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OPTIMAL INTERPOLATION CONSTANT FOR THE
GENERALIZED SCHRÖDINGER–NEWTON SYSTEM∗

Vladimir Georgiev, George Venkov

In the present article we prove non-existence of radial solutions to the
generalized Choquard equation of the form

∆u(x) + ωu(x) =

(
∫

R3

|u(y)|pdy

4π|y|
−

∫

R3

|u(y)|pdy

4π|x− y|

)

|u(x)|p−2u(x)

for 2 < p < 7/3 and ω > 0. The solutions can be associated with solutions
to the Schrödinger–Newton system in R

3

∆u(x) + ωu(x) = A(x)|u(x)|p−2u(x)
∆A(x) = |u(x)|p,

with a prescribed asymptotic behavior

lim
|x|→∞

A(x) =

∫

R3

|u(y)|pdy

4π|y|

at infinity. Using the Kato result for the absence of embedded eigenvalues
for short-range potential perturbations of the Laplace operator we show that
any H1 radial solution to the generalized Choquard equation is identically
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zero. Further, we propose a variational problem that will lead to generalized
Choquard equation of the form

∆u(x) + ωu(x) =

(

δ

∫

R3

|u(y)|pdy

4π|y|
−

∫

R3

|u(y)|pdy

4π|x− y|

)

|u(x)|p−2u(x)

for 2 < p < 7/3, δ ∈ [0, 1/2) and ω > 0. The variational setting will give a
radial decreasing H1

rad solution to this equation.

1. Introduction and main results

The classical Schrödinger–Newton system (sometimes called also Schrödinger–
Posson system in 3D) can be written in the form

i d
dt
ψ(t, x) + ∆ψ(t, x) = A(t, x)ψ(t, x),

∆A(t, x) = |ψ(t, x)|2.
(1)

This system can be connected with self-gravitating boson stars models, and more-
over it is proposed as a model to explain the quantum wave function collapse (see
for instance [3, 10]). Simplified model of type (1) can be derived by the aid of
Born–Oppenheimer approximation of the N-body equations.

It is natural to consider the following generalized Schrödinger–Newton func-
tional in H1(R3)× Ḣ1(R3)

(2) E(u,A) =
1

2
‖∇u‖2L2 +

1

2p
‖∇A‖2L2 +

1

p

∫

R3

A(x)|u(x)|pdx,

with p ≥ 2, subject to the constraint condition

(3)
1

2
‖u‖2L2 = λ.

The Euler–Lagrange equation for this variational problem is the generalized
Schrödinger–Poisson system in R

3

−∆u(x) +A(x)|u(x)|p−2u(x) = ωu(x),(4)

∆A(x) = |u(x)|p

The above system becomes classical Schrödinger–Poisson system if p = 2. The
assumption that the function A is in the homogeneous Sobolev space Ḣ1(R3)
implies that A is defined modulo a constant as

A(x) = A(u)(x) = −
1

4π

∫

R3

|u(y)|p

|x− y|
dy + C.



Optimal intepolation constant 21

The uniqueness of the ground state for p = 2 is obtained in [1] and [6].
The approach in [1] is based on a specific choice of C that breaks the translation
symmetry of the energy functional (2) and consequently the translation symmetry
in (4). This specific choice is done in [1] so that

(5) A(0) = 0.

The constraint (5) implies

(6) A(u)(x) =
1

4π

∫

R3

(

|u(y)|p

|y|
−

|u(y)|p

|x− y|

)

dy,

so we can reduce the system (4) to the following single equation

(7) ∆u(x) + ωu(x) =

(
∫

R3

|u(y)|pdy

4π|y|
−

∫

R3

|u(y)|pdy

4π|x− y|

)

|u(x)|p−2u(x).

Our first main result is the following

Theorem 1. Assume that p ∈ (2, 7/3). If u ∈ H1

rad(R
3) is a positive decreas-

ing solution to (7), then u = 0.

