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STUDIA MATHEMATICA

CONTROL OF CHAOTIC BEHAVIOR
OF INTEGRO-DIFFERENTIAL CNN MODEL
ARISING IN PIEZOELECTRIC MATERIAL

WITH NANO-HETEROGENEITIES∗

Elena Litsyn, Angela Slavova

Piezoelectrical material with heterogeneities of nano-holes or nano-inclusions
is considered in the case when it is subjected to time harmonic electro-
mechanical load. The model is reduced to a system of integro-differential
equations (IDE). We construct Cellular Nonlinear/Nanoscale Network (CNN)
architecture for the boundary value IDE problem under consideration. For
such IDE CNN model we shall determine “edge of chaos” region of the pa-
rameter set.Validation will be provided as well. Feedback control will be
applied in order to stabilize the model. The computer simulations will illus-
trate the obtained theoretical results.

1. Introduction

The aim of this study is to propose an efficient Cellular Nonlinear/Nanoscale Net-
work (CNN) method for studying of 2D anti-plane dynamic problem of piezo-
electric solids with heterogeneities of different type and size as nano-holes or
nano-inclusions. The modeling approach is in the frame of continuum mechanics
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of coupled fields, wave propagation theory, piezoelectricity and surface/interface
elasticity theory of Gurtin and Murdoch [5]. The numerical modeling via CNN
has the potential to reveal the dependence of the scattered wave far-field and
stress concentration near field on the electromechanical coupling, on the type
and characteristics of the dynamic load, on the material characteristics and on
the geometric shape and size of the heterogeneities [1].

There are no numerical results for dynamic behavior of bounded piezoelectric
domain with heterogeneities under anti-plane load. Validation is done in [3]
for infinite piezoelectric plane with a hole, in [4] for isotropic bounded domain
with holes and inclusions and in [6] for piezoelectric plane with nano-hole or
nano-inclusion. In Section 2 we shall state the model of piezoelectric solid with
heterogeneities under time-harmonic anti-plane load. Section 3 will deal with
the discretization of the integro-differential equations (IDE) model by Cellular
Nonlinear/Nanoscale Network (CNN) architecture. We shall determine “edge of
chaos” region of the IDE CNN model in Section 4 and we shall present simulations
and validation results. Section 5 will present feedback control of the IDE CNN
model under investigation. Discussions will be provided in the conclusions.

2. Statement of the problem

Let G ∈ R2 is a bounded piezoelectric domain with a set of inhomogeneities
I = ∪Ik ∈ G (holes, inclusions, nano–holes, nano–inclusions) subjected to time–
harmonic load on the boundary ∂G, see Figure 1. Note that heterogeneities are
of macro size if their diameter is greater than 10−6 m, while heterogeneities are
of nano–size if their diameter is less than 10−7 m. The aim is to find the field
in every point of M = G\I, I and to evaluate stress concentration around the
inhomogeneities.

Using the methods of continuum mechanics the problem can be formulated in
terms of boundary value problem for a system of 2-nd order differential equations,
see [3], Chapter 2.
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is Laplace operator with respect to t, N = M

for x ∈ M and N = I for x ∈ I; uN3 is mechanical displacement, uN4 is electric
potential, ρN is the mass density, cN44 > 0 is the shear stiffness, eN15 6= 0 is the
piezoelectric constant and εN11 > 0 is the dielectric permittivity.
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Let us define generalized stress σkj, k = 1, 2; j = 3, 4 as

(2)
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Note that σN
i3 is called mechanical stress, while σN

i4 is called electrical displace-
ment(the usual notation in mechanics is DN

i = σN
i4 , i = 1, 2 [3]).

Generalized traction at the point x on the line segment with normal vector
n = (n1, n2) is defined as

(3)
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At every point x ∈ S = ∂I we can define normal vector n and unit tangential
vector l such that (l, n) forms right coordinate system (see Fig. 1).
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Figure 1: Rectangular PEM matrix with circle inhomogeneity

We shall state the boundary conditions for two cases:
A) In the case when I is a nano–hole, formally we can consider that the

constants in I are cI44 = 0, eI15 = 0, εI11 = 0 and boundary conditions on S are

(4) τMJ =
∂σS

lJ

∂l
on S,

Then we consider BVP undr consideration is equation (1) and boundary condi-
tions (3), (4).
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Boundary conditions (4) can be written in the following form for the mechan-
ical and electrical part correspondingly:

τM3 = σM
n3 =

∂σS
l3

∂l
, τM4 = σM

n4 =
∂σS

l4

∂l

where τM3 and τM4 are the normal component of mechanical stress and electrical

displacement (see(3)) in the matrix, while
∂σS

l3

∂l
and

∂σS
l4

∂l
are tangential deriva-

tives of tangential components of stress σS
l3 and tangential electrical displacement

σS
l4 along the nano–hole boundary S.

