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STUDIA MATHEMATICA

AERODYNAMIC CHARACTERISTICS

OF JOUKOWSKY LIKE WINGS

Yoshihiro Mochimaru

Aerodynamic characteristics of Joukowsky like airfoils are analyzed, under
the assumption that the flow near the airfoil is governed by two-dimensional
incompressible isothermal Newtonian fluid flow, beyond the viscous boundary-
layer of which is approximated by a potential flow with a new parameter.
Vorticity transport equation is solved numerically, using a spectral finite
difference scheme to give steady-state various characteristics.

1. Introduction

Aerodynamic characteristics of airfoils were investigated experimentally by M.
M. Munk [1], E. N. Jacobs [2], E. M. Jacobs & I. H. Abbott [3], E. A. Jacobs, K.
E. Ward, R. M. Pinkerton [4], E. A. Jacobs & A. Sherman [5], R. H. Neely, T.
V. Bollech, G. C. Westrick, R. R. Graham [6], H. C. Garner & A. S. Baston [7].
At an early stage, under a frictionless incompressible flow assumption, analytical
estimation of wing shape effect was presented by M. M. Munk [8], T. Theodorsen
[9]. I. H. Abbott & A. E. Doenhoff published an accumulated book [10]. Also
data on aerodynamic characteristics of airfoils were found in Ref. [11].

In this paper analyzed is a flow near the surface of Joukowsky-like airfoil,
which is assumed to be two-dimensional and governed by incompressible isother-
mal Newtonian fluid flow. All the more beyond the viscous boundary-layer the
speed of the flow is high so as to be of potential flow, which is uniform far away
from the airfoil.
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2. Analysis

2.1. Configuration and coordinate system

The space around a Joukowsky-like airfoil is assumed to be given by the dimen-
sionless Cartesian coordinate (x, y) (based on the reference length L) through a
conformal mapping system (α, β)

x+ iy ≡ z = q

(

ζ∗ +
c1
ζ∗

+
c2
ζ∗2

)

, (q, c1, c2 : real constants),

ζ∗ = ζ0 + (1− ζ0) e
α+ iβ, (ζ0 : complex constant(|ζ0| ≪ 1)),

ℜ(ζ0) < 0, ℑ(ζ0) ≥ 0, α ≥ 0,

where α = 0 corresponds to the airfoil surface. The point α + iβ = πi stands
for the leading edge, and that α+ iβ = 0 the trailing edge. The space should be
univalent, the sufficient condition of which is

1− c1 − 2 c2 = 0, |c2| ≪ 1,

which applies hereafter. The constant q is so chosen as

ℜ{z(α = 0, β = 0)− z(α = 0, β = π)} = 1.

The inclination of the line from the leading edge to the trailing edge is denoted
to be ψ0, i.e.

tanψ0 ≡ arg(z (α = 0, β = 0)− z(α = 0, β = π)).

The chord length L0 (the distance between the leading edge and the trailing edge)
is given by

L0 cosψ0 = L.

2.2. Characteristics of configuration

In case of |c2|, |ζ0| ≪ 1,

q ≈ 1

4
(1 + c2) ,

ψ0 ≈ ℑ
(

ζ0
2 − 2 c2 ζ0

)

.

Profile of the thickness H of the airfoil

x ≈ 1

4

{

2 cos β + 2ℜ(ζ0) sin2 β + c2(1− 2 cos β + cos2 β)
}

,
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H ≈ {c2 −ℜ(ζ0)} sin β(1− cos β), (0 ≤ β ≤ π),

Hmax ≈ 3
√
3

4
{c2 −ℜ(ζ0)} at cos β = −1/2.

Camber line:

x ≈ cos β

2
,

y ≈ 1

2
ℑ(ζ0) sin2 β.

Radius of curvature of the airfoil, R, at the leading edge:

R ≈ 2 |ζ0 − c2 + 2ζ0
2 − 4 c2ζ0|3

∣

∣

∣
ℜ(ζ0 − c2 + 2 ζ0

2) + 2|ζ0|2 − 10 c2ℜ(ζ0) + 4 c22
∣

∣

∣

.

Figure 1 shows an example of a configuration of the airfoils (xℓ, yℓ : Cartesian
coordinate at the leading edge).
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Figure 1: Example of configuration ζ0 = −0.092 + 0.03 i
— : c2 = 0, R = 0.017; - - - : c2 = 0.02

2.3. Basic equations for the fluid flow

The equation of dimensionless vorticity transport is

(1) J
∂ζ

∂t
+
∂(ζ, ψ)

∂(α, β)
=

1

Re

(

∂2ζ

∂α2
+
∂2ζ

∂β2

)

.

The relation between vorticity ζ and a stream function ψ is

(2) Jζ +
∂2ψ

∂α2
+
∂2ψ

∂β2
= 0,

J ≡ ∂(x, y)

∂(α, β)
=

∣

∣

∣

∣

dz

d(α+ iβ)

∣

∣

∣

∣

2

,

where Re stands for a Reynolds number defined by Re ≡ ρU∞L/µ, ( ρ: density
of fluid, µ: viscosity, U∞: uniform flow speed ).
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2.4. Boundary conditions

Velocity potential function f(α+ iβ) corresponding to the flow direction φ is

f(α+ iβ) = q |1− ζ0| ×
[

2 coshω +

(

1

1− ǫ2 cosh 2ω
− 1

)

+B i (α+ iβ)

]

,

ω ≡ α+ iβ + iβ0 − iφ, β0 ≡ arg(1− ζ0); ǫ2, B : real.