Note that (6) implies

(8) E(u,A(u)) =
1

2
‖∇u‖2L2 +

1

p
M(|u|p)‖u‖pLp −

1

2p
D(|u|p, |u|p),

where we use the notations

(9) D(f, g) =
1

4π

∫

R3

∫

R3

f(x)g(y)

|x− y|
dxdy, M(f) =

1

4π

∫

R3

f(x) dx

|x|
.

Our next step is to study the following variational problem associated with
the functional (8). Consider the generalized functional

Eµ(u) =
1

2
‖∇u‖2L2 +

µ

p
‖u‖pLp −

1

2p
D(|u|p, |u|p), µ ≥ 0(10)

and consider the following minimization problem

I(λ, µ, δ) = inf
u∈S(λ,µ)

{Eδµ(u)} ,(11)

where δ ∈ [0, 1) and

(12) S(λ, µ) =
{

u ∈ H1(R3); ‖u‖2L2 = 2λ,M(|u|p) ≥ µ
}

.



22 V. Georgiev, G. Venkov

The next goal is to show that for any λ > 0 and δ ∈ [0, 1) there exists a unique
µ = µ(λ, δ) > 0, such that a minimizer uλ,µ,δ of I(λ, µ, δ) for µ ∈ [0, µ(λ, δ)] exists
and

(13) M(|uλ,µ(λ,δ)|
p) = µ(λ, δ).

It is easy to see the following rescaling property

Lemma 1. If 4/3 < p, then for any λ > 0, µ ≥ 0, we have the properties:

1. the set S(λ, µ) is nonempty;

2. for any κ > 0 and any a ∈ R, we have

(14) u ∈ S(λ, µ) ⇐⇒ uκ(x) = κau(κx) ∈ S(λκ2a−3, µκpa−2).

For this reason we can consider only the case λ = 1.

Lemma 2. If p ∈ [2, 7/3), then for any µ > 0, δ ∈ [0, 1/2) we have

S(1, µ) ∩
{

u ∈ H1(R3);Eµδ(u) < 0
}

6= ∅.(15)

P r o o f. For u ∈ H1

rad(R
3) we have the equalities

2δM(|u|p)‖u‖pLp −D(|u|p, |u|p) =

=
2δ

4π

∫

R3

|u(x)|pdx

|x|

∫

R3

|u(y)|pdy −
1

4π

∫

R3

∫

R3

|u(x)|p|u(y)|pdxdy

max(|x|, |y|)
=

=
2δ − 1

4π

∫

R3

∫

|y|<|x|

|u(x)|p|u(y)|pdxdy

|x|
+

+
1

4π

∫

R3

∫

|y|>|x|

(

2δ

|x|
−

1

|y|

)

|u(x)|p|u(y)|pdxdy.

These relations show that one can find for any δ ∈ [0, 1/2) a radial uδ so that

(16) 2δM(|uδ |
p)‖uδ‖

p
Lp −D(|uδ |

p, |uδ |
p) < 0.

A rescaling argument completes the proof of the Lemma. �

Our next main result is the following.
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Theorem 2. Suppose 2 ≤ p < 7/3. For any λ > 0 and any δ ∈ [0, 1/2) one

can find unique µ(λ) ∈ (0,∞), such that for any µ ∈ [0, µ(λ)] one can find radial

positive minimizer

u(x) = uλ,µ,δ(x) ∈ H1

rad(R
3),

such that

Eµδ(uλ,µ,δ) = I(λ, µ, δ) = min
u∈S(λ,µ)

{Eµδ(u)}

and

(17) M(|uλ,µ,δ |
p)

{

> µ, if 0 ≤ µ < µ(λ);
= µ(λ), if µ = µ(λ).

