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STUDIA MATHEMATICA

CNN MODELLING OF NANO-INCLUSIONS∗

Angela Slavova, Maya Markova

Piezoelectrical material with heterogeneities of nano-inclusions is considered
in the case when it is subjected to time harmonic electro-mechanical load.
The model is defined by the system of two partial differential equations and
the boundary conditions for the generalized stress. On the exterior bound-
ary, boundary conditions prescribe traction on the part of the boundary and
prescribe displacement on the complemented part. We construct Cellular
Nonlinear/Nanoscale Network (CNN) architecture for the boundary value
problem. The dynamics of the obtained CNN model is studied via harmonic
balance method. Traveling wave solutions are obtained numerically. The
simulations are provided which illustrate the theoretical results. The ob-
tained results are applicable in the field of non-destructive testing and frac-
ture mechanics of multi-functional materials and structural elements based
on them.

1. Introduction

The demand for smaller and faster devices has encouraged technological advances
resulting in the ability to manipulate matter at nanoscales that have enabled the
fabrication of nanoscale electromechanical systems. With the advances in materi-
als synthesis and device processing capabilities, the importance of developing and
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understanding nanoscale engineering devices has dramatically increased over the
past decade. Computational Nanotechnology has become an indispensable tool
not only in predicting, but also in engineering the properties of multi-functional
nano-structured materials. The presence of nano-inclusions in these materials af-
fects or disturbs their elastic field at the local and the global scale and thus greatly
influences their mechanical properties. In this paper we shall look for a solution
of 2D dynamic coupled problem in multifunctional nano-heterogeneous piezo-
electric and magnitopiezoelectric composites. More in detail, we shall present
first modeling and solution of two-dimensional anti-plane (SH) wave propagation
problem in piezoelectric/magnitopiezoelectric anisotropic solids containing multi-
ple nano-inclusions. The model is based on the principles of elastodynamics, wave
propagation theory and surface/interface elasticity theory. Nano-heterogeneities
are considered in two aspects as wave scatters provoking scattered and diffraction
wave fields and also as stress concentrators creating local stress concentrations
in the considered solid. In Section 2 we shall state the model of piezoelectric
solid with heterogeneities under time-harmonic anti-plane load. Section 3 will
deal with the discretization of this model by Cellular Nonlinear/Nanoscale Net-
work (CNN) architecture and dynamic behavior of the obtained CNN model.
In Section 4 we shall present simulations and validation for the problem under
consideration. Discussions will be provided in the conclusions.

2. Statement of the problem

Let G ∈ R2 is a bounded piezoelectric domain with a set of inhomogeneities
I = ∪Ik ∈ G (holes, inclusions, nano-holes, nano-inclusions) subjected to time–
harmonic load on the boundary ∂G, see Figure 1. Note that heterogeneities are
of macro size if their diameter is greater than 10−6 m, while heterogeneities are
of nano-size if their diameter is less than 10−7 m.

The aim is to find the field in every point of M = G\I, I and to evaluate
stress concentration around the inhomogeneities.

Using the methods of continuum mechanics the problem can be formulated in
terms of boundary value problem for a system of 2-nd order differential equations,
see [1], Chapter 2.
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Figure 1: Piezoelectric matrix M with nano-heterogeneities I

potential, ρN is the mass density, cN44 > 0 is the shear stiffness, eN15 6= 0 is the
piezoelectric constant and εN11 > 0 is the dielectric permittivity.

Assume that the interface between the nano-inclusion I and its surrounding
matrixM is regarded as thin material surface S that possesses its own mechanical
parameters cI44, e

I
15, ε

I
11.

We shall consider the case, when I is a nano-hole, formally we consider that
constants in I are cI44 = 0, eI15 = 0, εI11 = 0 and boundary conditions on S are

tMj =
∂σSlj

∂l
on S(2)

where σSlj is generalized stress [1], j = 3, 4, l is the tangential vector. Then we
shall study boundary value problem (BVP) (1) with boundary conditions (2).

There are no numerical results for dynamic behavior of bounded piezoelectric
domain with heterogeneities under anti-plane load. Validation is done in [1] for
infinite piezoelectric plane with a hole, in [2] for isotropic bounded domain with
holes and inclusions and in [3] for piezoelectric plane with nano-hole or nano-
inclusion.

In the next section we shall propose Cellular Nonlinear/Nanoscale Network
(CNN) architecture, as a discretized version of the problem (1),(2) and we shall
study its dynamics in Section 4.
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3. CNN model of boundary value problem

Resonant tunnel diode (RTD) based CNN [4] which represents a class of quantum
effect devices, is an excellent candidate for both analog and digital applications
because of its structural simplicity, relative ease of fabrication, inherent speed and
design flexibility. For this reason we shall apply RTD-based CNN architecture
for studying the dynamics of BVP (1), (2). Following [4, 5] we shall write the
RTD-based CNN of the BVP which consists of n = L.L cells:

cN44A1 ∗ u3i + eN15A1 ∗ u4i − ρN
d2u3i

dt2
= 0

eN15A1 ∗ u3i − εN11A1 ∗ u4i = 0, 1 ≤ i ≤ n,
(3)

where A1 is 1-dimensional discretized Laplacian template [5], ∗ is convolution
operator, 1 ≤ i ≤ n. Boundary conditions (2) can be written in terms of RTD-
based CNN architecture are as follows:

tMj =
∂σMlij

∂l
, j = 3, 4,

σMl3i = cM44
∂ul3i
∂xl

+ eM15
∂ul4i
∂xl

,

σMl4i = eM15
∂ul3i
∂xl

− εM11
∂ul4i
∂xl

, 1 ≤ i ≤ n.

