y)−θ

(

1− e−x/y
)

dy,

where B(x, y) is the Beta function. The expected value of the limiting random

variable is θ/(c+ 1).

(ii) If “the repairing time dominates over the working time”, i.e.,

lim
t→∞

P (R > t)

P (W > t)
= ∞,

then for x ≥ 0

lim
t→∞

P

(

Xt

bt
≤ x | Xt > 0

)

=
1

B(θ, α)

∫ 1

0
yθ−1(1− y)α−1

(

1− e−x/y
)

dy.

Note that the distribution of the limiting random variable has a mixture of beta

and exponential distributions and a mean of θ/(θ + α).

6. Controlled Branching Processes with Continuous State Space

A branching process with continuous state space models situations when it is

difficult to count the number of individuals in the population, but a related non–

negative variable (e.g., volume or weight) associated with the “individuals” is

measured instead.
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Let us make the following assumptions.

(i) For fixed n, let Un := {Ui,n, i ≥ 1} be a sequence of i.i.d., non-negative

random variables and the double array U := {Un, n ≥ 1} consists of inde-

pendent sequences Un, n=1,2,. . .

(ii) Each of the stochastic processes Nn := {Nn(t), t ∈ T}, n=1,2,. . . has state

space Z+, the set of non-negative integers. They are independent processes

with stationary and independent increments (s.i.i.) and Nn(0) = 0 a.s.

Here T is either [0,∞) or Z+.

(iii) The sequence V := {Vn, n ≥ 1} consists of independent and non-negative

random variables.

(iv) The processes N := {Nn, n ≥ 1}, U , and V are independent.

(v) The random variable X0 is non-negative and independent from all processes

introduced in (i)-(iv).

(vi) The componentsNn and Un for n ≥ 1 of the processesN and U , respectively,

are identically distributed.

The following class of branching processes is introduced by Adke and Gadag

(1995) and studied by Rahimov (2007) and Rahimov and Al–Sabah (2008).

Definition. A controlled branching process with continuous state space is

defined by the recursive relation

(16) Xn+1 =

Nn+1(Xn)
∑

i=1

Ui,n+1 + Vn+1, n = 0, 1, . . . , X0 = 0.

Notice that if X0, U , and V are integer-valued, then {Xn} is a CBP. If, in

addition, we choose in (1) the index set to be I = {1, 2} and the control functions

to be ϕ1,n(k) = Nn(k), and ϕ2,n(k) ≡ 1, we obtain (16).

It is proven in [1] that Z̃n := Nn(Xn−1) for n = 1, 2, . . . is a GWP with

time-depended immigration given by

Z̃n+1 =

Z̃n
∑

i=1

ξi,n+1 + ηn+1, n = 0, 1, . . . , Z̃0 = 0,
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where ξi,n+1
d
= Nn+1(Un) and ηn+1

d
= Nn+1(Vn). Exploring this duality, Rahimov

(2007) transferred results from GWPs with immigration to {Xn}. Below we

present one theorem from [21] for the critical {Xn}. Denote 2b̃ := V ar[ξi,n],

βn := E[ηn(ηn − 1)], and γn := E[Vn]. For simplicity, some of the assumptions

of the next theorem are given in terms of moments of ξi,n and ηn, which can be

expressed as functions of the moments of N , U , and V (see [21]).

Theorem 6.1 ([21]). Suppose E[N1(1)]E[U1] = 1 and b̃ < ∞. Assume

(i) βn = o (γn log n) → 0 as n → ∞;

(ii) lim
n→∞

γn log n = 0 and lim
n→∞

γnn log n
∑n

k=1 γk
= C for 0 ≤ C ≤ ∞.

Then,

lim
n→∞

P

(

logXn

log n
≤ x|Xn > 0

)

=
C

1 + C
x, 0 < x < 1

and

lim
n→∞

P

(

Xn

b̃n
≤ x|Xn > 0

)

=
C

1 + C
+

1

1 +C

(

1− e−x
)

x > 0.

The similarities between Theorem 4.4 and Theorem 6.1 are striking. The

phenomenon of having different limiting distributions under different normaliza-

tions in GWPs with decreasing time-dependent immigration was first observed

by Badalbaev and Rahimov (1978) (see also [20], p.109 and p.122).

7. Concluding Remarks

This survey is by no means exhaustive. Not included here are some classes CBPs

such as: branching processes with barriers (see Zubkov (1972), Bruss (1978),

Schuh (1976), Sevastyanov (1995)), CBPs with random environments, and the

more recently introduced alternating branching processes (see Mayster (2005)).

Controlled branching processes are part of Sevastyanov’s legacy. Over time,

particular subclasses were introduced and studied in details. We paid special at-

tention to the processes with migration, which have been a subject of systematical

research investigations by the Bulgarian school in branching processes under the

direction of its founder Professor Nikolay Yanev a.k.a. the Captain. Closed re-

lations were established between CBP and other classes, e.g., two-sex processes
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and population-size-dependent processes. There is no doubt, that CBPs have

great potential as modeling tools. In my opinion, they deserve more attention

from the branching processes’ community.
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