B) In the case when I is a nano–inclusion [4,6], the constants in I are cI44 > 0,
eI15 6= 0, εI11 > 0; the constants in M are cM44 > 0, eM15 6= 0, εM11 > 0.

On the heterogeneity boundary S where are defined constants cS44, e
S
15, ε

S
11

and with the notation for generalized displacement uS along S the generalized
tangential stress on S is defined as:

(5)
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Then boundary conditions on S are

(6)
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on S,

The BVP in this case is equation (1) and boundary conditions (3), (6).
Boundary conditions (6) can be written in the following form for the mechan-

ical and electrical part correspondingly:

τ I3 + tM3 =
∂σS

l3

∂l
, τ I4 + tM4 =

∂σS
l4

∂l

where τN3 , τN4 , N = I,M are the normal component of mechanical stress and

electrical displacement (see (3)) in the inclusion and in the matrix, while
∂σS

l3

∂l

and
∂σS

l4

∂l
are tangential derivatives of tangential components of stress σS

l3 and

tangential electrical displacement σS
l4 along the interface boundary S. Here, it

is take into consideration that nM
i = −nI

i = −ni, i = 1, 2. Note that for the
mechanical displacement uN3 and for the potential of the electric field uN4 = φ
continuity conditions are satisfied, see first row of (6).
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3. Cellular Nonlinear/Nanoscale Network (CNN) model of the
BVP

In [3] fundamental solutions of the BVP are found using the Fourier transform.
Then using the Gauss theorem [9] and proceeding as in [3] from the BVP a system
of integro-differential equations (IDE) is obtained for the unknowns u3,4 on S. In
this paper we shall study the general form of IDE obtained in [3]. Let us consider
the following system of IDE [8]:

(7)
∂2

∂t2
= D

∂2u

∂x2
− C1

∫

S

G(u(x))dx + f(u),

where C1 is a constant depending on the ρM , cM44 > 0, eM15 6= 0 and εM11 >
0, D is diffusion coefficient, u = (u3, u4), function G(x) is a function of the
displacement vectors u3,4 and the traction τ3,4, function f(u) is monotonically
increasing function.

Cellular Nonlinear/Nanoscale Networks (CNN) are analogue dynamic proces-
sor arrays, which are made of cells. Let us consider a two–dimensional grid with
3× 3 neighborhood system shown on Figure 2.
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Figure 2: 3× 3 neighborhood CNN

One of the key features of CNN is that the individual cells are nonlinear
dynamical systems, but the coupling between them is linear. Roughly speaking,
one could say that these arrays are nonlinear but have a linear spatial structure,
which makes the use of techniques for their investigation common in engineering
or physics attractive.

We will give general definition of a CNN which follows the original one [7]:
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Definition 1. An M ×M cellular nanoscale network is defined mathemati-
cally by four specifications:

1). CNN cell dynamics;
2). CNN synaptic law which represents the interactions (spatial coupling)

within the neighbor cells;
3). Boundary conditions;
4). Initial conditions.

In terms of the definition we can present the dynamical systems describing
CNN. For general CNN whose cells are made of time-invariant circuit elements,
each cell C(ij) is characterized by its CNN cell dynamics :

(8) ẋij = −g(xij , uij , I
s
ij),

where xij ∈ R
m, uij is usually a scalar. In most cases, the interactions (spatial

coupling) with the neighbor cell C(i+ k, j + l) are specified by a CNN synaptic
law:

Isij = Aij,klxi+k,j+l +(9)

+ Ãij,kl ∗ fkl(xij , xi+k,j+l) +

+ B̃ij,kl ∗ ui+k,j+l(t).

The first term Aij,klxi+k,j+l of (9) is simply a linear feedback of the states
of the neighborhood nodes. The second term provides an arbitrary nonlinear
coupling, and the third term accounts for the contributions from the external
inputs of each neighbor cell that is located in the Nr neighborhood.

