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A COMPACT ALTERNATING DIRECTION IMPLICIT

SCHEME FOR TWO-DIMENSIONAL FRACTIONAL

OLDROYD-B FLUIDS∗

Daniela Vasileva, Ivan Bazhlekov, Edik Ayryan, Emilia Bazhlekova

The two-dimensional Rayleigh-Stokes problem for a generalized Oldroyd-
B fluid is considered in the present work. The fractional time derivatives
are discretized using L1 and L2 approximations. A fourth order compact
approximation is implemented for the space derivatives and two variants
of an alternating direction implicit finite difference scheme are numerically
investigated.

1. Introduction

In recent years, increasing attention has been devoted to the study of viscoelastic
non-Newtonian fluids modeled by constitutive equations which involve fractional
derivatives, see [1, 2, 3, 4, 5].

In the present work we consider the following two-dimensional initial-boundary
value problem for the velocity distribution of a viscoelastic flow with generalized
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fractional Oldroyd-B constitutive model (see [2, 3, 4, 5] for details on the deriva-
tion):

(1 + aDα
t )ut = µ(1 + bD

β
t )∆u+ F (x, y, t), (x, y) ∈ (0, 1)2, t > 0,(1)

u(x, y, 0) = ut(x, y, 0) = 0, (x, y) ∈ [0, 1]2,(2)

u(x, y, t) = v(x, y, t), t > 0, x = 0 or x = 1 or y = 0 or y = 1.(3)

Here a, b ≥ 0, µ > 0, Dα
t andD

β
t are Riemann-Liouville fractional time derivatives

of orders α ∈ (0, 1) and β ∈ (0, 1), F (x, y, t), v(x, y, t) are given functions.
Let us recall that the Riemann-Liouville fractional derivative of order α > 0

is defined as follows (see e.g. [6]):

RLD
α
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

(t− s)n−α−1f(s)ds,

where n is a positive integer, such that n − 1 < α < n. Due to the prescribed
initial conditions (2), the Riemann-Liouville derivatives in Equation (1) can be
replaced by Caputo derivatives, therefore we have not denoted the type of the
fractional derivatives in Equation (1). Indeed, the Caputo derivative CD

α
t is

defined as (see e.g. [6]):

CD
α
t f(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s)ds

and is related to the Riemann-Liouville derivative RLD
α
t via the identity (see [6])

RLD
α
t f(t) = CD

α
t f(t) +

n−1
∑

k=0

f (k)(0)tk−α

Γ(k + 1− α)
,

which together with (2) implies

RLD
α
t u = CD

α
t u, RLD

α
t ut = CD

α
t ut = CD

α+1
t u = RLD

α+1
t u, α ∈ (0, 1).(4)

Theoretical studies on unidirectional flows of fractional Oldroyd-B fluids are
performed in [2, 3, 4, 5, 7, 8], where eigenfunction expansions of the solutions in
1D and 2D are obtained. In [7] estimates for the time-dependent components in
these eigenfunction expansions are established, which imply convergence of the
series, i.e., problem (1)-(3) admits a unique solution under appropriate smooth-
ness requirements on the data.

The present work is concerned with numerical computation of the solution of
problem (1)-(3). Reviews of different approximations of the fractional derivatives
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can be found in [9, 6, 10, 11]. The so-called L1 and L2 approximations of the
fractional Caputo and Riemann-Liouville derivatives are introduced in [9]. The
L1 scheme is suitable to approximate the fractional derivative Dα

t for α ∈ (0, 1).
The order of convergence of this approximation is O(τ2−α), where τ is the time
step. The L2 scheme approximates the fractional derivative of order α ∈ (1, 2)
with order of convergence O(τ3−α). Based on the L1 or L2 approximation, im-
plicit schemes for the time-fractional diffusion, diffusion-wave and diffusion-wave
equation with damping are developed and investigated in [12, 13, 14, 15, 16, 17].
The schemes are unconditionally stable and convergent in the H1, discrete H1 or
discrete maximum norm. In [18, 19, 16] the second order spatial derivatives are
approximated by compact fourth order finite differences.

Alternating direction implicit (ADI) schemes are proposed and investigated
for time-fractional diffusion or diffusion-wave equations in [15, 16, 19, 20]. They
use an operator splitting technique to replace the solution of multidimensional
problems by solution of independent one-dimensional problems.

