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STUDIA MATHEMATICA

DYNAMIC BEHAVIOUR OF A CRACK AT MACRO- AND

NANO- SCALE IN ANISOTROPIC PLANE BY BIEM
∗

Tsviatko Rangelov, Petia Dineva

The two-dimensional in-plane time-harmonic elastodynamic problem for
anisotropic infinite plane with a crack at macro and nano scale subjected to
incident plane longitudinal P or shear SV wave is studied. The continuum
mechanics model of surface elasticity proposed by Gurtin and Murdoch [1] is
applied to account for the effects of surface elasticity for a crack at nano-level.
The non-hypersingular traction boundary integral equation method (BIEM)
is used in conjunction with closed form frequency dependent fundamental
solution, obtained by Radon transform. In addition a parametric study
for the dynamic stress intensity factor (SIF) and stress concentration field
(SCF) sensitivity to the frequency, crack-size, surface effects and material
anisotropy is presented.

1. State of the art

When the characteristic sizes of heterogeneities in materials shrink to nanometers,
surface effects often play a crucial role in their mechanical behaviour. Therefore,
the mechanical properties of the material in a thin surface layer may distinctly
deviate from its bulk counterpart. A continuum mechanical model of surface elas-
ticity was proposed by Gurtin and Murdoch [1] aiming to describe the surface ef-
fects. In this model a surface/interface is regarded as an elastic but negligibly thin
membrane with the properties that is adhered to the underlying bulk material
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without slipping and with elastic constants different from the bulk. The equilib-
rium and constitutive equations in the bulk are the same as those in the classical
elasticity theory, but the presence of surface stresses gives rise to non-classical
boundary conditions taking into consideration the residual surface tension and
surface deformation.

There exist papers demonstrating that Gurtin and Murdoch [1] model can
well explain various size–dependent elastic properties when solve elastostatic and
elastodynamic problems at nanoscale. We will discuss here only results for dy-
namic problems. Anti–plane wave motion problems for diffraction of SH waves
by nano–inclusions were studied analytically in Fu et al. [2], Yang et al. [3], Fang
et al. [4]. In–plane wave motion problems for diffraction of time–harmonic P- and
SV- waves by nano–holes and nano–inclusions were solved analytically in Wang
[5], Zhang et al. [6], Wang et al. [7], Ru et al. [8]. The most of the used compu-
tational techniques are analytical, there are few papers presenting BIEM as an
efficient tool for solution of 2D problems and they all concern static solutions,
except the results in Parvanova et al. [9].

The conclusions from the short review are as follows: a) There are a limited
number of papers considering surface elasticity effects on the stresses near the
crack-tip and all they are for static loads; b) To the authors knowledge there
are no results for nano-cracks in the field of dynamic fracture mechanics even for
elastic isotropic solids. For anisotropic cracked solids there is no results even for
static problems.

The aim of this study is to consider the dynamic stress field near mode-I
crack tip under incident time-harmonic plane P or SV wave in anisotropic plane
by BIEM taking into account the surface elasticity effect in the frame of Gurtin
and Murdoch [1] model. At macro-scale the crack is finite line crack (Figure 1
a)), while at nano-scale a blunt crack (Figure 1 b)) with crack root presenting by
a semicircular shape of radius b is considered.

The paper is organized as follows: the formulation of the considered in-plane
elastodynamic problem for a crack at macro- and nano-scale in an anisotropic
plane subjected to incident time-harmonic wave is done in Section 2, while its
reformulation via boundary integral equations along existing boundaries based
on the analytically derived by Radon transform fundamental solution is given in
Section 3. Numerical results are shown in Section 4, and finally conclusions are
in Section 5.
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2. Problem formulation

In a Cartesian coordinate system Ox1x2x3 consider an anisotropic plane x3 = 0
containing a line macro–crack Γ = Γ+ ∪ Γ− with length |Γ| = 2a (Figure 1
a)) or nano-crack, a domain G with boundary S (Figure 1 b)) under incident
time-harmonic with frequency ω plane longitudinal P or shear SV wave with
incident angle ϕ in respect to the Ox1 coordinate axis. Considered nano-crack
is a blunt crack with crack root presenting by a semicircular shape of radius b
with dimension falling in the interval 10−7 m ÷ 10−10 m. The crack length is
|S| = 2[2(a − b) + πb].

