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ON THE NUMERICAL SOLUTION OF THE GENERAL
“LIGAND-GATED NEURORECEPTORS MODEL” VIA
CAS MATHEMATICA

Nikolay Kyurkchiev

We present a software module for analysis of the general “ligand—gated neu-
roreceptors model” (GLGNM) within the programming environment of CAS
Mathematica. Numerical examples which demonstrate scientific applications
and visualization properties of the module are presented.

1. Introduction
Consider the network for "ligand-gated neureceptors model” [1], [2]:
2k, T kp

Co & C1 = Dy,
ku kuDs
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with given transition rates: ky, ky, kubDs, kDs, kc1, ko1, k2, ko2, kqu, ,ICDf, kf,s
and ,ICS f-

In this model, there is the unbound receptor form Cp, singly and doubly bound
receptor forms Cy, Cy, slow and fast desensitized states D, Dy, and singly open
and doubly open receptor forms Oy, Os.

Variable T represents neurotransmitter concentration. The model is the most
abundant inhibitory neutransmitter in the human brain [3].

If all transition rates are described by mass action kinetics, we obtain the
following system of differential equations [2]:

Cit) = —2kCoT + k,Cy
Ci (t) = 2k,CoT — kyC1 + kypsDs — kpsC1 + 2k, Co — kpyC1 T+
k101 — ko1 Ch

Cé(t) = kyChT — 2k, Co + ko Oy — kg Co + kquDf - kDfCQ
(2)  Dg(t) = kysDf—ksgDST + kpsCi — kups Ds

D/f(t) = k‘SfDST—k‘stf—l—k‘DfCQ—k‘quDf

O1(t) = koCi1— ka0

O3(t) = koaCa — kO

T'(t) = kyCy— 2k,CoT + 2k,Co — kyCiT + ko Dy — by DT

2. Main results

Consider the general network (n = 2,3, ...) for ”ligand—gated neureceptors model”
(GLGNM):

Co — C1 = Dy
—
%

Cn—l Cn <:> Dn

D, — D,

anl <:> Dn

C, = Oy

Cn = O,

with given transition rates.
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In this model, there is the unbound receptor form Cj, singly and doubly
bound receptor forms C1,...,C),, slow and fast desensitized states D1,...,D,,
and singly open and doubly open receptor forms Oq,...,O,.

2.1. The model of the (GLGNM) studied via the programming envi-
ronment Mathematica

A CAS Mathematica software module has been developed (intellectual property)
for studying the (GLGNM) (3).
The software module offers the following possibilities:
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Figure 1: Bipartite graph of the kinetic ”ligand— Figure 2: The case n =4

gated neureceptors” model via programming en-
vironment CAS Mathematica
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i) generation of a general network (3) for a given (by the user) arbitrary transition

rates;
ii) generation and explicite presentation of the differential mass action equations

for the mechanism,;
iii) visualisation of the solutions of the dynamical system of differential equations

as functions of the time t;
iv) generation and visualization of the bipartite digraph [5] of the general kinetic

”ligand—gated neureceptors” model;

v) visualization of the variable T'(t) — present neurotransmitter concentration;
vi) visualization of the open state concentration solution, O;(t) + O2(t) + -+ +
O, (t) of the general kinetic ”ligand—gated neureceptors” model;

vii) visualization of the desensitized: D;(t) + Da(t) + - -- + Dy(t) of the general
kinetic ”ligand—gated neureceptors” model;

viii) visualization of the closed bound: C(t) + Co(t) + - - - + Cp(t) of the general

kinetic ”ligand—gated neureceptors” model;
ix) sensitive analysis of the system of differential equations, etc.

2.2. Experiments via the programming environment Mathematica

The test provided on our control example with transition rates: k; = 5000000,
ky = 131, kyps = 0.2, kps = 13, kep = 1100, ko1 = 200, koo = 142, koo = 2500,
kupfs =25, kpy = 1250, kfs = 0.01 and k¢ = 2 [8] and initial conditions:Cy(0) =
0, C1(0) = 0.1, C(0) = 0.2, DS;1(0) = 0.05, DF;(0) = 0.06, O1(0) = 0.2,
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Figure 4: Open state concentration so-

Figure 3: The variable T'(t) — present
lution, Oy (t) + Og(t)

neurotransmitter concentration. We
note that T'(t) represent typical sig-
moid function [6], [7]
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Figure 5: Desensitized: Dy(t) + Ds(t)  Figure 6: Closed bound: Ci(t) + Ca(t)

02(0) = 0.1 and T'(0) = 0.1 is plotted on Figure 3 (the variable T'(t) — present
neurotransmitter concentration).