Although numerical algorithms for particular cases of problem (1)-(3) when
a = 0 or b = 0 are studied extensively, numerical studies concerning the general
case a 6= 0 and b 6= 0 are still very limited. To the best of the authors’ knowledge,
the only such work is [5], where a numerical method is developed and analyzed
for the 1D version of problem (1)-(3).

In this work we use the L1 and L2 approximation of the fractional time deriva-
tives and the compact fourth order discretization in space. The construction of
the corresponding ADI finite-difference scheme is described in the next section.
Numerical experiments are presented in the third section in order to numerically
investigate the stability and convergence. Finally, we present conclusions about
the properties of the scheme.

2. Finite-Difference Scheme

2.1. L1 and L2 approximation of fractional derivatives

Let us introduce a uniform discretization in time and in space

tk = kτ, tk+1/2 = tk + τ/2, k = 0, 1, . . . , Nt, T = Ntτ,

xi = ihx, i = 0, . . . , Nx, hx = 1/Nx, yj = jhy, j = 0, . . . , Ny, hy = 1/Ny,

where Nt + 1, Nx + 1, Ny + 1 are the number of nodes in the corresponding
direction. Let the function f(t) satisfy f(0) = f ′(0) = 0. Then
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Finite L1 time derivative of f may be defined as (see [9, 12, 13, 14, 15, 10,
11, 5])

δβf(tk+1) =
τ−β

Γ(2− β)

k
∑

m=0

bm[f(tk−m+1)− f(tk−m)],

where bm = (m+ 1)1−β −m1−β, m ≥ 0. Then

δ̃βf(tk+1/2) :=
δβf(tk) + δβf(tk+1)

2
=

τ−β

2Γ(2 − β)

[

f(tk+1) +
k−1
∑

m=0

ωβ
mf(tk−m)

]

,

where ωβ
m = (bm+1 − bm−1), m ≥ 1, ωβ

0 = 1, and the local truncation error is of
order O(τ2−β), if the function f is twice continuously differentiable.

Finite L2 time derivative of f may be defined as (see [9, 13, 20, 16, 17, 10,
11, 5]

δα+1f(tk+1/2) =
τ−α−1

Γ(2− α)
{f(tk+1)− f(tk)

+
k
∑

m=1

(am − am−1)[f(tk−m+1)− f(tk−m)]}

=
τ−α−1

Γ(2− α)

[

f(tk+1) +
k−1
∑

m=0

ωα+1
m f(tk−m)

]

,

where ωα+1
m = (am+1−2am+am−1), m ≥ 1, ωα+1

0 = a1−2a0, am = (m+1)1−α−
m1−α, m ≥ 0, and the local truncation error is of order O(τ2−α), if the function
f is three times continuously differentiable.

2.2. Compact ADI discretization

As was mentioned in the Introduction, the authors found only one work [5], where
numerical methods are developed and analyzed for the case a 6= 0, b 6= 0. In this
paper Galerkin finite elements are used in space in combination with L1 and L2

approximations of the fractional time derivatives, and the unconditional stability
and convergence in H1-norm is discussed (without a complete proof). There is a
vast number of recent numerical studies on various fractional evolution equations,
modeling time-fractional subdiffusion, diffusion-wave, multi-term time-fractional
diffusion, or generalized second grade fluids. Compact schemes and ADI methods
for fractional diffusion and diffusion-wave equations are developed and investi-
gated in [19, 16] and many ideas from these works are used here.
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Let Uk
ij be the values of the approximate solution at the nodes xi, yj, tk, i =

0, . . . , Nx, j = 0, . . . , Ny, k = 0, . . . , Nt. Due to the first initial condition in (2)
the solution for k = 0 is the trivial one U0

ij = 0, i = 0, . . . , Nx, j = 0, . . . , Ny.

Let Λ be the usual second-order discretization of the Laplacian Λ = Λxx+Λyy,

ΛxxUij = (Ui+1,j − 2Uij + Ui−1,j)/h
2
x, ΛyyUij = (Ui,j+1 − 2Uij + Ui,j−1)/h

2
y .

Let us define (see also [18, 19, 16])

Θx := I +
h2x
12

Λxx, Θy := I +
h2y

12
Λyy, Θ := ΘyΛxx +ΘxΛyy.

Then

ΘxUij = (Ui+1,j + 10Uij + Ui−1,j)/12, ΘyUij = (Ui,j+1 + 10Uij + Ui,j−1)/12,

and

Θx
∂2u

∂x2
= Λxxu+O(h4x), Θy

∂2u

∂y2
= Λyyu+O(h4y).

