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STUDIA MATHEMATICA

A STUDY ON THE STABILITY OF SOME FREE FILMS∗

Sonia Tabakova

In this work the special case of free films of liquid (bounded by two
interfaces between liquid and gas or liquid and two other liquids) is consid-
ered. The films are assumed to be viscous (Newtonian or non-Newtonian),
with fully mobile interfaces (with unknown velocity, but with given shear
stresses on the interfaces), laterally bounded (with fixed film thickness or
fixed thickness gradient on the lateral boundaries), with planar located mid-
surface (symmetric interfaces with respect to the middle plane). Additional
action of different forces on the interfaces is applied, such as capillary forces
(through a constant or temperature/surfactant dependent surface tension),
van der Waals forces, etc.

Typical solutions of the nonlinear evolution equations are discussed. In
the cases when the film static shapes exist (which depends on the combina-
tion of the different parameters), a linear and nonlinear stability analysis is
also presented for them, when squeezing perturbations are applied on the
shape itself, on the velocity or on the temperature, etc.

1. Introduction

The study of the dynamics of a thin liquid film has been substantially investi-
gated in the last few decades. Usually it incorporates some aspects of modeling,
mathematical analysis and simulation connected with the respective physical ex-
periments. By use of the fluid mechanics fundamentals the obtained results for
the thin liquid film behavior received a wide variety of industrial, biological and
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medical applications [1], [2]. The films of non-Newtonian liquids have received
much less attention, although their application as ceramic or polymer melts, liq-
uid metals, suspensions, biological solutions, etc. [3], [4], [5].

The thin fluid film (layer) problems can be referred to a class of fluid me-
chanics problems for which the thickness disparity of the length scale (small film
thickness with respect to its length) is an advantage to reduce with one dimen-
sion the correspondent system of partial differential equations describing the fluid
flow (and eventually the temperature or concentration distribution). Finally, this
leads to one highly non-linear evolution equation or to a system of such equations.
In general these equations have no analytical solution and appropriate numerical
schemes are applied to solve them. If there exists a static shape of the film, the
main question is to examine this shape for stability, when subjected to different
types of perturbations.

There exist two generic types of thin films: supported films, spread on solid
substrates and free films – bounded by two free surfaces. The free thin films are
considered as films of symmetric systems. They could be infinitely long [6], or of
finite length, as obtained experimentally in engineering devices or in foams [3].
The latter films may have fixed boundary conditions on both sides perpendicular
to the film middle plane [1], [7], [8].

Linear and non-linear stability analysis of different factors is usually ac-
counted. The destabilizing attractive intermolecular forces of van-der Waals are
expressed by many authors as an extra pressure (disjoining pressure) for peri-
odic or semi-infinite film [6], [9], [10] and for laterally bounded [7], [8], [11], [12].
The Marangoni soluto-capillary convection due to insoluble surfactants presence
on the film interfaces (an additional PDE for the surfactant concentration to the
PDE dynamic system ) for a periodic film [9] and for a laterally bounded film [13]
could be regarded as a stabilizing effect. The heat transfer with the surrounding
gas (an additional PDE for the temperature coupled with the dynamic system)
and its effect on the film stability for the periodic film has been studied in [14]
and for the laterally bounded film in [12].

The dynamics of non-Newtonian films with nonlinear stress-strain relation
has been treated in [3], [4] for periodic films and in [5] for laterally bounded
films.

In the present paper we shall present in a systematic way the problems con-
nected with the statics, dynamics, linear and non-linear stability of a finite free
film under the action of intermolecular forces. The problems of heat and sur-
factant presence will be discussed. Finally, some non-Newtonian models will be
applied when dealing with polymer liquid or blood.
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2. The model

2.1. Governing equations

In this paper we shall concentrate only on free films whose middle surface is planar
and one of the lateral dimensions is much larger than the other one. Then the
film could be regarded as 2D, i.e., in (x, z) space, where x is the lateral coordinate
and z is the transverse coordinate. The fluid is assumed as incompressible with
density ρ, but with variable dynamic viscosity, named apparent viscosity, µapp,
which is constant for the Newtonian films and is a function of the shear rate for
the non-Newtonian films. The 2D equations of motion and continuity in vector
form are the following:

ρ

(

∂v

∂t
+ v · ∇v

)

= −∇p+∇ ·T,(1)

∇ · v = 0,(2)

where v = (u,w) is the velocity vector, p is the pressure and the viscous stress
tensor is T = 2µapp(γ̇)E with E as the strain rate tensor and γ̇ is the shear rate
given by the relation:

γ̇2 = 2TrE2 = 2(u2x + w2
z) + (uz + wx)

2

For the non-isothermal film, the heat transfer equation is added:

ρc

(

∂θ

∂t
+ v · ∇θ

)

= −∇ · q,(3)

with c standing for the heat capacity, θ – for the temperature, q = −κ∇θ – for
the heat flux and κ is the thermal conductivity.

2.2. Boundary conditions

The free film is considered to be symmetrical of thickness h, mean thickness h̄

and length a, where a ≫ h̄. The aspect ratio of both dimensions is then taken as
a small parameter ε = h̄/a ≪ 1. The free film symmetrical surfaces are defined
as z = ±h/2, where h(x, t) is regarded as the unknown function of the film shape.

The symmetry assumed along the middle plane z = 0 leads to the following
relations for the unknown functions at z = 0: w = 0, uz = pz = θz = 0.
At the lateral boundaries, x = ±a, the film could have fixed wetting angles
hx = ±ε tanα, where α is the complimentary wetting angle, and unknown width
or could have a right wetting angle and known width h(±1, t) = εa. In the
first case the non-slip condition is applied for the velocities v = 0 and a fixed
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temperature θ = θ1, where θ1 is the boundary temperature. In the second case
the velocity is fixed, e.g. u(±1, t) = ±U for symmetrical drainage, but could be
more complicated (in the present paper we do not consider this case, for further
reading cf. [11]).

On the free film surfaces z = ±h/2 the kinematic boundary condition ht +

uhx = ±2w is applied. The dynamic normal boundary condition is T.n.n|filmouter −
Π = 2σH, where t, n are the tangent and normal unit vectors, H is the surface
mean curvature, σ is the surface tension and Π is the disjoining pressure. The
surface tension could be constant σ = σ0, but could depend on the temperature
σ = σt0 − ϕ(θ − θ0), where σt0 is the surface tension at temperature θ0 and ϕ

is the rate of the surface tension dependence on the temperature. The surface
tension could also depend on the surfactant, if present: σ = σs0 + ΓσΓ|Γ=0, where
σs0 is the surface tension of a clean interface at Γ = 0. The dynamic tangential
boundary condition on the mobile interfaces reads T.n.t = (∇sσ).t. The heat
transfer with the surrounding gas is given by the relation q.n = β(θ − θ0). For
the insoluble surfactants, the surfactant concentration Γ(x, t) transport along the
interface leads to the following equation:

∂Γ

∂t
+∇s.(Γv) = Ds∇

2
sΓ,(4)

where ∇s is the surface gradient and Ds is the surface diffusion coefficient of the
surfactant.

For the non-Newtonian liquid films usually several generalized models are
applied [15], [16], [3]: the power law viscosity model

µapp = µp = K(γ̇2)(np−1)/2(5)

where K and np are given parameters; the Carreau viscosity model

µapp = µc = µ∞ + (µ0 − µ∞)[1 + λ2γ̇2](nc−1)/2(6)

where λ and nc are parameters empirically determined and µ0, µ∞ are the upper
and lower limits of the viscosity correspondent to low and high shear rates.

