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STUDIA MATHEMATICA

DYNAMICS OF HYSTERESIS CNN WITH MEMRISTOR
SYNAPSES∗

Angela Slavova, Ronald Tetzlaff

In this paper a new hysteresis Cellular Nonlinear Networks (CNN) model
will be studied in which we shall introduce memristor in the synapses. Dy-
namics of such model will be investigated. Local activity theory will be
applied in order to determine the edge of chaos domain of the parameter set
in which the model under consideration can exhibit complexity. Simulations
and applications will be provided.

1. Introduction

Hysteresis is defined in the literature [7] as a rate independent memory effect.
We shall use the following definition:

Definition 1. Hysteresis = Rate Independence Memory Effect.

Actually, even in most typical hysteresis phenomena, like ferromagnetism,
ferroelectricity, plasticity, memory effects are not purely rate independent, since
hysteresis is coupled with viscous-type effects. However, in several cases the rate
independent component prevails, provided that evolution is not too fast.

Several physical phenomena exhibit hystersis. In classical continuum me-
chanics, hysteresis behavior is inherent in many constitutive laws. In systems
and control applications, hysteresis regularly appears via mechanical play and
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friction, or in the form of a relay or thermostat, often deliberately built into the
system. If the hysteretic behavior is described using a hysteresis operator, then
the mathematical model for the dynamical system consists of differential equa-
tions coupled with one or several hysteresis operators, which is complemented by
initial and boundary conditions. The oscillator with hystresis restoring force,

x′′(t) + F [x](t) = f(t),

F being a hysteresis operator is a basic example.

The coupling of rate independent hysteretic nonlinearities with ordinary dif-
ferential equations leads to interesting mathematical problems in the theory of
nonlinear oscillations. Hysteretic constitutive laws in continuum mechanics for-
mulated in terms of hysteresis operators lead in a natural way to partial differen-
tial equations coupled with hysteresis operators, where the former represent the
balance laws for mass, momentum and internal energy.

In this paper we propose a hysteresis CNN (HCNN) model [6] which can
perform applications in image processing. Although the typical CNN does not
oscillate and becomes chaotic, one can expect interesting phenomena – bifurca-
tions and complex dynamics to occur. Moreover, because of the applications of
CNN, it will be interesting to consider a special type of memory-based relation
between an input signal and an output signal in this circuit. The main goal of
this paper is to model and investigate such relation, hysteresis [7] for a CNN.
The HCNN is derived from standard CNN which is made of first-order cells with
hysteresis switches. Such cell can operate in two modes – bistable multivibrator
mode and relaxation oscillator mode. In the case of relaxation oscillator mode,
the HCNN can generate various patterns and nonlinear waves. Moreover, HCNN
can function as both associate and dynamic memories.

We shall introduce memristor [3] in HCNN model in order to improve the
resolution in static and dynamic image analysis. Since the memristor exhibits
nonlinear current-voltage characteristic with locally negative differential resis-
tance, the memristor is also considered to replace the original linear resistor in
a HCNN model. Thus, a HCNN with memristor synapses (M-HCNN), equipped
with nonvolatile and programmable synapse circuits, is more versatile and com-
pact and saves the traditional complex output function realization circuits. In
Section 2 we shall introduce our HCNN with memristor synapses. Section 3 will
deal with the dynamics of the proposed model by means of local activity theory.
An algorithm for determination of edge of chaos regime in the parameter set of
our M-HCNN model will be derived in this section. Simulations and applications
will be presented in Section 4.
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2. Hysteresis CNN with memristor synapses (M-HCNN)

Let us consider the following HCNN model:

dxij

dt
= −m(xij) +

∑

k,l∈Nij

(ak−i,l−jf(xkl) + bk−i,l−jukl) + zij , 1 ≤ i, j ≤ M,(1)

where xij denotes the state of the cell C(i, j), yij = f(xij) is the output and ukl
is the input of the CNN cell. We consider the state equation (1) in the case when
yij = h(xij), h(xij) is dynamic hysteresis function defined by:

h(x(t)) =



















1, for x(t) > −1, h(x(t−) = 1
−1, for x(t) = −1,
−1, for x(t) < 1, h(x(t−)) = −1
1, for x(t) = 1,

(2)

t− = limε→0(t − ε), ε > 0. The term m(·) is the current flowing through the
memristor (M). Memristor is a 2-terminal electronic device, which was postulated
by L.Chua [3] in 1971. The memristor is described by the relation between the
charge q and the flux ϕ. Its terminal voltage v and the the terminal current i

are described by: v = M(q)i or i = V (ϕ)v, where v = dϕ
dt

and i = dq
dt
. The two

nonlinear functionsM(q) and V (ϕ) are called the memristance and memductance,

respectively and are defined by M(q) = dϕ(q)
dq

and V (ϕ) = dg(ϕ)
dϕ

representing the
slope of a scalar function ϕ = ϕ(q) and q = g(ϕ) called the memristor constitutive
relations. In our case we shall consider m(·) in the equation (1) to be in the form

m(xij(t)) =
vM

M(t)
=

xij(t)

M(t)
,(3)

where M(t) is the memristance of the memristor state resistor.