The oppen state concentration solution, O1(t) + Oz(t) for the model (3) is
plotted on Figure 4.

Figure 5 displays the desensitized: Dy (t) + Dy(t).

The closed bound: C1(t) + Ca(t) is plotted on Figure 6.

The corresponding bipartite digraph of the mechanism (3) is shown in Figure
1 (see, also Figure 2 for the case n = 4).

3. Conclusion remarks

The demonstrated module presents a natural upgrade of CAS Mathematica.

From these experiments it has been possible to construct detailed kinetic
schemes describing transitions to and from multiple receptors states.

We note that at each step the program exercise control over the computational
errors combined with super—sensitive analysis on the differential kinetic equations.

The case of first order reactions when every two distinct components interact
reversibly between themselves is considered in [4].

For some related software products implemented in software environments
other than CAS Mathematica, see [1], [2], [9]-[11].

We shall expressively note that for large values of n the problem for the
presentation of the time—course solution of the differential system is very tedious
[14].

In many cases the solution’s amplitude for neurotransmitter concentration is
very small (see Fig. 3), which complicates the visualization of the solutions.
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In order to avoid this visualization problem, another function of our module
is to authomatically regulate the monitor and plotting charcteristics.

We note that at each step the program exercises control over the compu-
tational errors. The control is partially accomplished by using the well-known
operators AccuracyGoal, PrecisionGoal and WorkingPrecision.

At any case the computational results produced by the proposed Mathematica
module offered in the paper are reliable.

The approximation of the interval step function by the logistic and other
sigmoid functions is discussed from various approximation, computational and
modelling aspects in [15]-[26].

Appendix. AMPA neuroreceptor model

Consider the network for “ligand—gated AMPA neureceptors model” (GLGANM)
12], [13]:

kT ka
Co — C1 Z—Z Dy
kul kud
ky T Ky
(4) G~ Co — Dy
ku? kud
ko
Cy 72 O
ke

with given transition rates: ky, kg, ke, ku1, ku2, kg and kyq.

In this model, there is the unbound receptor form Cp, singly and doubly bound
receptor forms C, C, which can lead to desensitized states D1, Dy, respectively,
and the open receptor form O.

Variable T represents neurotransmitter concentration.

If all transition rates are described by mass action kinetics, we obtain the
following system of differential equations [2]:

Cot) = —kCoT + kurC
Ci (t) = kCoT — ky1Cy + kygD1 + ku2Co — kyC1T — kgCh
Cé(t) = kCiT — kypCs + kO — kgCs + kygDs — kgCo
(5) Di(t) = kqCr — kyqDy
Dy(t) = kqCo — kyaD>

) = koCh— kO
T'(t) = kuCi— kCoT + ky2Co — kO T.
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Figure 7: The case n = 3 for the “ligand—gated AMPA neureceptors model” —
(GLGANM)
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Figure 8: The variable T'(t) — present neurotransmitter concentration for the
“ligand-gated AMPA neureceptors model” — (GLGANM)
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Consider the general network (n = 2,3,...) for the “ligand—gated AMPA
neureceptors model” — (GLGANM):

Co == C1 = Dy
—

(6) Cnfl (:> Cn — Dn

Cn 2 O

with given transition rates.

The test provided on our control example with transition rates: k; = 13000000,
ky1 = 5.9, kyqg = 64, kg = 900, k. = 200, ko = 2700 and k2 = 86000 [13] and ini-
tial conditions:Cy(0) = 0, C1(0) = 0.1, C5(0) = 0.2, D1(0) = 0.05, D2(0) = 0.06,
0(0) = 0.2, and T'(0) = 0.1 is plotted on Figure 8 (the variable T'(t) — present neu-
rotransmitter concentration for the ”ligand—gated AMPA neureceptors model” -
(GLGANM)).
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