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STUDIA MATHEMATICA

HAMILTONIAN APPROACH TO INTERNAL
WAVE-CURRENT INTERACTIONS IN A TWO-MEDIA

FLUID WITH A RIGID LID

Alan Compelli, Rossen Ivanov

We examine a two-media 2-dimensional fluid system consisting of a lower
medium bounded underneath by a flatbed and an upper medium with a free
surface with wind generated surface waves but considered bounded above
by a lid by an assumption that surface waves have negligible amplitude. An
internal wave driven by gravity which propagates in the positive x-direction
acts as a free common interface between the media. The current is such
that it is zero at the flatbed but a negative constant, due to an assump-
tion that surface winds blow in the negative x-direction, at the lid. We are
concerned with the layers adjacent to the internal wave in which there ex-
ists a depth dependent current for which there is a greater underlying than
overlying current. Both media are considered incompressible and having
non-zero constant vorticities. The governing equations are written in canon-
ical Hamiltonian form in terms of the variables, associated to the wave (in
a presence of a constant current). The resultant equations of motion show
that wave-current interaction is influenced only by the current profile in the
’strip’ adjacent to the internal wave.

1. Introduction

Studies of internal waves, such as sharp temperature gradients called thermo-
clines which separate oceanic bodies of water which are at different temperatures,
are of significant interest to climatologists, marine biologists, coastal engineers,
etc.
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The study of internal waves draws from previous single medium irrotational
[1], [2], [3], [4], [5], [6] and rotational [7], [8], [9], [10], [11], [12], [13], [14] studies
and from appropriate studies of 2-media systems such as [17], [18], [19], [20].
However, these studies need to be extended to include the interaction between
waves and currents.

Recent studies include the interaction between waves that propagate across
the Pacific Ocean and the Equatorial Undercurrent (EUC) [21], a Hamiltonian
formulation describing the 2-dimensional nonlinear interaction between coupled
surface waves, internal waves, and an underlying current with piecewise constant
vorticity, in a two-layered fluid overlying a flat bed [22] and using shifted variables
to transform a non-canonical wave-current system into a canonical system which
has zero vorticity in the layers adjacent to the internal wave [23]. This study aims
to provide a Hamiltonian formulation of a two-media bounded system which is
rotational in the layers adjacent to the internal wave and hence show that wave-
current interaction is influenced only by the current profile in this ’strip’.

2. Preliminaries

The system under study consists of a 2-dimensional internal wave under the
restorative action of gravity, which acts as a free common interface separating
two fluid media, and a depth dependent current as per Figure 1.

The medium underneath the internal wave is defined by the domain Ω1 =
{(x, y) ∈ R

2 : −h1 < y < η(x, t)}. This medium is bounded at the bottom by
an impermeable flatbed at a depth −h1. The medium above the internal wave
is defined by the domain Ω2 = {(x, y) ∈ R

2 : η(x, t) < y < h2}. This medium is
regarded as being bounded on top by an impermeable lid at a height h2, but in
reality is a free surface with negligible wave amplitude. Throughout the article the
subscript 1 will be used to mean evaluation for the lower medium Ω1, subscript 2
means evaluation for the upper medium Ω2, subscript i = {1, 2} means evaluation
for both media and subscript c will be used to denote evaluation at the common
interface. Non-lateral velocity flow is described by Vi(x, y, z) = (ui, vi, 0). The
arbitrary periodic function η(x, t) describes the elevation of the internal wave,
i.e. y = η is the equation of the internal wave. We define the mean of η to be the
shear surface at y = 0 with the centre of gravity in the negative y-direction.

A depth dependent current U1(y) flows in Ω1 and, correspondingly, U2(y)
flows in Ω2. Currents are described for the system under study via the continuous
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Figure 1: System setup. The current profile in layers I and IV is arbitrary as we
are only concerned with layers II and III as the internal wave is a free interface
between these layers. Continuity of U(y) is assumed in layers I and IV.

function Ui(y) as

(1) Ui(y) =























−σ3, y = h2 (lid)
σ2, y = l2
γy + κ, l2 ≥ y ≥ −l1 (layers II and III)
σ1, y = −l1
0, y = −h1 (flatbed)

for the positive constants σ1, σ2, σ3, κ, li, hi, γ and κ, where κ is the velocity of
the time-independent current at y = 0 and γ is the non-zero constant vorticity for
layers II and III, noting that the current is arbitrary in layers I and IV (however
represented by a continuous function everywhere).