Multiplying Equation (1) by ΘxΘy, and using the L1 and L2 formulas in time,
we can easily write a Crank-Nicolson type implicit discretization of the problem

ΘxΘy

[

Uk+1
ij − Uk

ij

τ
+

a

Γ(2− α)τα+1

(

Uk+1
ij +

k−1
∑

m=0

ωα+1
m Uk−m

ij

)]

=(5)

= 0.5µΘ

[

Uk+1
ij + Uk

ij +
b

Γ(2− β)τβ

(

Uk+1
ij +

k−1
∑

m=0

ωβ
mUk−m

ij

)]

+ΘxΘyF
k+1/2
ij ,

where i = 1, . . . , Nx − 1, j = 1, . . . , Ny − 1, k = 0, . . . , Nt − 1.

The Dirichlet boundary conditions (3) are imposed in the usual way

Uk+1
ij = v(xi, yj, tk+1), i = 0, or i = Nx, or j = 0, or j = Ny, k = 0, . . . , Nt−1.

Let

c :=
µτ1+α−βΓ(2− α)(Γ(2 − β)τβ + b)

2(Γ(2 − α)τα + a)Γ(2− β)
.

Multiplying (5) by Γ(2− α)τα+1/(Γ(2 − α)τα + a) and adding

Ak
ij

1
= c2ΛxxΛyy(U

k+1
ij − Uk

ij) or Ak
ij

2
= c2ΛxxΛyy(U

k+1
ij − 2Uk

ij − Uk−1
ij )
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to the left hand side of (5) we obtain

[(

I +
h2x
12

Λxx

)(

I +
h2y

12
Λyy

)

− c

(

I +
h2y

12
Λyy

)

Λxx − c

(

I +
h2x
12

Λxx

)

Λyy(6)

+c2ΛxxΛyy

]

Uk+1
ij = Gk

ij ,

where

Gk
ij(U

k, Uk−1, . . . , U0, xi, yj , tk+1/2, τ) :=

ταΓ(2− α)

Γ(2− α)τα + a

[

ΘxΘy

(

Uk
ij −

a

Γ(2− α)τα

k−1
∑

m=0

ωα+1
m Uk−m

ij

)

+

µτ

2
ΘUk

ij +
µτb

2Γ(2− β)τβ

k−1
∑

m=0

ωβ
mΘUk−m

ij + τΘxΘyF
k+1/2
ij

]

+Rk
ij

l
,

Rk
ij

1
= c2ΛxxΛyyU

k
ij, Rk

ij

2
= c2ΛxxΛyy(2U

k
ij − Uk−1

ij ).

The left hand side of (6) may be rearranged as

[

I −

(

c−
h2x
12

)

Λxx −

(

c−
h2y

12

)

Λyy +

(

h2y

12

h2x
12

− c
h2y

12
− c

h2x
12

+ c2

)

ΛxxΛyy

]

Uk+1
ij

= (I − c̃xΛxx − c̃xΛyy + c̃xc̃yΛxxΛyy)U
k+1
ij = (I − c̃xΛxx)(I − c̃yΛyy)U

k+1
ij ,

where c̃x = c − h2x/12, c̃y = c − h2y/12. Thus we obtain the following factorized
scheme

(I − c̃xΛxx)(I − c̃yΛyy)U
k+1
ij = Gk

ij .

Note, we add one of the terms

Γ(2− α)τα + a

Γ(2− α)τα+1
Ak

ij

l
, l = 1 or l = 2

to (5). The use of Ak
ij

2
is proposed in [19] in the discretization of the time-

fractional diffusion equation with the Grünwald-Letnikov approximation of the
fractional derivatives. The reason was to preserve the first order approxima-
tion of the equation. In our case, when a, b 6= 0, the order of the first term is
O(τ2+2α−2β−(α+1)+1) = O(τ2+α−2β) and the order of the second term is O(τ3+α−2β).