(4)

We express from the second equation of (3), A1 ∗ u4i and substitute in the
first equation. So we obtain the following equation for u3i:

C̃A1 ∗ u3i − ρN
d2u3i

dt2
= 0,(5)

where C̃ = cN44 +
(eN15)

2

ε11
.

We shall take the output of the model (3), (4) as a piecewise linear function
[4]:

y(uji) = auji + b(|uji − Vp| − |uji − Vv|)− b(|uji + Vp|−(6)

|uji + Vv|) = N(uji), j = 3, 4

where a > 0, b < 0 are constants, Vp, Vv (0 < Vp < Vv) are the peak and valley
voltages of the RTD-based CNN, and as one can notice the output function is
symmetric with respect to the origin. The graph of the output function is given
on Figure 2 below:
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Figure 2: Graph of the output function (6) for the RTD-based CNN model

4. Dynamics of the RTD-CNN model

We shall apply approximative method in order to study the dynamics of our RTD-
based CNN model (3), (4). This method is based on a special Fourier transform
and is known in electrical engineering as harmonic balance method [5]. Following
harmonic balance method we introduce double Fourier transform:

F (s, z) =
k=∞
∑

k=−∞

z−k

∫ ∞

−∞
fk(t) exp(−st)dt.(7)

where z = exp(IΩ), Ω is continuous spatial frequency, s = Iω, ω is continuous
temporal frequency, I is the imaginary identity.

We apply the above transform (7) to (5) and obtain the following transfer
function:

H(s, z) =
ρNs2

C̃(z−1 − 2 + z)
.(8)

According to the harmonic balanced method [5] the following proposition
hold:

Proposition 1. RTD-Based CNN model (3), (4) consisting of circular array

of n = L.L cells has periodic state solutions u3i, u4i with a finite set of spatial

frequencies Ω =
2π

K
, 0 ≤ K ≤ n− 1 and minimal period T .

P r o o f. We are looking for possible periodic solutions of our CNN model
(3), (4) of the form:

uji(t) = ξ(ωt+ iΩ), j = 3, 4(9)
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for some function ξ : R → R and for some 0 ≤ Ω ≤ 2π, ω =
2π

T
, where T > 0

is the minimal period of (9). For the circular array the possible values for Ω can
be easily obtained. As uji(t) is assumed to be periodic, with minimal period T ,
one has

ξ(ωt+ iΩ) = ξ(ωt+ iΩ+KωT )(10)

for any K ∈ N. One the other hand, the periodic boundary conditions impose
that

ξ(ωt) = ξ(ωt+ nΩ).(11)

Combining (10) with i = 0 and (11), we get

Ω =
K

n
ωT =

2πK

n
, 0 ≤ K ≤ n− 1,(12)

where the range of K is determined by the condition 0 ≤ Ω ≤ 2π.

Now we shall look for the solution of (3), (4) in the form:

u3i = U3 sin(ωt+ iΩ),
u4i = U4 sin(ωt+ iΩ),

(13)

where U3, U4 are amplitudes, 0 ≤ Ω ≤ 2π, ω =
2π

T
, T being the minimal period

of (9).

We shall express the transfer function (8) in terms of s = Iω and z = exp(IΩ)
and we obtain:

HΩ(ω) =
−ρNω2

C̃(2 cos Ω− 2)
.(14)

According harmonic balance method [5] the following constraints hold:

Re(HΩ(ω)) =
U3

U4
Im(HΩ(ω)) = 0.

(15)

We shall approximate the output of our RTD-based CNN model (3), (4) given
by (6) by the fundamental component of its Fourier expansion:

y = Y sin(ωt+ iΩ)(16)

with

Y =
1

π

∫ π

−π
N(uji sinψ) sinψdψ.
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Then we substitute real and imaginary part of the transfer function HΩ(ω)
(14) in (15) and we obtain the system of algebraic equations for the unknowns
(ω,U3, U4). We solve this system and find the unknowns. This is the end of the
proof. �

Remark. In order to validate the accuracy of the obtained results we apply
possible initial conditions from which the network will reach, at steady state, a
steady state solution characterized by the desired value of Ω. In our case we
propose the initial conditions of the form: uji(0) = sin(Ωi), j = 3, 4 ,1 ≤ i ≤ n.

