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BIFURCATIONS IN KURAMOTO–SYVASHINSKY

EQUATION∗

Anatoli Kulikov, Dmitri Kulikov

Kuramoto–Sivashinsky equation with periodic boundary-value conditions
is considered. The stability of the homogeneous equilibrium is investigated
as well as the local bifurcation of the spatially nonhomogeneous t-periodic
solutions. It is shown that the two-dimensional invariant manifolds are com-
posed of these solutions. These manifolds can be stable or unstable, but all
solutions belonging to these manifolds are always unstable.

The bifurcation problem can be reduced to investigate certain system of
ordinary differential equations (normal form). This normal form was con-
structed by a modified Krylov–Bogolubov algorithm. These normal forms
can be used to explain a ripple topography induced by ion bombardment.

1. Introduction

Consider the equation

(1.1)
ht = −ν0 + γhx + ν1hxx + ν2hyy + σ1hxxx + σ2hxyy −D1hxxxx−

−D2hyyyy −D3hxxyy + γ1h
2
x + γ2h

2
y + ξ1hxhxx + ξ2hxhyy,

where h = h(t, x, y) defines the shape of the ion bombardment. It is known as
the Bradley–Harper (BH) equation [1] or the generalized Kuramoto–Sivashinsky
equation [2]. The coefficients of this equation depend on parameters of the phe-
nomenon. A detailed discussion of physical aspects can be found in [1–4] (see also
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the references in these articles). The positive value ν0 is known as the erosion
coefficient. D1,D2,D3 are also positive. They depend on the surface diffusion of
the material. At last, γ, ν1, ν2, σ1, σ2, γ1, γ2, ξ1, ξ2 ∈ R, but γ1 6= 0. If the defor-
mations h(t, x, y) are independent of y (the deformations are “cylindrical”), then
equation (1.1) may be rewritten in the following form

(1.2) ht = −ν0 + γhx + ν1hxx + σ1hxxx −D1hxxxx + γ1h
2
x + ξ1hxhxx.

This equation (1.2) (also (1.1)) has the solution h(t, x) = −ν0t + ν3, where
ν3 ∈ R. For example, we can set ν3 = 0, since its value depends on the chosen
system of coordinates.

Define h(t, x) = u(t, x)− ν0t. Then the corresponding equation is

(1.3) ut = γux + ν1uxx + σ1uxxx −D1uxxxx + γ1u
2
x + ξ1uxuxx.

It is convenient and reasonable to change the variable as x = h1x1, t1 = h2t, h1, h2 >

0. In new variables, the equation (1.3) is rewritten as

(1.4) ut1 = a1ux1
− bux1x1

− ux1x1x1x1
+ a2ux1x1x1

+ c1u
2

x1
+ 2c2ux1

ux1x1
,

where

a1 =
γh2

h1
, a2 = σ1

h2

h1
, b = −ν1

h2

h2
1

, c1 = γ1
h2

h2
1

, c2 =
ξ1h2

2h3
1

,
h2

h4
1

D1 = 1.

Below the indices “1” of the new variables x1, t1 are omitted for simplicity.
In this paper, we shall consider the resulting equation (1.4)

(1.5) vt = a1vx − bvxx − vxxxx + a2vxxx + c1(v
2)x + c2(v

2)xx, v = ux.

The equation (1.5) is called the Kuramoto–Sivashinsky equation [2,3]. Note that
the function v(t, x) has a basic physical sense (see, for example, [1,3]). As usual,
we consider the equation (1.5) with periodic boundary-value condition

(1.6) v(t, x+ 2π) = v(t, x).

It means that the equation (1.4) is supplemented by boundary-value conditions

(1.7) ux(t, x+ 2π) = ux(t, x).