We consider a velocity field which is defined by:

(2)

{

ui = ϕ̃i,x + Ui(y)
vi = ϕ̃i,y.

We have separated the wave and current contributions to the velocity and so
we define ϕ̃i as the wave velocity potential for Ωi and in particular the velocity
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components in layers II and III are [22]

(3)

{

ui = ϕ̃i,x + γy + κ

vi = ϕ̃i,y.

Additionally, the stream function ψi is introduced, defined by:

(4)

{

ui = ψi,y

vi = −ψi,x.

ρ1 and ρ2 are the respective constant densities of the lower and upper media and
stability is given by the immiscibility condition

ρ1 > ρ2.(5)

The rotationality of the layers II and III is given by the condition

γ < 0 ⇔ σ1 > σ2(6)

ensuring non-zero vorticity in this region. Alternatively σ2 > σ1 could also be
considered for γ > 0.

We assume that for large |x| the amplitude of η attenuates and hence make
the following assumptions

lim
|x|→∞

η(x, t) = 0,(7)

lim
|x|→∞

ϕ̃i(x, y, t) = 0,(8)

and

−l1 < η(x, t) < l2 for all x and t,(9)

i.e. the wave is localised in the strip.
We have the following equation (Euler’s equation)

∇
(

(ϕi,t)c +
1

2
(∇ψi)

2

c − γψi

)

= ∇
(

−
pi

ρ1
− gη

)

(10)

where pi is the dynamic pressure, g is the acceleration due to gravity (where
y points in the opposite direction to the center of gravity) and ∇ = (∂x, ∂y).
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The following Bernoulli condition (cf. [20]) at the interface follows from Euler’s
equation and assumptions (7) and (8):

ρ1

(

(ϕ1,t)c +
1

2
(∇ψ1)

2

c − γχ1 + gη
)

= ρ2

(

(ϕ2,t)c +
1

2
(∇ψ2)

2

c − γχ2 + gη
)

+ f(t)

(11)

where χi is the stream function evaluated at the interface. Since the two media
do not mix, χ1 = χ2 ≡ χ. Moreover, f(t) is an arbitrary function of time and
depends on how the potentials are defined at ±∞. Clearly such a function can
be absorbed in the definition of the wave potentials, but we will keep it separate
for further convenience. We know by comparing (3) and (4) that

1

2
(∇ψi)

2

c =
1

2
(ϕ̃i,x)

2

c +
1

2
(ϕ̃i,y)

2

c +
1

2
(γη + κ)2 + (ϕ̃i,x)cγη + κ(ϕ̃i,x)c(12)

and hence we can express the Bernoulli condition in terms of wave and current
components only as

(13) (ρ1ϕ̃1,t − ρ2ϕ̃2,t)c + κ(ρ1ϕ̃1,x − ρ2ϕ̃2,x)c +
ρ1

2
|∇ϕ̃1|

2

c −
ρ2

2
|∇ϕ̃2|

2

c

+
1

2
(ρ1 − ρ2)(γη + κ)2 + γη(ρ1ϕ̃1,x − ρ2ϕ̃2,x)c

− (ρ1 − ρ2)γχ+ (ρ1 − ρ2)gη = f(t).

The terms with γ and κ are due to the wave-current interaction. For example,
the second term is due to overall translation leading to a shift ∂t → ∂t + κ∂x.
The equation suggests the introduction of the variable

ξ := ρ1ξ1 − ρ2ξ2,(14)

where

ξi := (ϕ̃i)c = ϕ̃i(x, η(x, t), t).(15)

We also have the following kinematic boundary conditions at the interface, using
the velocity representations (3)

(16)

{

ηt + ηx
(

γη + (ϕ̃i,x)c + κ
)

+ (ϕ̃i,y)c = 0
(ϕ̃1,y)b = (ϕ̃2,y)l = 0

noting that V1(x,−h1, 0) = (u1, 0, 0) and V2(x, h2, 0) = (u2, 0, 0), where the
subscripts b and l denote evaluation at the bottom (lower boundary) and lid
(upper boundary) respectively.
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3. Hamiltonian Formulation

If we consider the system under study as an irrotational system the Hamiltonian,
H, is given by the sum of the kinetic and potential energies as:

H =
ρ1

2

∫

R

η
∫

−h1

(u2
1
+ v2

1
)dydx+

ρ2

2

∫

R

h2
∫

η

(u2
2
+ v2

2
)dydx+

1

2
(ρ1 − ρ2)

∫

R

gη2dx.