The disjoining pressure is represented as a sum [11]:

Π = Π1 +Π2 +Π3,

where Π1 =
Atot

6πh3
is the van der Waals and hydrophobic attraction disjoining

pressure, Atot = AH+K323 is the sum of the Hamaker const. and the hydrophobic
const, Π2 and Π3 are the electrostatic and steric repulsion disjoining pressure.
The attraction disjoining pressure Π1 is the most dangerous one for the film
rupture, further included in the analysis.
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2.3. Thin film equations

The following scaling is applied to dimensionalize all the variables and unknowns:
a for the length, U for rhe velocity, a/U for the time, εa for the film thickness, µ

for the viscosity,
σε

2a
for the disjoining pressure, ∆θ = θ1−θ0 for the temperature

and Γ0 (initial concentration) for the surfactant concentration. Since z = O(ε)
then u, θ, p and w are developed in power series of z: even and odd, respectively.
From (1) - (6) and the boundary conditions the following dimensionless 1D system
of O(ε) is obtained:

hτ + (uh)x = 0,(7)

uτ + uux =
ε

We
hxxx +

4

Re h
(hµ̄appux)x +

A

h4
hx −

2Mt

h
Tx −

2Ms

h
γx,(8)

Tτ + uTx =
1

Peh
(hTx)x −

Bi

Peh
T,(9)

γτ + (γu)x =
1

Pes
γxx,(10)

µ̄app = µ̄p = K̃(2ux)
np−1,(11)

µ̄app = µ̄c = 1 +

(

µ0

µ∞
− 1

)

[1 + 4λ̃2u2x]
(nc−1)/2,(12)

where τ is the dimensionless time, γ is the dimensionless surfactant concentration,
T is the dimensionless temperature, etc. The correspondent dimesionless num-
bers in the upper system are: Re = ρaU/µ – the Reynolds number, We = ReCa

– the Weber number, Ca = 2µU/σ0 – the capillary number, A = AH/2π̺U2a3ε3

– the dimensionless Hamaker constant, Mt = ϕ(θ1 − θ0)/σ0εWe – the thermal

Marangoni number, Ms = −
1

εWe

Γ0

σ0
σΓ|Γ=0 – the solutal Marangoni number,

Pe = PrRe – the Peclet number, Pr = µ/ρκ – the Prandtl number, Bi = 2βa/εκ

– the Biot number, Pes = ScRe – the solutal Peclet number and Sc =
µ

ρDs

– the

Schmidt number, λ̃ =
λU

a
, K̃ =

K

µ∞

(

U

a

)np−1

.

The boundary conditions for the films with fixed wetting angles are trans-
formed into the relations: hx(±1, τ) = ± tanα, u(±1, τ) = 0, T (±1, t) = 1,
∂γ

∂x
(±1, τ) = 0,

∫ 1

−1
hdx = W0, where W0 is the initial film volume conserved in

time.

The initial conditions are given in a general form, since they are different
for the relaxation and for the stability problem: h(x, 0) = h0(x), u(x, 0) =
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u0(x), T (x, 0) = T0(x), γ(x, 0) = γ0(x). The functions h0(x), u0(x), T0(x) and
γ0(x) will be specified in the next sections.

3. Stability analysis

3.1. Static solution and relaxation

The static solution is obtained as a solution of the relaxation problem with the
initial conditions: h0(x) = 1, u0(x) = 0, T0(x) = 0, γ0(x) = 1 at W0 = 2.
For α > 0 there exist only numerical static solutions at different values of B,
Mas or Mat and Bi (B = WeA/ε, Mas = WeMs/ε, Mat = WeMt/ε). This
problem is solved numerically: by a finite-difference conservative implicit scheme
on staggered grids of accuracy O((∆x)2 +∆t) (full description in [17]) and steps
∆x = 0.01, ∆t = 10−5 or 10−6; by the Crank-Nicolson method in combination
with the Newton linearization of accuracy O((∆x)2+(∆t)2) [11] and ∆x = ∆t =
10−4. The results by both methods are similar. However, the first method is
faster, while the second one is more accurate near the rupture points.

If no disjoining pressure is present, i.e., A = 0, and the film is isothermal and
clean, the static solution is analytical:

hs(x) = 0.5(x2 − 1/3) tan α+ 0.5W0, us(x) ≡ 0.