The special case of equation (7) with p = 2, is commonly referred to as
the stationary Choquard equation and it arises in an approximation to Hartree–
Fock theory for a one component plasma (for more information, see [7]). The
existence and uniqueness of the ground state solution is proved by Lieb in [6],
while Choquard, Stubbe and Vuffray obtained the same result in [1] for the
equivalent Schrödinger–Newton system (4). Recently, the ground state solutions
to the generalized nonlinear Choquard problem (7) with p > 2 and dimention
n ≥ 3 have been studied by many authors (for example, see [2, 4, 8, 9]).

2. Asymptotic behaviour of the solution

The relation (6) in the radial case becomes

(18) A(r) =

∫ r

0

(

1

s
−

1

r

)

up(s)s2ds > 0,

while the system (4) can be rewritten as

u′′ +
2

r
u′ + ωu = Aup−1,(19)

A′′ +
2

r
A′ = up.

First we can see that ω > 0. Indeed, from (18) we know that A > 0 so from

−∆u+Aup−1 = ωu

we see that ω > 0. After rescaling we can assume ω = 1.
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We can rewrite (19) as integral equation

u(r) = α+

∫ r

0

(

1

s
−

1

r

)

u(s)(A(s)up−2(s)− 1)s2ds,(20)

where α = u(0) > 0.
It is not difficult to see that any radial H1 solution to (7) satisfies the following

rough estimates.

Lemma 3. If u(r) = u(r, α) is a H1(R3) radial positive solution to (7), then
it satisfies the estimates

(21) |u(r)|+ (1 + r)−3|u′(r)|+ (1 + r)−2|A(r)|+ (1 + r)−1|A′(r)| ≤ C.

The proof follows easily from the properties

lim
r→∞

u(r) = 0, u′(r) ≤ 0

and the integral equation (20) combined with

u′(r) =
1

r2

∫ r

0

u(s)(A(s)up−2(s)− 1)s2ds,(22)

A′(r) =
1

r2

∫ r

0

up(s)s2ds,

so we omit it.
The first improvement of the rough a priori estimates (21) can be done by

using the radial lemma of Strauss [11] and use the implication

(23) u(|x|) ∈ H1(R3) =⇒ |u(r)| ≤
C

r
, ∀r > 0.

Further, the integral equations in (22) give the following upper bounds

(24) |A′(r)| ≤

{

Cr1−p, if 2 < p ≤ 3 and r > 1;
Cr−2, if 3 ≤ p ≤ 5 and r > 1,

so an integration in r gives

(25) |A(r)| ≤ C

and we can conclude that V (r) = A(r)u(r)p−2 obeys the estimates

(26) |V (r)| = |A(r)u(r)p−2| ≤ Cr2−p.

Now we are ready to derive the Gaussian bound of the solution.
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Lemma 4. If u(r) = u(r, α) is a H1(R3) radial positive solution to (20),
then it satisfies the estimates

(27) |u(r)| ≤ Ce−δr2 , |u′(r)| ≤ Ce−δr2

for r ≥ 1.

P r o o f. We know that

(28) V (r) = A(r)u(r)p−2 = o(1), r → ∞,

due to (26). Set

Z(r) =
−u′(r)

u(r)
.

Then we use the ordinary differential equation (19) and see that

(29) Z ′ = Z2 + 1−
2

r
Z − V.

Therefore, for r > r0 ≫ 1 we get the inequality

Z ′ +
2

r
Z ≥

1

2
,

which can be rewritten as

(r2Z)′ ≥
r2

2
.

Integrating the last inequality over (r0, r), we find

r2Z(r) ≥
r3

6
− C0, C0 =

r3
0

6
− r2

0
Z(r0),

so taking r > r1 ≫ r0, we can write

Z(r) =
−u′(r)

u(r)
≥
r

8
.

Integrating again, the last inequality gives

(30) |u(r)| ≤ Ce−r2/16.