(17)

The kinetic energy term for Ω1 is

K1 =
ρ1

2

∫

R

η
∫

−h1

(u2
1
+ v2

1
)dydx(18)

which we can split into layers IV and III, respectively, as

K1 =
ρ1

2

∫

R

−l1
∫

−h1

(u2
1
+ v2

1
)dydx+

ρ1

2

∫

R

η
∫

−l1

(u2
1
+ v2

1
)dydx.(19)

For layer IV the kinetic energy is

(20)
ρ1

2

∫

R

−l1
∫

−h1

(u21 + v21)dydx =
ρ1

2

∫

R

−l1
∫

−h1

(ϕ̃1,x)
2dydx+

ρ1

2

∫

R

−l1
∫

−h1

(ϕ̃1,y)
2dydx

+
ρ1

2

∫

R

−l1
∫

−h1

γ2y2dydx+
ρ1

2

∫

R

−l1
∫

−h1

U2

1
dydx+ ρ1

∫

R

−l1
∫

−h1

ϕ̃1,xγydydx

+ ρ1

∫

R

−l1
∫

−h1

γU1ydydx+ ρ1

∫

R

−l1
∫

−h1

U1ϕ̃1,xdydx.

However, terms 3-7 combine to produce a constant which is irrelevant in terms of
dynamic considerations (does not contribute to the variations with respect to the
field variables). Moreover

∫

R

η(x′, t)dx′ = 0 (the mean deviation is by definition

zero) and the fields vanish at x = ±∞ so that integration of total x− derivatives
produces zero, thus

(21)
ρ1

2

∫

R

−l1
∫

−h1

(u2
1
+ v2

1
)dydx =

ρ1

2

∫

R

−l1
∫

−h1

(ϕ̃1,x)
2dydx +

ρ1

2

∫

R

−l1
∫

−h1

(ϕ̃1,y)
2dydx.
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For layer III the kinetic energy is

(22)
ρ1

2

∫

R

η
∫

−l1

(u21 + v21)dydx =
ρ1

2

∫

R

η
∫

−l1

(ϕ̃1,x)
2dydx+

ρ1

2

∫

R

η
∫

−l1

(ϕ̃1,y)
2dydx

+
ρ1

2

∫

R

η
∫

−l1

(γy + κ)2dydx+ ρ1

∫

R

η
∫

−l1

ϕ̃1,xγydydx+ ρ1

∫

R

η
∫

−l1

κϕ̃1,xdydx.

We write

ρ1

2

∫

R

η
∫

−l1

(γy + κ)2dydx =
ρ1

6γ

∫

R

(γη + κ)3dx(23)

noting that
∫

R

(γη + κ)3dx can be properly re-normalised as
∫

R

((γη + κ)3 − κ3)dx

as the variation in
∫

R

κ3dx is zero.

We introduce the Dirichlet-Neumann operator Gi(η) (see [3], [18]) given by

Gi(η)ξi = (∂ni
ϕ̃i)

√

1 + (ηx)2,(24)

where ∂ni
ϕ̃i is the normal derivative of the velocity potential ϕ̃i, at the interface,

for an outward normal ni, and also define [17]

B := ρ1G2(η) + ρ2G1(η).(25)

Thus we can determine that
{

ξ1 = B−1
(

G2(η)ξ
)

ξ2 = B−1
(

−G1(η)ξ
)(26)

The integral with ρ1κϕ̃1,x term, using the Leibniz integral rule with varying limits
(cf. [19]), can be written as

ρ1

∫

R

η
∫

−l1

κϕ̃1,xdydx = −ρ1κ

∫

R

ξ1ηxdx(27)

and the ρ1γyϕ̃1,x term as

ρ1

∫

R

η
∫

−h1

γyϕ̃1,xdydx = −ρ1

∫

R

γξ1ηηxdx(28)
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and hence we write the Hamiltonian for Ω1 as

(29) H1 =
ρ1

2

∫

R

η
∫

−h1

|∇ϕ̃1|
2dydx+

ρ1

2

∫

R

gη2 dx

+
ρ1

6γ

∫

R

(γη + κ)3dx− ρ1

∫

R

γξ1ηηxdx− ρ1κ

∫

R

ξ1ηxdx.

We follow the same procedure for Ω2 to obtain the corresponding energy as

(30) H2 =
ρ2

2

∫

R

h2
∫

η

|∇ϕ̃2|
2dydx−

ρ2

2

∫

R

gη2dydx

−
ρ2

6γ

∫

R

(γη + κ)3dx+ ρ2

∫

R

γξ2ηηxdx+ ρ2κ

∫

R

ξ2ηxdx.