Let us introduce

U∗
ij := (I − c̃yΛyy)U

k+1
ij , i = 0, . . . , Nx, j = 1, . . . , Ny − 1.
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Then, we have to solve for each j = 1, . . . , Ny−1 the following tridiagonal system
of linear equations

(I − c̃xΛxx)U
∗
ij = Gk

ij , i = 1, . . . , Nx−1

U∗
0,j = (1− c̃yΛyy)v(0, yj , tk+1)(7)

U∗
Nx,j = (1− c̃yΛyy)v(xNx

, yj, tk+1)

and then for each i = 1, . . . , Nx − 1

(I − c̃yΛyy)U
k+1
ij = U∗

ij , j = 1, . . . , Ny−1

Uk+1
i,0 = v(xi, 0, tk+1)(8)

Uk+1

i,Ny
= v(xi, yNy

, tk+1)

As all linear systems have strictly diagonally dominant matrices, the Thomas
algorithm can be successfully used in order to solve them. Note, each of the first
Ny − 1 linear systems (7) is independent of the others, thus they can be solved
in parallel. After that parallel computations can be performed for the solution of
the remaining Nx − 1 independent linear systems (8). The most-time consuming
part is the calculation of the fractional derivatives, i.e., of the right hand side Gk

ij

in (7) for large k (k ≫ 1).

As was already mentioned, the additional term in the discretization is of the
order O(τ1+l+α−2β), a, b 6= 0. Therefore, the order of approximation in time of
the ADI scheme is

r = O(τmin{2−α,2−β,1+l+α−2β}), l = 1, 2.

Therefore we use l = 1 when

min{2− α, 2− β} ≤ 2 + α− 2β,

and l = 2 when

min{2− α, 2− β} > 2 + α− 2β.

Let us note that in the last case min{2−α, 2−β} ≤ 2−β ≤ 3−2β ≤ 3+α−2β,
i.e., the order of approximation of the equation is not destroyed by the order
of the additional term. Due to the initial conditions the solution on the first
time step U1

ij is of the order O(τ2). Thus for k = 0 we may always use the first

additional term, as then its order is O(τ3+α−2β).
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3. Numerical experiments

Extensive numerical experiments are performed in order to investigate the sta-
bility and the accuracy of the solutions for different values of the parameters α

and β. The initial data and the right-hand side are chosen to correspond to an
exact solution

u(x, y, t) = ex+ytγ+1, where γ = 3.5.

The order of convergence p is computed using Runge’s rule

p = log2[δ(Us−1)/δ(Us)],

where s is the number of the corresponding grid and

δ(U) := max{|u(xi, yj , tk)−U(xi, yj, tk)|, 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny, 0 ≤ k ≤ Nt}

is the maximum of the absolute value of the difference between the exact and the
numerical solution. In all numerical experiments we will take a = b = µ = 1,
Nx = Ny, and T = Ntτ = 1.

Numerical experiments for various values of α and β are presented in Table 1
for l = 1 and in Table 2 for l = 2. In the computations we use two different grids
in space with Nx = Ny = 25 points and Nx = Ny = 50 points respectively and
various values for the number of time stepsNt. In the all cases the computed order
of convergence p is the same or slightly better than the order of approximation r of
the equation. As it can be seen, the results for Nx = Ny = 25 and Nx = Ny = 50
are almost the same. The only exception is in the case α = β = 0.1, where the
order of convergence on the corresponding last two rows of Table 1 is not well
established for Nx = Ny = 25. For Nx = Ny = 50 the computations show almost
perfect second order convergence (p ≈ 1.99), although the order of approximation
of the equation is r = 1.9.

In general, the small and constant number of 25 space steps does not de-
stroy the convergence, which indicates that the truncation error in the space
discretization is much smaller than the corresponding error in the time-fractional
approximation.

4. Summary

The presented here ADI method leads to the successive solution of two cycles of
tridiagonal linear systems (7) and (8). These cycles can be easily parallelized.

The compact fourth order scheme allows us to do fast computations and
to save a lot of memory. Let us note, that in order to compute the fractional
derivatives we need to store the solution on the all time levels. The order of
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Table 1: The error δ(U) and the order of convergence p for l = 1