Boundary-value problem (1.5), (1.6) has solutions v(t, x) = h0, where h0 is a real
constant. As usual, these solutions are called homogeneous equilibriums. The
nonhomogeneous topography leads to x-dependent solutions of the boundary-
value problem (1.5), (1.6). Let

(1.8) v(0, x) = f(x) ∈ H4

2 ,

where H4
2
is the Sobolev space of 2π-periodic function of x with square integrable

distributional partial derivatives up to the fourth order on the closed interval
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[−π, π] (x ∈ [−π, π]). The condition f(x) ∈ H4
2
ensures the local solvability of

problems (1.5), (1.6), (1.8) (see [5–6]).
In this paper, we analyse the stability of all equilibriums v = h0 of problem

(1.5), (1.6), (1.8) and we consider their local bifurcations under the change of
their stability. The stability is treated in the sense of the norm of the phase
space of solution (the space of the initial conditions). Here,

‖f‖ = ‖f‖H4
2

= ‖f‖L2
+ ‖f ′‖L2

+ ‖f ′′‖L2
+ ‖f ′′′‖L2

+ ‖f (IV )‖L2
.

2. Stability of equilibrium

Let function v(t, x) be a solution of problem (1.5), (1.6), (1.8), where f(x) ∈ H4
2
.

In this case, the functions f(x), v(t, x) admit the representation in the form of
the Fourier series

f(x)=f0 + g(x), g(x) =
∞
∑

n=−∞,n 6=0

gn exp(inx),

v(t, x)=w0(t) + w(t, x), w(t, x) =
∞
∑

n=−∞,n 6=0

wn(t) exp(inx),

f0=
1

2π

π
∫

−π

f(x)dx =M0(f), gn =
1

2π

π
∫

−π

g(x) exp(inx)dx,

w0(t)=
1

2π

π
∫

−π

w(t, x)dx =M0(w), wn(t) =
1

2π

π
∫

−π

w(t, x) exp(inx)dx,

where n = ±1,±2, . . .
Therefore, M0(g) = 0, M0(w) = 0. The right part of equation (1.5) has the

trivial average. Consequently, ẇ0(t) = 0 or w0(t) = α, where α is a real constant.
It implies that we can rewrite the equation (1.5) in the following form

(2.1) ẇ0 = 0 (w0(t) = α),

(2.2) wt = Aw + c1[(α+ w)2]x + c2[(α+ w)2]xx,

(2.3) w(t, x+ 2π) = w(t, x),M0(w) = 0,

where the linear differential operator (LDO)

Ay = −y(IV ) − by′′ + a1y
′ + a2y

′′′

is defined at smooth 2π-periodic function y(x). Moreover, we can rewrite the
problem (2.2), (2.3) in a convenient form for the investigation

(2.4) wt = A(α)w + c1(w
2)x + c2(w

2)xx,



84 A. Kulikov, D. Kulikov

(2.5) w(t, x+ 2π) = w(t, x),M0(w) = 0,

where b(α) = b− 2c2α, a(α) = a1 + 2c1α,

A(α)w = wxxxx − b(α)wxx + a(α)wx + a2wxxx,

Let v(t, x) = α + w(t, x) be a solution of problem (2.1), (2.2), (2.3). Then
w(t, x) = w(t, x, α) is the solution of auxiliaries problem (2.4), (2.5) for selected
α ∈ R. For the investigation of its stability, we must analyse the stability of the
trivial solution (w = 0) of the problem (2.4), (2.5). To analyse the stability of
this solution in the first approximation, we consider the linearised boundary-value
problem

(2.6) wt = A(α)w,

(2.7) w(t, x + 2π) = w(t, x),M(w) = 0.

Lemma 1. This operator A(α) has the eigenvalues

λ = λ(n, α) = b(α)n2 − n4 + i(a(α)n − a2n
3),

corresponding to the eigenfunctions en(x) = exp(inx), n ∈ Z \ {0}.

The proof is by direct calculation and it based on the fact that the orthogonal
system of functions en(x)(n 6= 0) is complete in L2(−π, π),M0(g) = 0.

