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STUDIA MATHEMATICA

THE INFLUENCE OF INHOMOGENEITY

ON THE DYNAMIC BEHAVIOR OF FUNCTIONALLY

GRADED MAGNETO-ELECTRO-ELASTIC MATERIALS

WITH CRACKS∗

Yonko Stoynov

Functionally graded materials are extensively used in modern industry.
They are composite materials with continuously varying properties in one or
more spacial dimensions, according to the specific purpose. In view of their
applications, stress analysis of such materials is important for their struc-
tural integrity. In this study we will consider cracked functionally graded
magneto-electro-elastic materials subjected to SH waves. We assume that
the material properties vary in one and the same way, described by an in-
homogeneity function. The boundary value problem is reduced to a system
of integro-differential equations based on the existence of fundamental solu-
tions. Different inhomogeneity classes are used to obtain a wave equation
with constant coefficients. Radon transform is applied to derive the fun-
damental solution in a closed form. Program code in FORTRAN 77 is de-
veloped and validated using available examples from literature. Simulations
show the dependence of stress on the frequency of the applied time-harmonic
load for different types of material inhomogeneity.
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1. Introduction

Magneto-electro-elastic composites are advanced materials that possess large
magneto-electric effect. This effect doesn’t exist in piezoelectric or piezomag-
netic phase and has variety of applications in modern smart structures. Due to
different physical and chemical properties of the constituents in the composite
a process called delamination can occur. To overcome this problem functionally
graded materials (FGM) have been created. FGM were used for the first time
in Japan, 1984, during the project SPACEPLANE, when researches confronted
with the challenge to develop material that can create 1000◦F temperature dif-
ference in 10mm thickness. FGM are composites in which two or more materials
are combined to obtain the desired properties needed for the application of FGM.
Their composition is in continuously graded form to avoid the abrupt change of
material properties. The main application area of FGM are aerospace industry,
communication field, energy sector, medical field, nuclear projects ([1]). Fracture
analysis of FGM is important for their structural integrity and reliable service life.
The smooth variation of material properties is described by a continuous func-
tion h(x). In most published papers this function is exponential.Different types
of inhomogeneity can be found in Li and Weng [2], Manolis et al [3], Sutradhar
and Paolino [4], Rangelov et al [5].

In this research we will consider functionally graded magneto-electro-elastic
materials (FGMEEM) with cracks subjected to time-harmonic SH wave. Differ-
ent types of functions that describe the smooth variation of the material proper-
ties will be used in our model. The boundary integral equation method (BIEM)
is used for the numerical solution. Program code in FORTRAN 77 is developed
for the numerical calculations. Numerical results show the dependence of the
stress intensity factor on the frequency of the external time-harmonic load.

2. Statement of the problem

We consider transversely-isotropic functionally graded magnetoelectroelastic ma-
terial in the coordinate system Ox1x2x3, where Ox3 is poling direction and sym-
metry axis and Ox1x2 is the isotropic plane. MEEM is subjected to anti-plane
mechanical impact on the Ox3 axis, and in-plane electrical and magnetic impacts
in the plane Ox1x2. The constitutive equations for this type of medium (see Soh
and Liu [6]) are:

σiQ = CiQJluJ,l,(1)

where x = (x1, x2), and Γ = Γ+
⋃

Γ− is an internal crack - an open arc. Here
and in what follows comma denotes partial differentiation, it is assumed sum-
mation in repeating indexes and small indexes vary 1, 2, while capital indexes
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vary 3, 4, 5; uJ is the generalized displacement vector uJ = (u3, φ, ϕ), where u3
is out of plane elastic displacement, φ is the electric potential, ϕ is the mag-
netic potential; σiJ = (σi3,Di, Bi) is the generalized stress tensor, where σiJ
is the stress, Di and Bi are the components of the electric and magnetic in-
duction respectively along Oxi axis; CiQJl is the generalized elasticity tensor

defined as: Ci33l(x) =

{

c44(x), i = l

0, i 6= l
, Ci34l(x) = Ci43l(x) =

{

e15(x), i = l

0, i 6= l
,

Ci35l(x) = Ci53l(x) =

{

q15(x), i = l

0, i 6= l
, Ci44l(x) =

{

−ε11(x), i = l

0, i 6= l
, Ci45l(x) =

Ci54l(x) =

{

−d11(x), i = l

0, i 6= l
, Ci55l(x) =

{

−µ11(x), i = l

0, i 6= l
. Functions c44(x),

e15(x), ε11(x) are: elastic stiffness, piezoelectric coefficient and dielectric per-
mittivity, while q15(x), d11(x), µ11(x) are piezo-magnetic and magneto-elastic
coefficients and magnetic permeability correspondingly.