Plane strain state, i.e. in-plane wave motion in respect to plane x3 = 0 is
considered. In this case the only non-zero field quantities are displacements u1, u2,
stresses σ11, σ12, σ22 all dependent on coordinates x = (x1, x2) and frequency
ω. What follows is to define the boundary-value problem (BVP) in frequency
domain by the governing elliptic partial differential equations of second order
and corresponding boundary conditions.

2.1. The governing equations

a) b)

Figure 1: The problem geometry. Incident P or SV wave propagating in an
anisotropic plane with : a) a line macro crack; b) a blunt nano-crack

2.1.1. Constitutive equation

In the case of general anisotropy 6 parameters c11, c12, c16, c22, c26, c66 charac-
terize the stiffness matrix. Note that the contracted Voigt notation is applied
to the fourth order stiffness matrix Cijkl, where Cijkl = Cjikl = Cijlk = Cklij,
Cijklgijgkl > 0 for any non-zero real symmetric tensor gij . The constitutive
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equations – Hookes law, is presented in the following form:

(1) σij = Cijklskl,

where sij is the strain tensor. The orthotropic material is characterized with
the following four independent material constants c11, c12, c22, c66, because c16 =
c26 = 0. For isotropic material the following relations are truth c11 = c22 = λ+2µ
and c12 = λ; c66 = µ, where λ and µ are Lamé constants.

2.1.2. Kinematics relations

Under assumption of small displacements the kinematic relations are

sij(x, ω) = 0.5[ui,j(x, ω) + uj,i(x, ω)], i, j = 1, 2,

where the symbol (),i represents the partial derivative with respect to xi.

2.1.3. Equation of motion

In the plane x3 = 0 the equation of motion is

(2) σij,j(x, ω) + ρω2ui(x, ω) = 0, x ∈ R2\Γ, or x ∈ R2\G,

in the case of zero body force, where ρ is the mass density.

2.2. Boundary conditions

2.2.1. Boundary conditions at macro-scale

Along the crack-faces traction free boundary conditions are satisfied, i.e.

(3) tj(x, ω) = 0, x ∈ Γ, or x ∈ S,

where tj is the total traction, which in the case of incident plane wave is presented
as a superposition of incident and scattered wave. The same is truth for the total
displacement and traction fields, i.e.

(4)
ui(x, ω) = uini (x, ω) + usci (x, ω), x ∈ R2\Γ, or x ∈ R2\G,

ti(x, ω) = tini (x, ω) + tsci (x, ω), x ∈ Γ, or x ∈ S.

At infinite the Sommerfeld’s radiation condition for the scattered wave is satisfied.
The BVP for the scattered wave field usci consists of governing equation (2),

the Sommerfeld’s radiation condition at infinite and along the cracks boundary
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tsci = −tini , x ∈ Γ, or x ∈ S having in mind relation (4). Thus, to solve this
BVP we must know the incident wave field for any direction of propagation in
the elastic anisotropic plane. Following Dineva et al. [10], the incident wave field
of plane wave propagating with frequency ω in the direction η = (η1, η2) with
angle ϕ with Ox1 axis, i.e., η1 = cosϕ, η2 = sinϕ at point x is as follows:

(5) uini (x, ω) = pji (η) exp[−ikj(η)〈x, η〉],

where super-index j = 1 stands for P wave, while j = 2 is for SV wave, and

〈., .〉 denotes scalar product in R2. Here wave numbers are ki(η) =

√

ρ

ai(η)
ω and

ai(η) > 0, a1 > a2, p
i = (pi1, p

i
2) are eigenvalues and eigenvectors of the matrix

C(η) =

(

c11η
2
1 + c66η

2
2 + 2c16η1η2 c26η

2
2 + (c12 + c66)η1η2

c16η
2
1 + c26η

2
2 + (c12 + c66)η1η2 c22η

2
2 + 2c26η1η2

)

.

Note that in the isotropic case a1 = λ + 2µ, a2 = µ and only in this case the
eigenvalues, eigenvectors and wave numbers do not depend on η.

Once having incident displacement field, the corresponding stresses are com-
puted by Eq. (1) and the corresponding tractions on the boundary are tinj (x, ω) =

σinij (x, ω)ni(x).
The knowledge of SIFs gives information for the strength and life time pre-

diction of studied solid and structures. The computation of SIFs is possible by
the usage of well-known traction formulae. If consider in-plane crack along the
segment AB with local coordinates of points A = (−a, 0), B = (+a, 0) subjected
to time-harmonic load, the traction formulae give:

(6) KI = lim
x1→±a

√

2π(x1 ∓ a)t2, KII = lim
x1→±a

√

2π(x1 ∓ a)t1,

where ti, i = 1, 2 is the traction at a point (x1, 0) close to the crack-tips.