Consider the square domain G1G2G3G4 given on Figure 1 with a side α,
containing a single circular inhomogeneity with a radius r = βα and center at
the square center. Note that if β < 0.05 the influence of the exterior boundary G
on the solution is expected to be small, while if β > 0.2 it is expected significant
influence. In our case of heterogeneities at nano-scale, material parameters inside
I for the hole are 0; for an inclusion are: cI44 = 0.1cM44 , e

I
15 = 0.1eM15 , ε

I
11 = 0.1εM11 ,

ρI = ρM . Spatial frequency is defined as Ω = c

√

(
ρM

cM44
)ω. For this parameter

set we present below on Figure 3 the obtained solution of our RTD-based CNN
model (3), (4).

Figure 3: Simulations of RTD-based CNN model (3), (4)

As it can be seen from the above figure we have traveling wave solution of
the form:

uji = Φ(i− ct), j = 3, 4(17)

for for some continuous function Φ : R1 → R1 and some unknown real number
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c. Let us denote s = i− ct, then this solution satisfies:

lim
s→

Φ(s, c) = 0.(18)

Traveling wave solution for our RTD-based CNN model is given on Figure 4.
We use the above parameter set for the numerical simulation.
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Figure 4: Traveling wave solution of RTD-based CNN model (3), (4)

5. Simulations and validation

The characteristic that is of interest in nano-structures is normalized Stress Con-
centration Field (SCF) (σ/σ0) and it is calculated by the following formula:

σ = −σ13 sin(ϕ) + σ23 cos(ϕ),(19)

where ϕ is the polar angle of the observed point, σji is the stress (2) near S.

Material parameters of the matrix are for transversely isotropic piezoelectric
material PZT4 are:

– Elastic stiffness: cM44 = 2.56 × 1010 N/m2;

– Piezoelectric constant: eM15 = 12.7 C/m2;

– Dielectric constant: εM11 = 64.6 × 10−10 C/Vm;

– Density: ρM = 7.5 × 103 kg/m3.
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The applied load is time harmonic uni-axial along vertical direction uniform
mechanical traction with frequency ω and amplitude σ0 = 400 × 106 N/m2 and

electrical displacement with amplitude D0 = k
εM11
eM15

σ0.This means that the bound-

ary conditions (4) are:

– on G1G2 : tM3 = −σ0, t
M
4 = −D0;

– on G2G3 : tM3 = tM4 = 0;

– on G3G4 : tM3 = 0, t
M
4 = D0;

– on G4G1 : tM3 = tM4 = 0.

The validation of our model is provided below on Figure 5 for the parameter
sets given above.
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Figure 5: Validation – dynamic SCF at observed point

6. Conclusions

In this paper we consider homogeneous or functional graded piezoelectric mate-
rial with heterogeneities of different type (hole, crack, inclusion, nano-hole, nano-
inclusion) subjected to time-harmonic wave. There is a certain lack of work for
solution of 2D ant-plane dynamic problems for piezoelectric and magnetopiezo-
electric solids with nanoinclusions or nano-cavities. The reason is that such a
goal requires multidisciplinary knowledge and skills.
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In this paper we propose RTD-based CNN approach for numerical study of
the dynamics of the model (1), (2). We find traveling wave solutions of our CNN
model and the simulations illustrate the obtained theoretical results.

Computational nanomechanics has a high priority in Europe, because it con-
cerns the development and creation of new smart materials and devices based
on them. The present paper addresses the vital component of accurate descrip-
tion and computation of the wave motions and stress concentrations that are
developed in the multifunctional materials with nano-structures.

References

[1] P. Dineva, D. Gross, R. Muller, T. Rangelov. Dynamic Fracture of
Piezoelectric Materials. Solutions of Time-harmonic problems via BIEM, Solid
Mechanics and its Applications, vol. 212, Springer Int.Publ., Switzerland,
2014.

[2] X. Q. Fang, J. X. Liu, L. H.Dou, M. Z. Chen. Dynamic strength arround
two interactive piezoelectric nano-fibers with surfaces/interfaces in solid under
electro-elestic wave. Thin Solid Films, 520 (2012), 3587–3592.

[3] M. Jammes, S. G. Mogilevskaya, S. L. Crouch. Multiple circular nano-
inhomogeneities and/or nano-pores in one of two joined isotropic half-planes.
Eng. Anal. Bound. Elem., 33 (2009), 233–248.

[4] C. H. Hsu, S. Y. Yang. Wave Propagation in RTD-Based Cellular Neural
Network. Journal of Differential Equations, 204 (2004), 339–379.

[5] A. Slavova. Cellular Neural Networks: Dynamics and Modeling. Kluwer
Academic Publishers, 2003.

Angela Slavova

Institute of Mathematics

and Informatics

Bulgarian Academy of Scienses

Acad. G. Bonchev Str., Bl. 8

1113 Sofia, Bulgaria

e-mail: slavova@math.bas.bg

Maya Markova

Department of Applied Mathematics

and Statistics

University of Russe

8, Studentska Str.

7017 Russe, Bulgaria

e-mail: maya.markova@gmail.com


	Page 1