Assuming quasi-static approximation in the Maxwell equation the governing
equation in the frequency domain in absence of body force, electric charge and
magnetic current is the following:

σiQ,i + ρQJω
2uJ = 0(2)

where ρQJ =

{

ρ,Q = J = 3
0, Q, J = 4 or 5

, ρ(x) is the mass density, ω > 0 is the frequency.

We assume that all material properties depend on x in one and the same
way and describe this by an inhomogeneity function h(x): c44(x) = h(x)c44,
e15(x) = h(x)e15, ε11(x) = h(x)ε11 , q15(x) = h(x)q15, d11(x) = h(x)d11, µ11(x) =
h(x)µ11. The inhomogeneity function has the following form: h(x) = F 〈k, x〉,
where 〈k, x〉 = k1x1 + k2x2.

When the incident SH-wave interacts with the cracks a scattered wave is
produced. The total displacement and traction at any point of the plane can be
calculated by the superposition principle:

uJ = uinJ + uscJ , tJ = tinJ + tscJ ,(3)

where tJ = σiJni and ni = (n1, n2) is the outer normal vector.uinJ and tinJ are
displacement and traction of the incident wave fields uscJ and tscJ are the scattered
by the cracks wave fields.We impose the following boundary conditions: tJ = 0,
tinJ = −tscJ

tJ = 0 or tinJ = −tscJ , x ∈ Γ(4)

uscJ → 0 when (x2
1
+ x2

2
)1/2 → ∞(5)
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The boundary condition (4) means that the cracks are free of mechanical traction
and also they are magnetoelectrically impermeable. This boundary condition is
widely used in literature, see Sladek et al. [7]. Permeable cracks are also used in
literature. Impermeable and permeable crack models are discussed in details in
Dineva et al. [8]. We will reduce the boundary value problem (2), (4) and (5) to
an equivalent system of integro-differential equations along the cracks and then
solved this system numerically.

3. Boundary integral equation method

The fundamental solution u∗KM of (2) is the solution of the equation:
σiQ,i + ρQJω

2uJ = δJMδ(x, ξ),
where δJM is the Kronecker symbol and δ(x, ξ) is the Dirak’s delta function.
Following [9], [10]T the fundamental solution can be represented in the following
way
u∗KM = h−1/2U∗

KM ,
where U∗

KM is solution of:

CiJKiU
∗
KM,ii + [ρJKω2 − CiJKik

2

i ]U
∗
KM = h−1/2(ξ)δJM δ(x, ξ).(6)

Equation (6) is with constant coefficients if pJK = CiJKih
−1/2(h1/2),ii = const.

We will consider the following types of functions for which this condition is sat-
isfied.

(i) h(x) = (< a, x > +b)2 – quadratic type, pJK = 0;

(ii) h(x) = e2<a,x>+b, h(x) = cos h2(2 < a, x > +b)– exponential type, pJK =
CiJKia

2

i ;

(iii) h(x) = sin2(2 < a, x > +b)– trigonometric type, pJK = −CiJKia
2

i ;

When a system with constant coefficients is obtained we find the fundamental
solutions in a closed form using direct and inverse Radon transform and calculus
with generalized functions (see [8], [11])

Following Wang and Zhang [10] and Gross et al. [12]the following represen-
tation formulae are valid:

tscJ (x, ω) = CiJKl(x)ni(x)
∫

Cr{[σ
∗
ηPK(x, y, ω)△uP,η(y, ω)

−ρQP (y)ω
2u∗QK(x, y, ω)△uP (y)]δλl

−σ∗
λPK(x, y, ω)△uP,l(y, ω)]nλ(y)}dΓ(y),

(7)

where ∆uJ = uJ |Cr+ − uJ |Cr− are jumps of the displacement along the crack
or crack opening displacement (COD),Cr = Cr1

⋃

Cr2, Cr+ and Cr− are the
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upper and lower bounds of the cracks correspondingly, u∗KM is the fundamental
solution and σ∗

iJK = CiJMlu
∗
KM,l,

Since the fundamental solution and incident wave field are known, using (7)
we obtain integro-differential equation along the crack, where unknowns are COD:

tinJ (x, ω) = −CiJKl(x)ni(x)
∫

Cr{[σ
∗
ηPK(x, y, ω)△uP,η(y, ω)

−ρQP (y)ω
2u∗QK(x, y, ω)△uP (y)]δλl

−σ∗
λPK(x, y, ω)△uP,l(y, ω)]nλ(y)}dΓ(y), x ∈ Cr,

(8)

The equation (8) is solved numerically. Once COD are found we can calculate
the scattered field at every point on the plane using (7)

4. Numerical realization and results

The two cracks are discretisized using 7BE for each crack. The unknown COD
are approximated by parabolic shape functions. The singular integrals are solved
analitically using assymptotic behavior of the fundamental solution for small
arguments. The 2D integrals are solved numerically by the Monte-Carlo method.
Program code in Fortran 77 is developed.