Then the CNN model [7] for the IDE (7) can be written as:

(10)
duij
dt

= DA1 ∗ uij − C1

∫

S

G(uij))dt+ f(uij), 1 ≤ i ≤ n, j = 3, 4,

where A1 is 1-dimensional discretized Laplacian template [7]

A1 : (1,−2, 1),

∗ is convolution operator, n = M ×M is the number of cells of the CNN archi-
tecture.

CNN is an excellent candidate for both analog and digital applications be-
cause of its structural simplicity, relative ease of fabrication, inherent speed and
design flexibility. Many methods used in image processing and pattern recogni-
tion can be easily implemented by CNN approach.
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4. Dynamics of our CNN model

In this section we shall identify the values of the cell parameters for which the
IDE CNN model (7) may exhibit complexity. The necessary condition for a
nonconservative system to exhibit complexity is to have its cell locally active
[2]. The theory which will be presented below offers a constructive analytical
method for uncovering local activity. The precisely defined parameter domain
in which the model can exhibit complex behavior is called the edge of chaos. In
particular, constructive and explicit mathematical inequalities can be obtained for
identifying the region in the CNN parameter space where complexity phenomena
may emerge, as well as for localizing in further into a relatively small parameter
domain called edge of chaos where the potential for emergency is maximized.
By restricting the cell parameter space to the local activity domain, a major
reduction in the computing time required by the parameter search algorithms is
achieved [2].

We develop the following constructive algorithm for determining the edge of
chaos domain:

1. Map the IDE (7) into its discrete-space version which will be called IDE
CNN:

(11)
duij
dt

= D(ui−1j − 2uij + ui+1j)− C1

∫

S

G(uij))dt+ f(uij) = F (uij),

where 1 ≤ i ≤ n , j = 3, 4,C1 is depending on the cell parameters ρ, c44, e15 and
ε.

2. Find the equilibrium points of the IDE CNN model (11). According to
the theory of dynamical systems equilibrium points u∗ are these for which

(12) F (u∗) = 0.

In general, the above system may has one, two or three real roots and these roots
are functions of the cell parameters ρ, c44, e15 and ε.

3. Calculate now the cell coefficients of the Jacobian matrix of (12) about
the system equilibrium points Ek, k = 1, 2, 3.

4. Calculate the trace Tr(Ek) and the determinant ∆(Ek) of the Jacobian
matrix of (12) for each equilibrium point.

5. Define stable and locally active region SLAR(Ek) according to the follow-
ing definition:

Definition 2. Stable and Locally Active Region SLAR(Ek) at the equilib-
rium points Ek for IDE CNN model (11) is such that Tr < 0 and ∆ > 0.
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6. Edge of chaos
In the literature, the so-called edge of chaos (EC) means a region in the pa-

rameter space of a dynamical system where complex phenomena and information
processing can emerge. We shall try to define more precisely this phenomena till
now known only via empirical examples.

Definition 3. IDE CNN (11) is said to be operating on the edge of chaos EC
iff there is at least one equilibrium point which is both locally active and stable.

Following the above algorithm we have proved the following theorem::

Theorem 1. The IDE CNN model (11) is operating in the EC regime iff the

following conditions for the parameters are satisfied:
ε15c44 + e215

ρε15
> 0. In this

parameter set there is at least one equilibrium point Ek which is both locally active
and stable.

After simulating our IDE CNN model (11) we obtain the results on Figure 3.

Figure 3: Simulation of IDE CNN model (11)

Remark 1. In order to simulate the model (11), the parameters have to
be determined in an optimization process. During the optimization process the
mean square error

(13) emse =
∑

i

∑

j

(uij − ũij)
2

N

can be minimized using Powells method and Simulated Annealing [8]. In each
step emse is calculated by taking the reference uij(t) and the solution ũij of
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IDE CNN model obtained by simulation system MATCNN applying 4th- order
Runge-Kutta integration. In order to minimize the computational complexity
and to maximize the significance of the mean square error only outputs of 10
cells are taken into account.

4.1. Validation

Let us consider the square domain G1G2G3G4 with a side a, containing a single
circular inhomogeneity with a radius c = βa and center at the square center, see
Figure 1. Note that if β < 0.05 the influence of the exterior boundary ∂G on
the solution is expected to be small, while if β > 0.2 it is expected significant
influence.

Material parameters of the matrix are for transversely isotropic piezoelectric
material PZT4:

• elastic stiffness: cM44 = 2.56 × 1010 N/m2;

• piezoelectric constant: eM15 = 12.7 C/m2;

• dielectric constant: εM11 = 64.6 × 10−10 C/Vm;

• density: ρM = 7.5× 103 kg/m3.