Clearly, if Reλ(n, α) < 0 for all n in question, then all solutions of problem
(2.6), (2.7) are exponentially stable. In particular, for all solutions of this problem
the inequality ‖w‖H4

2

≤M exp(−γt)‖g‖H4
2

is hold.

Here, g(x) = w(0, x),M =M(γ) > 0, −γ = max
n

(Reλ(n, α)) (i.e.γ > 0).

Lemma 2. Let ‖g‖H4

2

≤ δ and w(t, x) is a solution of problem (2.4), (2.5)

with the condition w(0, x) = g(x). These solutions admit the following estimation

‖w‖H4

2

≤M1 exp(−γ1t)‖g‖H4

2

.

In particular, the solution w = 0 is exponentially (asymptotically) stable. Here,

M1 =M + δ1, γ1 = γ − δ1, δ1 = δ1(δ), lim
δ→0

δ1(δ) = 0.

The proof of this lemma is the corollary from the Lemma 1 (see [7–9]).
Assume that there exists n0 such that Reλ(n0, α0) > 0. In this case, the

equilibrium w(t, x) = 0 is unstable for the problems (2.6),(2.7) and (2.4),(2.5).
The critical cases are singled out the following conditions:

i) For all n ∈ Z \ {0}, Reλ(n, α0) ≤ 0.
ii) There exist n = n0 ∈ Z \ {0}, such that Reλ(n0, α0) = 0.
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It should be stressed that in our case, Reλ(n, α) = −n4 + b(α)n2. Therefore,
the stability condition becomes

b(α) < 1 (b− 2c2α < 1).

Consequently, we have a critical case if b(α) = 1 (b−2c2α = 1). In this critical
case, LDO A(α) has two eigenvalues λ±1 = λ(±1, α) = ±iω, ω = a(α) − a2,

corresponding to the eigenfunctions exp(±ix).
Consider a perturbed case for the problem (2.4), (2.5) and let

a(ε) = a(α)(1 + β2ε), b(ε) = 1 + β1ε, β1, β2 ∈ R, 0 < ε≪ 1.

Define the LDO by the equality

A(ε)y = −y(IV ) − b(ε)y′′ + a(ε)y′ + a2y
′′′,

where y = y(x) is a smooth 2π-periodic function. Finally, A0y = A(0)y. The
LDO A(ε) has two eigenvalues

λ±1(ε) = τ(ε)± iω(ε), τ(ε) = β1ε, ω(ε) = a(α)(1 + β2ε), τ(0) = 0, ω(0) = ω.

The other eigenvalues satisfy the inequality Reλn(ε) ≤ −γ < 0, n 6= 0, n 6= ±1.

3. Nonlinear boundary-value problem

In this section, we consider the boundary-value problem (2.4), (2.5) for the per-
turbed case, i.e.

(3.1) wt = A(ε)w + c1(w
2)x + c2(w

2)xx,

(3.2) w(t, x+ 2π) = w(t, x).

It has the two-dimensional invariant manifold (the center manifold) V2(ε) (see, for
example, [8-10]). Moreover, this manifold V2(ε) possesses the following properties:

i) If some solutions of problem (3.1), (3.2) do not belong to V2(ε), then these
solutions approach it exponentially with time.

ii) If the solutions belong to V2(ε) then the behaviour of these solutions are
determined by the solutions of the system of two ordinary differential equations
which are called the normal form [10–11].

Consider the set of solutions belonging to V2(ε). Recall [12] (see also the
references in [12]) that these solutions are sought in the form of the sum

(3.3) w(t, x, ε) = ε1/2w0(t, s, x) + εw1(t, s, x) + ε3/2w2(t, s, x) + o(ε3/2),

where s = εt, all functions are t-periodic of period 2π/ω and satisfy the boundary-
value condition (3.2). We put

(3.4) w0(t, s, x) = z(s) exp(iωt+ ix) + z(s) exp(−iωt− ix)
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and suppose that the functions w1, w2 have the trivial averages, i.e.