It occurs that the static shape (hereafter denoted as hs(x)) existence is limited
only for some values of B and α, which is shown in Figure 1 At W0 = 2 and
B ≥ 9 the static film shapes exist only for α = 0.
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α
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Figure 1: Static solution limit α(B) for hs(x) at W0 = 2
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If the film shape is static for clean interfaces, it also remains static for sur-
factant coated interfaces at different values of the solutal Marangoni number Ms.
For the non-isothermal film, if the film shape is static for Mat = Bi = 0, it re-
mains also static at Mat > 0 and Bi > 0. If at Mat = Bi = 0 the film ruptures,
at Mat > 0 and Bi > 0 the rupture time increases and even a static shape can
be reached.

3.2. Linear stability theory

The following small disturbances h̃(x, t), ũ(x, t) are imposed on the static solution
of the clean isothermal film problem:

h = hs + h̃, u = ũ(13)

After inserting the upper form of the film shape and velocity in (7), (8) atMs = 0,
Mt = 0 and neglecting the 2−nd order disturbances, the following linearized
system is obtained:

∂h̃

∂t
+

∂(hsũ)

∂x
= 0,(14)

∂ũ

∂t
=

ε

We

∂3h̃

∂x3
+

4

Re hs

∂

∂x
(hs

∂ũ

∂x
) +

A

h4s

∂h̃

∂x
−

4Ah̃

h5s

∂hs

∂x
,(15)

ũ(±1, t) = 0,
∂h̃

∂x
(±1, t) = 0(16)

The disturbances are sought in the following form for h̃ and ũ:

h̃ = H(x) exp(ωt), ũ = V (x) exp(ωt),(17)

where ω = ωr + iωi.

Finally the system (14)–(16) is reduced to the eigenvalue equation for Ω =
We

εRe
ω:

hs(hsV )IV − 4Ω(hsV
′)′ + PΩ2hsV +

B

h3s
(V hs)

′′ −
4Bh′s
h4s

(V hs)
′ = 0,(18)

where P =
εRe2

We
and the boundary conditions are as follows:

V (±1) = 0, (hsV )′′(±1) = 0(19)

At α = 0 the eigenvalue problem (18)–(19) has the analytical solution:

Ω1,2,3,4 =

−m2
1,2(2∓

√

4− P + BP
m2

1,2
)

P
,(20)
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where m1 = (2k1 + 1)π/2, (k1 = 0, 1, . . .) corresponds to asymmetrical distur-
bances, while m2 = k2π, (k2 = 1, 2, . . .) – to symmetrical disturbances. The
“cutoff” wave number mc at which Ω = 0 is mc =

√
B. This is exactly the

result obtained in [6] for infinite films. At given P and B, the eigenvalue with
the greatest real part corresponds to Ω1 at k1 = 0, (m1 = π/2).

For α > 0 there are no analytical solution. The eigenvalues are sought nu-
merically by the differential Gauss elimination method [12], [18], [19].

If a surfactant is present or the film is non-isothermal, the linear stability
analysis is performed in the same way. Small disturbances are imposed on the
static surfactant (γstatic = 1) or temperature (Tstatic = Ts)

γ = 1 + γ̃, T = Ts + T̃(21)

γ̃ = G(x) exp(ωτ), T̃ = F (x) exp(ωτ)(22)

An extra equation and some extra terms are added to the eqs.(18)–(19):

• in the surfactant case:

V IV −
4Ω

h2s
(hsV

′)′ +
PΩ2

hs
V +

B

h5s
(V hs)

′′ −
4Bh′s
h6s

(V hs)
′ +

2MaΩ

hs
G′ = 0,

G′′ − ΩPScG− PesV
′ = 0,(23)

V (±1) = 0,(24)

(hsV )′′(±1) = 0,(25)

G′(±1) = 0,(26)

At α = 0 the eigenvalue problem (23)–(26) leads to the characteristic equa-
tion for Ω:

Ω3 +
m2

P
(
1

Sc
+4)Ω2 +

m2

P
(m2 −B +

4m2

PSc
+2Ma)Ω+

m4

ScP 2
(m2 −B) = 0,

where m = (2k1 + 1)π/2, (k1 = 0, 1, . . .) corresponds to asymmetrical dis-
turbances of the film shape and m = k2π, (k2 = 1, 2, . . .) – to symmetrical
disturbances. Here again the cutoff wave number is mc =