2.2.2. Boundary conditions at nano-scale

Non-classical boundary condition for the blunt nano-crack is applied along its
surface S. Note that for blunt crack the surface is (see Fig. 1b)): S = S+ ∪ S− ∪
Sl ∪ Sr, where S+, S− are upper and lower flat part of the crack and crack-tip
is presented by a semicircles Sl, Sr with radius b with dimension falling in the
interval 10−7 m÷ 10−10 m.

In the frame of the Gurtin and Murdoch [1] model the surface stress is ex-
pressed by

(7) σSij = τ0δij +
∂E

∂εSij
.
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The surface stress σSij is related to the deformation dependent surface energy

density E, where εSij is the 2x2 strain tensor for the surface S, δij is the Kro-
necker delta symbol, τ0 is the residual surface tension under unstrained condition
(along undeformed surface) which is independent on deformation and induce an
additional static deformation. The residual surface tension τ0 is often ignored in
the dynamic analysis. Following Gurtin and Murdoch [1], it is assumed that the
surface layer S with zero thickness has different elastic properties from that of
the plane. Although the plane is elastic anisotropic, we assume the surface layer
S is elastic and isotropic with surface Lamé constants λS and µS . The following
conditions are satisfied in tangential and in normal direction along S, i.e. in local
coordinate system of normal n and tangential l to S vectors

(8)

∣

∣

∣

∣

∣

∣

∣

∣

σMnl =
∂σSll
∂l

+ τ0
ψS
ll

ρ

σMnn = −
σSll
b

+ τ0
∂ψS

ll

∂l
.

Here the first equilibrium equation is written in the tangential plane and the
second equation is in the normal direction to the surface boundary S, ψS

ll =

−
ul
b
+
∂un
∂l

, εSll =
un
b

+
∂ul
∂l

, the super suffixM means the matrix material in the

plane, σSll = τ0+α
SεSll , α

S = λS +2µS is the normal stress in tangential direction
expressed by the constitutive equation for elastic isotropic behavior of the surface
layer, b is the curvature radius of the boundary S, (un, ul) are the displacement
components in the local coordinate system (n, l). The discussed above boundary
conditions (8) can be reformulated in the more compact form in respect to the
tractions tMk = σMkjnj developed along the interface boundary, see Parvanova

et al. [9]. Note that when τ0 = 0 and λS = µS = 0 the boundary condition
(8) transforms into classical boundary condition (3) describing the traction free
surface of the macro-crack.

3. BIEM formulation

3.1. Macro-crack

The formulated in Section 1. problem can be described by the following frequency-
dependent non-hypersingular traction based BIE along the crack boundary Γ in
respect to the unknown crack opening displacement (COD) of the scattered wave
field defined as ∆usci = usci |Γ+ −usci |Γ− along the crack Γ. Following Dineva et al.
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[10] we obtain the following integro–differential equation for ∆usci :
(9)

tini (x, ω) = Cijklnj(x)

∫

Γ+

[(

σ∗pηk(x, ξ, ω)∆u
sc
p,η(ξ, ω)

− ρω2u∗pk(x, ξ, ω)∆u
sc
p

)

δλl − σ∗mλk(x, ξ, ω)∆u
sc
m,l(ξ, ω)

]

nλ(ξ)dξ, x ∈ Γ+.

Here the couple x, ξ presents the position vectors of the source and receiver points,
σ∗ijq = Cijklu

∗

kq,l, u
∗

kq is the displacement fundamental solution of the governing
equation (2), δij is the Kronecker symbol, all indices takes values 1 and 2, the
summation convention over repeated indexes is implied, while subscript commas
denote partial differentiation with respect to ξ. In the BIE (9) all singular in-
tegrals are of CPV sense. Once having solution for the COD, the solution for
displacement and stress at any point in R2\Γ can be obtained by the usage of the
integral representation formulae. The total wave field is obtained by the usage of
the superposition formulae (4).