The total energy is therefore H = H1 +H2 or in terms of (η, ξ)

(31) H(η, ξ) =
1

2

∫

R

ξ
(

G1(η)B
−1G2(η)

)

ξ dx+
ρ1 − ρ2

2

∫

R

gη2 dx− κ

∫

R

ξηxdx

−

∫

R

γηηxξdx+
(ρ1 − ρ2)

6γ

∫

R

(γη + κ)3dx.

Defining the Hamiltonian which has no current or vorticity components, H0, as

H0(η, ξ) =
1

2

∫

R

ξ
(

G1(η)B
−1G2(η)

)

ξ dx+ (ρ1 − ρ2)
1

2

∫

R

gη2 dx(32)

we can write

H(η, ξ) = H0 − κ

∫

R

ξηxdx−

∫

R

γηηxξdx+
(ρ1 − ρ2)

6γ

∫

R

(γη + κ)3dx.(33)

The equations of motion can be written in Hamiltonian form as follows. From
(16) the dynamic boundary condition

ηt = −γηηx + (ϕ̃i,x)cηx − κηx − (ϕ̃i,y)c

= δξH0 − κηx − γηηx = δξH.(34)
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We note that the quantities in the Bernoulli condition (13) are

ρ1(ϕ̃1,x)c − ρ2(ϕ̃2,x)c = ξx − (ρ1ϕ̃1,y − ρ2ϕ̃2,y)cηx(35)

ρ1(ϕ̃1,t)c − ρ2(ϕ̃2,t)c = ξt − (ρ1ϕ̃1,y − ρ2ϕ̃2,y)cηt.(36)

and we can write it as

(37) ξt − (ρ1ϕ̃1,y − ρ2ϕ̃2,y)c(ηt + (γη + κ)ηx) +
ρ1

2
|∇ϕ̃1|

2

c −
ρ2

2
|∇ϕ̃2|

2

c

+ (γη + κ)ξx +
1

2
(ρ1 − ρ2)(γη + κ)2 − (ρ1 − ρ2)γχ+ (ρ1 − ρ2)gη = f(t).

or due to (34) as

(38)

ξt − (ρ1ϕ̃1,y − ρ2ϕ̃2,y)c(ϕ̃i,xηx − ϕ̃i,y)c +
ρ1

2
|∇ϕ̃1|

2

c −
ρ2

2
|∇ϕ̃2|

2

c + (ρ1 − ρ2)gη

+ (γη + κ)ξx +
1

2
(ρ1 − ρ2)(γη + κ)2 − (ρ1 − ρ2)γχ = f(t).

Noting the ’usual’, not related to the current terms,

(39) ξt + δηH0 + (γη + κ)ξx +
1

2
(ρ1 − ρ2)(γη + κ)2 − (ρ1 − ρ2)γχ = f(t).

and finally, from (33)

(40) ξt + δηH − (ρ1 − ρ2)γχ = f(t).

The equation for ξt is given up to an arbitrary function of time because the
Hamiltonian can always be ’renormalised’ by a term −f(t)

∫

R

ηdx which has a

variation of −f(t) with respect to η but is otherwise zero by definition. Thus, for
the renormalised Hamiltonian

(41) ξt = −δηH + (ρ1 − ρ2)γχ.

Since χ = −
∫ x

−∞ ηt(x
′, t)dx′ = −

∫ x

−∞ δξHdx
′, after a change of variables [14]

via the transformation (η, ξ) → (η, ζ)

ξ → ζ = ξ −
(ρ1 − ρ2)γ

2

∫ x

−∞
η(x′, t) dx′.(42)
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the system acquires a canonical Hamiltonian form:

(43)

{

ηt = δζH

ζt = −δηH

In conclusion we have shown that the wave-current is influenced only by
the current profile in the ’strip’ (layers II and III), i.e. outside this region the
continuous current is arbitrary.

4. Conclusion

The governing equations of a system of two-media, bounded on top by a lid
and on the bottom by a flatbed, with an internal wave providing a free com-
mon interface and with a depth dependent current were written in a canonical
Hamiltonian form in terms of the ’wave’-related variables (η, ζ).

It was then shown that the wave-current interactions are influenced only by
the current profile in the ’strip’, and do not depend on the current profile in the
other layers.
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