√
B. Thus,

the surfactant presence does not influence the critical wave number, but it
influences the values of the real root, Ωr.
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• in the non-isothermal case

ωH = −(hsV )′(27)

ωV =
ε

We
H ′′′ +

4

Rehs
(hsV

′)′ −
2Mt

hs
F ′ +

A

h4s
H ′ + (

2MtT
′
s

h2s
−

4Ah′s
h5s

)H

ωG = −T ′
sV +

1

Pehs
(hsF

′)′ +
1

Pehs
(T ′

sH)′ −
Bi

Pehs
F −

[(hsT
′
s)

′ −BiTs]

Peh2s
H

with boundary conditions:

H ′(±1) = 0, V (±1) = 0, F (±1) = 0.(28)

At α = 0 and Bi = 0 (similar as in [14] for infinite sheet) the eigenvalue equation
is independent of the Marangoni number Mt:

ω3 + (
4

Re
+

1

Pe
)m2ω2 + (

4m2

RePe
+

m2ε

We
−A)m2ω +

m4

Pe
(
m2ε

We
−A) = 0(29)

with ω1 = −m2/Pe being the thermal root and the two other roots depending
on the van der Waals force are given by eq. (20). The cutoff wave number is the
same as for isothermal film. Thus, for plane static films, the thermal instability
always decays, while the film shape instability may rupture the film.

3.3. Non-linear stability theory

With the linear stability analysis the static shape, the velocity, the surfactant
or the temperature could be analyzed for stability, but the final shape, veloc-
ity, surfactant or temperature can be obtained only by the non-linear stability
analysis. The non-linear stability analysis is based on the numerical solution
of the dynamic problem (7), (8),(10) at the surfactant presence with the initial
conditions:

h0(x) = hs(x) + 0.1 sin(π/2x), u0(x) = 0, γ0(x) = 1.(30)

On Table 1, the final time of the film rupture is given as a function of the solutal
Marangoni number Mas. The surfactant concentration augments the final time
for both states: static film shape and film rupture. The addition of surfactants
in the film does not change the stability of the film, that is the film rests stable
or unstable. The surfactants only affect its relaxation or rupture time.
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Table 1

Mas 0 0.1 1
τrupture/α = 0 6.48 6.81 11.44
τrupture/α = 0.5 60.59 68.92 155.26
τrupture/α = 0.8 52.86 59.15 123.2

Table 2
Re = Pe = 1, We = 0.01, ε = 0.01, A = 3 (B = 3)

Mat, Bi Mat.Bi = 0
Mat =
Bi = 0.1

Mat = 1,
Bi = 0.1

Mat = 0.1,
Bi = 1

Mat =
Bi = 1

α = 0/type rupture rupture rupture rupture rupture
τend/xmin 6.5/-1 6.5/-1 6/-1 6.2/-1 4/-1
α = 0.6/type static static rupture static rupture
τend/xmin 272.6/0 286/0 118.2/-0.425 1.1/0 25.2/-0.525
α = 0.8/type rupture rupture rupture rupture rupture
τend/xmin 52.9/-0.185 53.1/-0.195 53.9/-0.205 53.8/-0.205 37.9/-0.315

Similarly to the surfactant problem the numerical solution of the thermo-
dynamic problem (7) – (9) with different disturbances on the static solution:

h0(x) = hs(x) + 0.1 sin(π/2x), u0(x) = 0, T0(x) = Ts(x).(31)

are shown on Table 2.
If the thermal Marangoni number Mat is bigger, i.e., at the higher tempera-

ture difference △θ = θ1 − θ0, it will promote instability and lead to rupture pro-
cess. Here again, the wave numberm = π/2 is “the most dangerous” one. If other
initial disturbances are applied, e.g. h0(x) = hs(x), u0(x) = 0.1 cos(π/2x),
T0 = Ts + 0.1 cos(π/2x − δπ/2) , where δ = 0,±1, a delay of rupture or a rapid
return to stability is observed, which is shown on Table 3.