The generalized stress intensity factors (SIF) are computed as follows:
KIII = limx1→±a t3

√

2π(x1 ∓ a),
KE = limx1→±aE2

√

2π(x1 ∓ a),

KH = limx1→±aH2

√

2π(x1 ∓ a)
The half-length of the cracks is c = 5mm, the MEEM that we use is the

piezoelectric/piezomagnetic composite BaTiO3/CoFe2O4 and the material con-
stants for this composite can be found in Song and Sih [13], Li [14]. The
components of the inhomogeneity function are presented in the following way:
k = (k1, k2) =

β
2c
(cosα, sinα), where β is the magnitude of inhomogeneity, α is

the inhomogeneity angle. We compare the following material gradations: h(x) =
(k1x1+k2x2+1)2-quadratic type, h(x) = e2(k1x1+k2x2), h(x) = cos h2(k1x1+k2x2)-
exponential type, h(x) = sin2(k1x1 + k2x2 + 1)-trigonometric type.

4.1. Validation

We validate our results with available examples from the literature. Comparison
is made with the results in [5] for the piezoelectric material PZT-6B, sinusoidal
inhomogeneity function, inhomogeneity magnitude β = 0.4 and inhomogeneity
angle α = π/2. The comparison is given in Figure 1 The normalized SIF is
K∗

III =
KIII

tin
3

√
(πc)

and the normalized frequency is Ω = c
√

(ρω2a−1

0
+a2

1
+A2

2
), where

a0 = c44+
e2
15

ε11
. We see good coincidence with maximum difference of no more than
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Figure 1: Normalized SIF versus the normalized frequency for sinusoidal type of
inhomogeneity α = π/2
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Figure 2: Normalized SIF versus the normalized frequency for sinusoidal type of
inhomogeneity α = 0.0

5 percents. In Figure 2 we present comparison for the same function, but for α =
0.0. The coincidence is very good, the difference is no more than 2 percents. In
Figure 3 we compare our results with the results in [5] for quadratic inhomogeneity
function, inhomogeneity magnitude β = 0.4 the normalized frequency is Ω =
c
√

(ρω2a−1

0
). The results show good coincidence.

4.2. Parametric studies

The aim of the simulations is to show the sensitivity of the SIF to the differ-
ent inhomogeneity types for functionally graded magneto-electro-elastic com-
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Figure 3: Normalized SIF versus the normalized frequency for quadratic type of
inhomogeneity α = 0.0
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Figure 4: Normalized stress intensity factor versus the normalized frequency for
different inhomogeneity types, left crack tip

posite material. The material used is piezoelectric/piezomagnetic composite
BaTiO3/CoFeO4. The following inhomogeneity functions are used: h(x) =
(k1x1 + k2x2 + 1)2, h(x) = e2(k1x1+k2x2), h(x) = cos h2(k1x1 + k2x2) h(x) =
sin2(k1x1 + k2x2 + 1). The inhomogeneity magnitude is β = 0.4 and the inho-
mogeneity angle is α = 0.0. The normalized frequency is Ω = cω

√

(ρc−1

44
). The

results for left and right crack tip are given in Figures 2 and 3. The results for
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Figure 5: Normalized stress intensity factor versus the normalized frequency for
different inhomogeneity types, right crack tip

h(x) = (k1x1+k2x2+1)2 and h(x) = e2(k1x1+k2x2) are only slightly different while
hyperbolic cosine inhomogeneity and sinusoidal inhomogeneity show considerable
decreasing of the normalized SIF. We see that generally the stress concentration
at right crack tip is lower than at the left crack tip. The stress intensity factor is
strongly dependant on inhomogeneity types.

5. Conclusion

Functionally graded materials are advanced materials with continuously varying
material properties. They have wide range of applications in modern technology.
In this study we presented numerical solution of integrodifferential equations
for functionally graded magneto-electro-elastic materials with different material
gradation using the BIEM. The fundamental solution is obtained using Radon
transform. FORTRAN 77 code, based on the BIEM is developed. The validation
studies show the correctness of the developed numerical tool. The numerical ex-
amples reveal the significant differences that occur for different types of material
gradation. They also demonstrate that SIF depends strongly on the inhomo-
geneity function. This software can be further developed to solve problems in
materials with nano-heterogeneities, laminar structures, thermo-elastic problems,
direct and inverse problems in finite solids and has application in non-destructive
material testing.
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