To evaluate |u′(r)| from above we have to estimate Z(r) from above for r >
r0 ≫ 1. It is not difficult to see that the domain

Ur0 = {(r, z) ∈ R× R; r > r0, z > 4}



26 V. Georgiev, G. Venkov

is forbidden for the orbit (r, Z(r)) with r > r0. Indeed, if the orbit enters Ur0 we
can use the inequality

Z ′ ≥
Z2

2

and the qualitative study of this inequality will lead to a blow-up of Z(r), which
is impossible, due to the assumption that u is a radial decreasing solution in
H1(R3). This observation shows that Z(r) = −u′(r)/u(r) ≤ 4, so we can use (30)
and arrive at

(31) |u′(r)| ≤ Ce−r2/16.

This completes the proof of Lemma 4. �

3. Proof of Theorem 1.

If (u(r), A(r)) is a radial positive solution to (19), then we can use the Gaussian
bounds (27), so setting

V (r) = Aup−2 ∼ O(e−δ1r
2

)

for r → ∞ we see that u ∈ H1

rad(R
3) is a solution to the equation

(32) −∆u+ V u = u.

Now we are in position to apply the result due to Kato [5] and deduce from the
fact that V (r) decays exponentially and u is exponentially decreasing function
satisfying (32), that u = 0.

4. Idea of the proof of Theorem 2

We apply concentrated compactness argument combined with the following.

Lemma 5. Assume p ∈ [2, 7/3). One can find positive constants C1 < C2 so

that if u ∈ S(1, µ), µ > 0 and Eµδ(u) ≤ C1, then

‖∇u‖2L2 +M(|u|p)‖u‖pLp +D(|u|p, |u|p) ≤ C2.

P r o o f. Take any u ∈ S(1, µ). We aim to show that one can find C1 > 0,
independent of µ, such that

(33)
1

2
‖u‖2L2 = 1,=⇒ Eµδ(u) ≥ −C1.
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To verify this property, we can use the relation
∫

R3

∫

R3

|u(x)|p|u(y)|p
dxdy

|x− y|
=

∥

∥

∥
(−∆)−1/2|u|p

∥

∥

∥

2

L2

and via Sobolev embedding
∥

∥

∥
(−∆)−1/2g

∥

∥

∥

L2
≤ C‖g‖L6/5 ,

and the Gagliardo–Nirenberg interpolation inequality to get the estimate

(34) D(|u|p, |u|p) ≤ C‖u‖5−p

L2 ‖∇u‖3p−5

L2 .

In this way we have the inequality

Eν(u) ≥
1

2
‖∇u‖2L2 − C‖∇u‖3p−5

L2 ,

due to the normalization assumption in (33). Now, we can set Y = ‖∇u‖2
L2 and

rewrite the above estimate as follows

Eν(u) ≥ ϕ(Y ), ϕ =
Y

2
− CY (3p−5)/2.

Since the function ϕ(Y ) : Y ∈ [0,∞) → R is bounded from below for (3p−5)/2 <
1 or p < 7/3, we find

Eν(u) ≥ −C1,

so (33) is established with a constant C1 > 0 independent of ν > 0.
Careful analysis of the previous argument shows that ϕ(Y ) < C1 implies

Y ≤ C2 and hence, there exist positive constant C1 < C2 so that

(35)
‖u‖2

L2

2
= 1, Eν(u) ≤ C1 =⇒ ‖∇u‖2L2 ≤ C2.

Finally, using a combination of Hardy inequality and Gagliardo–Nirenberg
interpolation inequality for 2 ≤ p ≤ 4, we obtain

(36) M(up) =

∫

R3

up(x)dx

|x|
≤ C

∥

∥

∥

∥

u

|x|

∥

∥

∥

∥

L2

‖u‖p−1

L2(p−1)
≤ C‖∇u‖

3p−4

2

L2 ‖u‖
4−p
2

L2 .

This inequality and (34) imply

(37) u ∈ S(1, ν), E(u) ≤ C1 =⇒ ν + ‖u‖pLp +D(|u|p, |u|p) ≤ C2.

This completes the proof of the Lemma. �
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