M0(wj) = 0,M±1(wj) =
ω

(2π)2

2π/ω
∫

0

π
∫

−π

wj(t, s, x)×

× exp(±iωt± ix)dxdt = 0, j = 1, 2.

Here, z(s) in (3.4) is a complex-valued function which will be defined later.

To determine w1, w2, we substitute sum (3.3) in to (3.1) and (3.2) and suc-
cessively equate coefficients at respective powers of ε, i.e. we use a version of
Krylov-Bogolubov algorithm for the formation of the normal form [11]. As a
result, we obtain two nonhomogeneous boundary-value problems for w1, w2.

For w1 we obtain the following problem

(3.5) w1t −A0w1 = c1(w
2

0
)x + c2(w

2

0
)xx,

(3.6) w1(t, s, x+ 2π) = w1(t, s, x).

Finally, for w2 this problem has the following form

(3.7)
w2t −A0w2 = 2c1(w0w1)x + 2c2(w0w1)xx−

−[z′ exp(iωt+ ix) + z′ exp(−iωt− ix)],

(3.8) w2(t, s, x+ 2π) = w2(t, s, x).

Remark. Let a continuous function F (t, x) satisfies the periodic condition
in question and F (t, x) is 2π/ω-periodic of t, belongs to Hp

2
(p = 0, 1, 2, . . .) for

fixed t. Then the nonhomogeneous boundary-value problem

vt −A0v = F (t, x), v(t, x + 2π) = v(t, x)

has a periodic solution of t which the period is equal to 2π/ω if the following
equalities M0(F ) =M±1(F ) = 0 are valid. Here, in this remark

M0(F ) =
ω

(2π)2

2π/ω
∫

0

π
∫

−π

F (t, x)dxdt,

M±1(F ) =
ω

(2π)2

2π/ω
∫

0

π
∫

−π

F (t, x) exp(±iωt± ix)dxdt.

The equalities M0(v) = M±1(v) = 0 single out one such a solution. The
above conditions (M0(F ) =M±1(F ) = 0) are known as the solvability conditions
for the boundary-value problem in question [13].
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Consider the boundary-value problem (3.5), (3.6). It can be shown that the
solvability conditions are always hold and the solution of this problem has the
following form

w2(t, s, x) = η exp(2iωt+ 2ix) + η exp(−2iωt− 2ix),

where η = (ic1 − 2c2)/(3(2+ ia2)). Applying the solvability condition to problem
(3.7), (3.8) gives that

(3.9) z′ = (q1 + iq2)z − (l1 + il2)z
2z,

where

l1 =
6c1c2a2 − 4(2c2

2
− c2

1
)

3(4 + a2
2
)

, l2 =
12c1c2 + 2a2(2c

2
2
− c2

1
)

3(4 + a2
2
)

, q1 = β1, q2 = a(α)β2.

We have obtained the ordinary differential equation (3.9). It is the principal
part of the normal form in the study of the Andronov-Hopf bifurcation [8]. In
fluid dynamic, this equation is known as the Landau equation (see, for example,
[14]). Evidently, the following assertion is just (see, for example, [7]).

Lemma 3. If q1l1 > 0, then the equation (3.9) has the family of periodic

solutions

z(s) =

√

q1

l1
exp(σ1s+ ϕ1), σ1 = q2 − l2

q1

l1
, ϕ1 ∈ R.

All solutions of this family are stable if l1 > 0 and unstable if l1 < 0. This
family of solutions gives us the limit cycle Cl(α).

Using the results of [7–11,13,15], we can proof the following assertion.

Theorem 1. There exist ε0 > 0 such that the boundary-value problem (3.1),
(3.2) has the solutions corresponding to Cl(α) for all ε ∈ (0, ε0)

(3.10)

wα(t, x, ε) =
√

q1

l1
ε1/2[exp(i(ω + εσ1)t+ ix+ iϕ1)+

+ exp(−i(ω + εσ1)t− ix− iϕ1)] +
q1

l1
ε[η exp(2i(ω + εσ1)t+

+2ix+ 2iϕ1) + η exp(−2i(ω + εσ1)t− 2ix− 2iϕ1)] + o(ε).