Table 3

α Bi δ = −1 δ = 1 δ = 0
τrup/xrup τrup/xrup τrup/xrup

0 0.1 20.1/-1 16.8/-1 18.4/-1
0 1 12.1/-1 10.4/-1 11.2/-1
0.2 0.1 43.7/-0.845 35.9/-0.845 39.5/-0.845
0.2 1 22.3/-0.915 19.0/-0.915 20.6/-0.915
0.8 1 static 182.7/-0.315 204.4/-0.315

It is evident that for all wetting angles the time for film rupture is shorter
if there is a positive phase shift of the temperature disturbance with respect to
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the velocity one. However, for the negative phase shift the rupture time is longer
or even the rupture could be avoided, i.e., the film reaches its static shape (at
α = 0.8 and Bi = 1). The respective rupture points remain unchanged for the
different phase shifts. This eventual delay or enhancement of the rupture onset
by the initial thermal disturbances, which are in a phase shift with respect to the
velocity disturbances, has been recently observed in [14] for an infinite periodic
film and in [20] for laterally bound film.

4. Non-Newtonian films

In the case of non-Newtonian films, the viscosity being a function of the shear
rate, increases the nonlinearity of the dynamic problem. However, the static film
shapes are the same as for the Newtonian film and the linear stability analysis
gives also the same results. The nonlinear stability analysis shows a slight delay
of the rupture process. In Figure 2a), 2b) and 2c) the shape evolution in time of a
blood film is presented in the following cases: the Newtonian, the Carreau and the
Power law viscosity models. The other parameters are kept the same: A = 0.01
(B = 2.47), Re = 247 and α = 1.37, with initial conditions: h0(x) = 1 and
u0(x) = 0. It is obvious that for all models the film ruptures, but with different
rupture times and different types of rupture. The Newtonian film ruptures faster
forming a “dimple” rupture at the points x = ±0.335. The Carreau model and
the Power law model films show a “pimple” rupture at the center of the film
x = 0.

5. Conclusions

Amodel describing the drainage and relaxation dynamics of symmetric thin liquid
films with tangentially mobile surfaces is developed. The model describes the film
profile, surface velocity and pressure for arbitrary values of the Reynolds and the
capillary number, accounting for different components of the disjoining pressure.
Films with fixed wetting angles are studied. The dynamics and heat transfer of
a non-isothermal free thin viscous film, laterally bounded is studied numerically.
The van der Waals attractive disjoining pressure and the Marangoni thermo-
capillary convection are taken into account. The action of insoluble surfactans,
spread along the interfaces of a free thin film, is incorporated into the model.
Two final states exist: static film shape and film rupture; the increase of the
Marangoni number could change the rupture state into a static one when the other
parameters are left the same. The linear stability of a free thin film with respect
to an exponentially growing perturbation is studied at different wetting angles
and different values of the dimensionless van der Waals attraction coefficient.
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Figure 2: Shape evolution in time
of a blood film starting from a pla-
nar shape at τ = 0 and A = 0.01
(B = 2.47), Re = 247, α = 1.37:
a) Newtonian model; b) Carreau
model (The final shapes at rupture
are given as dashed lines.); c) Power
law model

The non-linear stability analysis confirms approximately the results of the linear
stability analysis. The importance of the wetting angle is confirmed: the film
can be stable or unstable depending on the competition between the wetting
with the lateral boundary, the thermo-capillary convection or soluto-capillary
convection and the van der Waals attraction. The governing equations for the
non-Newtonian thin liquid film at the van der Waals forces action are derived.
Two non-Newtonian models are discussed: Power law and Carreau model. Power
law model leads to viscosity singularity when γ̇ → 0; Carreau model does not
exhibit any viscosity singularity. At the calculated thinning rates, the two types
of rupture: “pimple” and “dimple” can occur depending on the model used. It is
expected the non-Newtonian viscosity to have a more stabilizing effect on the film
drainage. The blood film results can be applied to some biomechanical problems
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connected with humans. An idea to control the rupture process by appropriate
initial thermal disturbances is proposed, which will be further developed in our
future studies.
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