Potential flow assumption at α = α∞ ≡ c/
√
Re, c: real positive suitably selected

constant (currently c = 5) is given by

∂

∂α
ψ(α = α∞, β) = ℑf ′(iβ),

ζ(α = α∞, β) = 0.

A necessary condition is (∂/∂α)ζ(α = α∞, β) = 0. No slip conditions on the
surface (α = 0) gives

∂

∂α
ψ(0, β) = 0

and without loss of generality it is assumed

ψ(0, β) = 0.

Continuity of the potential flow at the trailing edge gives

f ′(0) = 0.

Also doubly connectedness of the domain through no slip flow gives

∮

α=0

∂ζ

∂α
dβ = 0.

2.5. Spectral decomposition

Fourier decomposition applies:

[

ψ
ζ

]

=

∞
∑

n=1

[

ψsn(α, t)
ζsn(α, t)

]

sinnβ +

∞
∑

n=0

[

ψcn(α, t)
ζcn(α, t)

]

cosnβ.

Equations (1)–(2) can be decomposed into each Fourier component.
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2.6. Discretization in space

In the coordinate α, any finite difference approximation with non-uniform grid
spacing may apply. Here the following to the n-th grid point applies:

αn = h

(

sinh(n − 1)γ

sinh γ
+ 1

)

+ α0,

where h, γ : real constants > 0.

2.7. Numerical integration with respect to time

A semi-implicit scheme is applied to get a steady-state solution with a suitably
given initial condition.

3. Results

3.1. Force and moment

The dimensionless force, F , acting on the wing (based on ρU∞
2L) is

F =
i

Re

{
∮

dz

d(α+ iβ)
ζ dβ −

∮

z
∂ζ

∂α
dβ

}

,

The lift coefficient CL is given by the component of F , normal to the uniform
flow direction, and the drag coefficient CD is given by that parallel to the flow.
Attack angle is given by φ − ψ0. The moment relative to the origin of z, CM

(based on ρU∞
2L2), under a right hand coordinate system is given by

CM = − 1

2Re

∮

|z|2 ∂ζ
∂α

dβ +
1

2Re

∮

ζ
∂

∂α
|z|2 dβ,

which is opposite sign to the traditional definition. Traditional lift, drag, moment
coefficients are based on (1/2)ρU∞

2S (S : circumference length), for which

0 < (S/2 − L)/L <∼ 0.05 if |ζ0|, |c2| ≪ 1.

Especially if ζ0 is real,

S/L ≈ 8(1 + ξ)
√

2ξ

[√
β∗

3
{2α∗F (ϕ, k) − (α∗ + β∗)E(ϕ, k)}

+
1 + β∗ + 2α∗

3

√

1 + β∗

1 + α∗

]

,
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β∗ ≡ 1

16ξ

{

1− 6ξ +
√

(1− 6ξ)2 − 32ξ3
}

,

α∗ ≡ ξ

8β∗
, ϕ = tan−1(1/

√
α∗), k =

√

(β∗ − α∗)/β∗,

ξ ≡ |ζ0|+ c2 (> 0),

where F (·, ·), E(·, ·) : elliptic integral of the first, and of the second kind respec-
tively.

3.2. Force characteristics

Figure 2 shows force characteristics against the attack angle.

Figure 3 shows moment characteristics against the attack angle. Present
numerical examples shown are for ǫ2 = −0.1 unless otherwise stated, e.g. [12].

Figure 2: φ − ψ0: angle of attack
• : CL, N : CD : ζ0 = −0.092 (c2 = 0)
◦ : CL, △ : CD : ζ0 = −0.092 + 0.03i,
Hmax = 0.11, Re = 106, ǫ2 = −0.1

Figure 3: φ − ψ0: angle of attack
H : CM : ζ0 = −0.092 (c2 = 0, Re =
106) ▽ : CM : ζ0 = −0.092 + 0.03i
(c2 = 0, Re = 106)

Figure 4 shows the lift dependency on c2.

Figure 5 shows comparison of CL vs. angle of attack with experimental ones.



Aerodynamic Characteristics 161

Figure 4: φ = 0.1 ζ0 = −0.092 + 0.03i Re = 106, ǫ2 = −0.1

Figure 5: Comparison ◦ : ζ0 = −0.092 + 0.03i, Hmax = 0.11 c2 = 0, Re = 106

• : ζ0 = −0.092, c2 = 0, Re = 106 � : NACA 0009 [4] � : NACA 2309 [4]

3.3. Correlation between lift and drag coefficients

Figure 6 shows correlation between lift and drag coefficients.
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Figure 6: Comparison N: NACA 2309, Re = 1.8 × 105 [4], ◦ : ζ0 = −0.092 +
0.03i, c2 = 0, Hmax = 0.11, Re = 106, • : ζ0 = −0.092 + 0.03i, c2 = 0, Re = 105

4. Conclusions

Spectral finite difference schemes give good solutions for aerodynamic character-
istics of Joukowsky like wings, with configuration characteristics.
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