The applied load is time harmonic uni-axial along vertical direction uniform
mechanical traction with frequency ω and amplitude σ0 = 400 × 106 N/m2 and

electrical displacement with amplitude U0 = k
εM11
eM
15

σ0, where k = 0.1 for elec-

tromechanical load and k = 10−4 for “pure” mechanical load.
This means that Gt = ∂G, Gu = ∅ and the boundary conditions (4) are:

• on G1G2: τ
M0
3 = −σ0, τ

M0
4 = −D0;

• on G2G3: τ
M0
3 = τM0

4 = 0;

• on G3G4: τ
M0
3 = σ0, τ

M0
4 = D0;

• on G4G1: τ
M0
3 = τM0

4 = 0.

For heterogeneities at nano–scale as nano-hole in our case we have: the side
of the square is a = 10−7m; material parameters inside I for hole are 0; material
parameters on S = ∂I for hole and for an inclusion are: cS44 = 0.1cM44 , e

S
15 = 0.1eM15 ,

εS11 = 0.1εM11 , ρ
S = ρM .

Then simulating our CNN IDE model (11) we obtain the following solutions
(Figure 4):
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Figure 4: Validation of the obtained results

5. Stabilizing feedback control for IDE CNN model

Let us extend the model (11) by adding to each cell the local linear feedback:

(14)
duij
dt

= D(ui−1j − 2uij + ui+1j)− C1

∫

S

G(uij))dt− kuij,

where k is the feedback controls coefficient, which is assumed to be equal for all
cells.

The problem is to prove that this simple and available for the implementation
feedback can stabilize the IDE CNN model (11). In the following we present a
proof of this statement and give sufficient condition on the feedback coefficient
values which provide stability of the CNN nonlinear model (14).

As a first step, we examine the the stability conditions of the system (14),
linearized in the neighborhood of the zero equilibrium point E0. This system in
a vector-matrix form is given by

dz

dt
= J(k)z

J(k) is the Jacobian matrix of the controlled IDE CNN in E0.

Theorem 2. Let the parameters of IDE CNN system and feedback coefficient
k (14) have positive values. Then its linearized in E0 model is assymptotically
stable for all k > 0.

P r o o f. Define the quadratic Lyapunov function candidate L(z) =
1

2
zT z.

Then its derivative along the linearized control IDE CNN is
dL(z)

dt
=

1

2
zT (JT (k)+
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J(k))z = −zTQ(k)z. Therefore
dL(z)

dt
< 0 implies a positive definiteness of Q(k).

It can be shown that Q(k) positive definiteness implies k > 0.
For verification of the above statement the eigenvalues of J(k) were calculated

related on the values of feedback coefficient k. Stability of the linear system
requires that the eigenvalues λi

j, i = 1, . . . , 4 satisfy the inequality max
i

Reλi
j < 0.

Dependence of the max
i

Reλi
j on k for the parameter set, which is defined in the

Theorem 1, is represented in Figure 5. �
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Figure 5: Dependence of real part value of dominant eigenvalue on the feedback
coefficient IDE CNN model (14)

The critical value of k = 1.2, for which the max
i

Reλi
j = 0, is marked in the

figure. For this parameter set the system gives the critical value k = 1.67.

6. Conclusion and discussions

In this paper we study integro-differential equation which arise in piesoelectrical
material with nano-holes or nano-inclusions. We derive the algorithm for deter-
mination of edge of chaos regime in the IDE CNN model (11). Then we apply
feedback control in order to stabilize the model under consideration. Computer
simulations and validation are provided.

The characteristic that is of interest in mechanics is normalized dynamic
Stress Concentration Field (SCF) |σϕ3/σ0| and the normalized dynamic Electric
Field Concentration Field (EFCF) |eM15Eϕ/σ0| along the perimeter of the inho-
mogeneity, ϕ is the polar angle of the observer point.

Numerical simulations show [3, 4, 6] that the stress concentration field near
defects is strongly influenced by the type and the size of the defect(crack, hole or
inclusion), the material anisotropy, the defect location and geometry, the dynamic
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load characteristics and the mutual interactions between defects and between
them and the solid’s boundary.

Computational nanomechanics has a high priority in Europe, because it con-
cerns the development and creation of new smart materials and devices based
on them. The present paper addresses the vital component of accurate descrip-
tion and computation of the wave motions and stress concentrations that are
developed in the multifunctional materials with nano-structures.
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