Nt Nx = Ny = 25 Nx = Ny = 50

α = 0.1, β = 0.1, r = 1.9

100 4.8757e-5 4.8831e-5

200 1.2198e-5 1.9989 1.2219e-5 1.9987

400 3.0568e-6 1.9965 3.0640e-6 1.9956

800 7.6651e-7 1.9956 7.7027e-7 1.9920

1600 1.9140e-7 2.0017 1.9409e-7 1.9886

3200 4.6894e-8 2.0291 4.9039e-8 1.9847

6400 1.0812e-8 2.1168 1.2338e-8 1.9908

α = 0.5, β = 0.5, r = 1.5

100 2.3470e-4 2.3502e-4

200 7.9009e-5 1.5707 7.9123e-5 1.5706

400 2.6959e-5 1.5513 2.6999e-5 1.5512

800 9.2904e-6 1.5370 9.3052e-6 1.5368

1600 3.2243e-6 1.5268 3.2304e-6 1.5263

3200 1.1240e-6 1.5203 1.1271e-6 1.5191

6400 3.9154e-7 1.5214 3.9355e-7 1.5180

α = 0.9, β = 0.9, r = 1.1

100 2.5529e-3 2.5570e-3

200 1.1847e-3 1.1076 1.1866e-3 1.1076

400 5.5094e-4 1.1046 5.5184e-4 1.1045

800 2.5655e-4 1.1027 2.5697e-4 1.1027

1600 1.1956e-4 1.1015 1.1976e-4 1.1015

3200 5.5740e-5 1.1009 5.5835e-5 1.1009

6400 2.5993e-5 1.1006 2.6039e-5 1.1005

α = 0.9, β = 0.1, r = 1.1

100 1.0620e-2 1.0646e-2

200 4.9568e-3 1.0993 4.9688e-3 1.0993

400 2.3130e-3 1.0996 2.3186e-3 1.0996

800 1.0792e-3 1.0998 1.0819e-3 1.0997

1600 5.0352e-4 1.0998 5.0475e-4 1.0999

3200 2.3491e-4 1.0999 2.3549e-4 1.0999

6400 1.0959e-4 1.1000 1.0986e-4 1.1000
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Table 2: The error δ(U) and the order of convergence p for l = 2

Nt Nx = Ny = 25 Nx = Ny = 50

α = 0.1, β = 0.5, r = 1.5

100 4.1501e-4 4.1576e-4

200 1.5576e-4 1.4138 1.5604e-4 1.4138

400 5.7438e-5 1.4392 5.7542e-5 1.4392

800 2.0929e-5 1.4565 2.0965e-5 1.4566

1600 7.5639e-6 1.4684 7.5746e-6 1.4687

3200 2.7190e-6 1.4761 2.7205e-6 1.4773

6400 9.7497e-7 1.4796 9.7315e-7 1.4831

α = 0.5, β = 0.9, r = 1.1

100 3.6896e-3 3.6961e-3

200 1.7901e-3 1.0434 1.7933e-3 1.0434

400 8.5851e-4 1.0601 8.6005e-4 1.0601

800 4.0861e-4 1.0711 4.0934e-4 1.0711

1600 1.9345e-4 1.0788 1.9380e-4 1.0787

3200 9.1244e-5 1.0842 9.1407e-5 1.0842

6400 4.2922e-5 1.0880 4.2996e-5 1.0881

α = 0.1, β = 0.9, r = 1.1

100 4.6066e-3 4.6181e-3

200 2.1573e-3 1.0945 2.1626e-3 1.0945

400 1.0056e-3 1.1012 1.0080e-3 1.1013

800 4.6776e-4 1.1042 4.6889e-4 1.1042

1600 2.1739e-4 1.1055 2.1791e-4 1.1055

3200 1.0101e-4 1.1058 1.0125e-4 1.1058

6400 4.6936e-5 1.1057 4.7046e-5 1.1058

α = 0.0, β = 1.0, r = 1.0

100 8.0290e-3 8.0496e-3

200 4.0493e-3 0.9875 4.0601e-3 0.9874

400 2.0333e-3 0.9938 2.0388e-3 0.9938

800 1.0188e-3 0.9970 1.0216e-3 0.9969

1600 5.0997e-4 0.9984 5.1135e-4 0.9984

3200 2.5513e-4 0.9992 2.5581e-4 0.9992

6400 1.2760e-4 0.9996 1.2794e-4 0.9996
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convergence in time is limited by min{2−α, 2− β} and relatively large numbers
of time steps are needed to obtain high accuracy in time. Therefore the possibility
to use relatively small numbers of space steps Nx and Ny is important. Of course,
the compact scheme has fourth order accuracy for sufficiently smooth solutions.

Our future work includes theoretical analysis of the stability and convergence,
numerical study of the acceleration for the parallel computations, numerical and
theoretical investigation for other approximations of the time-fractional deriva-
tives, numerical experiments for practical problems.
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