3.2. Nano-crack

In here we use integro-differential equation for usci on S obtained analogous as
(9), see Dineva et al. [10], but accounting for the surface effect:

cij(t
in
j (x, ω)− tMj (x, ω)) = Cijklnj(x)

∫

S

[(

σ∗pηk(x, ξ, ω)u
sc
p,η(ξ, ω)

− ρω2u∗pk(x, ξ, ω)u
sc
p

)

δλl − σ∗mλk(x, ξ, ω)u
sc
m,l(ξ, ω)

]

nλ(ξ)dξ, x ∈ S.

where uMi = usci + uin, tini + tsci = tMi , uini , tini are defined with (5), cij is the
jump term depending on the local geometry at the source point x. Once having
displacement along the surface S, the displacement and stresses at any observer
point x /∈ S can be obtained by integral representation formulae.

4. Numerical results

The BIEM model presented in Section 3. describes the general anisotropic cracked
solid and in this section we will consider two model cases of anisotropic solids:

(a) isotropic material with λ = 3.315×1010 N/m2, µ = 2.21×1010 N/m2, i.e.
Poisson’s ratio ν = 0.3 and correspondingly c11 = c22 = λ+2µ, c12 = λ, c66 = µ;

(b) orthotropic material with λ = µ = 2.21× 1010 N/m2, c11 = c22 = λ+ 2µ,
c12 = 1/30µ, c66 = µ.

Density in both cases is ρ = 2.7 × 103 kg. The following expression for the
normalized frequency is used Ω = aω

√

ρ/c22, ω is the frequency of the incident
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P wave with incident angle ϕ = π/2. We use dimensionless surface parameter

m =
αS

2µbbm
wth αS = 8.31 N/m and in the numerical results we get bm =

1, 5, 25, 125, 625,∞. Note that m = 0 corresponds to the blunt crack without
surface effect.

We use 5 boundary elements (BE) on the crack Γ, with a length |Γ| = 2a, a =
5× 10−9 m, where 1−st and 5−th are quarter-point crack-tip BE with the length
0.15a, on the blunt crack S, with a length |S| = 2a[2(1 − 0.0375) + 0.0375π] ≈
2.04281 × 10−8 m we use 10 ordinary BE: 8 on S− ∪ S+ and 2 on semi-circle
Sl, Sr with radius b = 0.0375a.

In the numerical examples for the normal incident load (note that in this case
SCF KII = 0) the normalized SCF near the right crack-tip of Γ and close to S
at the point (x1, 0) is evaluated using the formulae, see (6),

KI((x1, 0), ω) =
σ22((x1, 0), ω)

σin22((x1, 0), ω)

√

2π(x1 − a), x1 > a,

normalized SIF on the right crack-tip of Γ is

KI(ω) = lim
x1→a

KI((x1, 0), ω).
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Figure 2: Normalized SIF K1 versus normalized frequency Ω for different values

of surface parameter m =
αS

2µbbm
: a) isotropic plane; b) anisotropic plane

The results of the BIEM computations for normalized SIF produced by nor-
mal to the crack surface incident P-wave, which captures interface effects at the
nanoscale, are plotted in Figure 2a) for the case (a) and in Figure 2b) for the case
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(b) versus normalized frequency Ω for different values of dimensionless parameter
m.

The obtained results in Figure 2 demonstrate the surface elasticity effect.
With increasing of m (respectively decreasing of bbm), the influence of the surface
effect increases, and as a result the stress concentration field is reduced strongly
in the whole considered frequency interval. In the case of m = 0, the obtained
solution recovers those for the macro-crack. To the authors knowledge there is no
available result for wave scattering by nano-crack in elastic isotropic/anisotropic
plane. Figure 2 reveals the sensitivity of the SIF to the frequency of the dynamic
load, to specific surface properties, to material anisotropy and to the size of
the blunt crack root curvature. The above analyses demonstrate that surface
elasticity has a considerable impact on the near-tip fields of a mode-I crack.

5. Conclusion

It is solved elastodynamic problem for anisotropic infinite plane with an in-plane
crack at macro and nano scale under plane longitudinal P or shear SV wave.
The novelty of the present numerical approach lies in the effective combination of
four stages: (a) 2D mechanical modeling based on classical elastodynamic theory
for the bulk anisotropic solid with macro- and nano- cracks combining with the
linear fracture mechanics principles; (b) introduction of non-classical boundary
conditions stemming from localized constitutive equations for the material inter-
faces; (c) efficient numerical implementation of the non-hypersingular traction
boundary integral equations based on the closed form frequency dependent fun-
damental solution obtained by Radon transform, and (d) low computational cost
as numerical modeling is restricted to the surface of the problem in question.
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