The cycle Cp(α) of boundary-value problem (3.1), (3.2) inherits the stability

properties of cycle Cl(α) of equation (3.9). Therefore, the cycle Cp(α) exists if

l1q1 > 0. It is stable if l1 > 0 and unstable if l1 < 0.

Remark. If a2 = c2 = 0, then we have the classic case for the Kuramoto–
Sivashinsky equation. Then l1 = c2

1
/6, l2 = 0.
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Therefore, the problem (3.1), (3.2) (with α in question) have the stable peri-
odic solution if the trivial equilibrium (w = 0) has lost the stability.

Let α be fixed (α = α0). Suppose that in this case the theorem 1 remains
valid. Let now α = α0+α1, where α1 is a sufficiently small real constant. Hence,
we obtain the cycle Cp(α). This cycle Cp(α) lies in the neighbourhood of Cp(α0)
and the formula (3.10) remains a valid with q1(α), q2(α) instead of q1(α0), q2(α0).

4. Original boundary problem

We now return to the problem (1.5), (1.6). Let ε = |(b − 2c2α) − 1|, β1 =
sign((b2 − 2c2α) − 1) and suppose that b, α are chosen such that ε ≪ 1. The
results of the section 2,3 allows us to affirm that the following assertions are
valid.

Theorem 2. There exist ε0 > 0 such that for all ε ∈ (0, ε0) the boundary-

value problem (1.5), (1.6) has the two-dimensional invariant manifold V2(α) is

formed by the set of the solutions (3.10)

(4.1) v(t, x, ε, α) = α+ wα(t, x, ε),

where the function wα(t, x, ε) was indicated in Section 3 by the formula (3.10).

This manifold V2(α) exists if q1l1 > 0, where the constants q1, l1 was deter-

mined in Section 3. If l1 > 0, we can affirm that our manifold V2(α) is exponential
stable. This manifold is unstable if l1 < 0.

Note that all solutions from the set (3.10) depend on two parameters α and
ϕ1 (see formula (3.10)) and the periodic solutions (4.1) have the different period
T (α) = 2π/ω(α). It implies that T ′(α) 6= 0.

The reader will easily prove that all solutions belonging to V2(α) are unstable
in the sense of the definition of Lyapunov.

The proof follows from the assertion.

Lemma 4. Let ω, ωn ∈ R,n = 1, 2, 3, . . . . Consider the sequence of functions

ψn(t) = cosωnt− cosωt, n = 1, 2, 3, . . . . There exists a sequence {ωn} such that

(i) lim
n→∞

ωn = ω; (ii) max
0≤t≤∞

|ψn(t)| = 2.

The proof of this lemma is trivial.

Finally, we have proved that boundary-value problem (1.5),(1.6) can have
certain exponentially stable manifold V2(α), but the solutions belonging to this
manifold are unstable.
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Corollary. The boundary-value problem (1.4), (1.7) has the manifolds V3(ε)
(dimV3(ε) = 3) containing the solutions

(4.2) u(t, x, ε, α) = βt+ αx+ uα(t, x, ε) + γ,

where α, γ ∈ R, β = aα+ a2α
2,

uα(t, x, ε) =

x
∫

0

wα(t, y, ε)dy.

All solutions (4.2) are also unstable as the solutions (4.1) of boundary-value prob-

lem (1.5), (1.6).

Note that the periodic boundary-value problem for the equation (1.1) was
studied in [12], i.e. in this article, the equation (1.1) was considered with the
conditions h(t, x+ 2π, y) = h(t, x, y + 2π) = h(t, x, y).

In the paper [15], the equation (14) with a1 = a2 = 0 was considered. Such
equation was investigated with the boundary-value conditions

wxx|x=0,x=1 = wxxx|x=0,x=1 = 0, x ∈ [0, 1].

The similar results was obtained.
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