In the case when the template is space invariant, each cell is described by
simple identical cloning templates defined by two real matrices A and B. Con-
tinuous input(output) signal values are presented by values in the range [−1, 1]
or [0, 1]. For instance the following two square matrices are used for a CNN with
neighbourhood radius r = 1 [2]:

A =







A(i, j; i − 1, j − 1) A(i, j; i − 1, j) A(i, j; i − 1, j + 1)
A(i, j; i, j − 1) A(i, j; i, j) A(i, j; i, j + 1)
A(i, j; i + 1, j − 1) A(i, j; i + 1, j) A(i, j; i + 1, j + 1)






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B =







B(i, j; i − 1, j − 1) B(i, j; i − 1, j) B(i, j; i − 1, j + 1)
B(i, j; i, j − 1) B(i, j; i, j) B(i, j; i, j + 1)
B(i, j; i + 1, j − 1) B(i, j; i + 1, j) B(i, j; i + 1, j + 1)







This form enables us to rewrite state equation (1) in a more compact form
by means of the two-dimensional convolution operator defined below.

Definition 2. For any cloning template A which defines the dynamic rule of

the cell circuit, we define the convolution operator ∗ by

A ∗ yij =
∑

C(k,l)∈Nr(i,j)

A(k − i, l − j)ykl,(4)

where A(m,n) denotes the entry in the mth row and nth column of the cloning

template, m = −1.0, 1, and n = −1, 0, 1, respectively.

In this way we can rewrite the HCNN model (1) in the following way:

dxij

dt
= −m(xij) +A ∗ h(xij) +B ∗ ukl + zij .(5)

We can transform equation (5) into the following form:

dxij

dt
= −m(xij) + h(uij) + (ac − 1)h(xij) + Ã ∗ h(xij) +B ∗ ukl + zij ,(6)

where Ã is the template for the case (k, l) 6= (i, j). Then the dynamics of an
isolated cell of equation (6) (without control B∗ukl and threshold zij parameters)
is given by:

dxij

dt
= −m(xij) + ach(xij).(7)

Thus, the isolated cell has the following properties:

– If ac = −2, equation (7) reduces to a relaxation oscillator:

dxij

dt
= −m(xij)− 2h(xij),(8)

because xij oscillates between upper and lower transition levels (see Figure 1).

– If ac = 2, then we have a bistable multivibrator:

dxij

dt
= −m(xij) + 2h(xij),(9)
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Figure 1: Relaxation oscillator

because it has two possible stable states: xij = ±2.

– If ac = −0.5, the equation (7) is reduced to a bistable multivibrator:

dxij

dt
= −m(xij)− 0.5h(xij),(10)

since it has two possible stable states: xij = ±0.5.
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Figure 2: Bistable multivibrator
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3. Dynamics of M-HCNN model

Without loss of generality let us consider the following M-HCNN model with zero
control and threshold template which is obtained simply from (1):

dxij

dt
= −m(xij) + ach(xij) + bf(xij) +

∑

k,l∈Nij

ak−i,l−jf(xkl),(11)

1 ≤ i, j ≤ M.

In general, a spatially continuous or discrete medium made of identical cells inter-
acting with all cells located within a neighborhood is said to manifest complexity
if the homogeneous medium can exhibit a non-homogeneous static or spatio-
temporal pattern under homogeneous initial and boundary conditions. In this
section we shall apply theory of local activity in order to study the dynamics of
M-HCNN model (11). Since complexity can occur only if the active parameter
region is not an empty set, it follows that local activity is indeed the origin of
complexity, such as limit cycles or chaos. Mathematically, the signal must be
infinitesimally small in order to model the cell by only the linear terms in its
Taylor series expansion. This proves that complexity originates from infinitesi-
mally small perturbations, notwithstanding the fact that the complete system is
typically highly nonlinear.

Constructive and explicit mathematical inequalities can be obtained for iden-
tifying the region in the CNN parameter space where complexity phenomena
may emerge, as well as for localizing in further into a relatively small parameter
domain called edge of chaos where the potential for emergency is maximized.
By restricting the cell parameter space to the local activity domain, a major re-
duction in the computing time required by the parameter search algorithms is
achieved [4].

We develop the following constructive algorithm for determination of the edge
of chaos domain:

1. Map the M-HCNN model (11) into its discrete-space version by choosing

the Laplace template







0 1 0
1 −4 1
0 1 0






as the feedback template A. Then the

dynamics of an isolated cell working in relaxation oscillator mode is given by:

dxij

dt
= −m(xij) + ach(xij) + bf(xij) = F (xij).(12)
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2. Find the equilibrium points Ek of (12). According to the theory of dynam-
ical systems equilibrium points are these for which F (xij) = 0. In general, this
system may has four real roots and these roots are functions of the cell parameters
ac, b.

3. Calculate now the four cell coefficients of the Jacobian matrix a11, a12,
a21, a22.

4. Calculate the trace Tr(Ek) and the determinant ∆(Ek), k = 1, 2, 3, 4 of
the Jacobian matrix for each equilibrium point Ek.

Remark. The importance of the circuit model is not only in the fact that we
have a convenient physical implementation, but also in the fact that well-known
results from classic circuit theory can be used to justify the cells’ local activity.
In this sense, if there is at least one equilibrium point for which the circuit model
of the cell acts like a source of “small signal”, i.e. if the cell is capable of injecting
a net small-signal average power into the passive resistive grids, then the cell is
said to be locally active.

Definition 3. Stable and locally active region SLAR(Ek) at the equilibrium

point Ek for the M-HCNN model (12) is such that

a22 > 0 or 4a11a22 < (a12 + a21)
2

and

Tr < 0 and ∆ > 0.

5. Edge of chaos. In the literature, the so-called edge of chaos (EC) means a
region in the parameter space of a dynamical system where complex phenomena
and information processing can emerge. We shall try to define more precisely
this phenomena till now known only via empirical examples.

Definition 4. M-HCNN (12) is said to be operating on the edge of chaos EC

iff there is at least one equilibrium point which is both locally active and stable.

Following the above algorithm we have proved the following theorem:

Theorem 1. M-HCNN model (12) is operating in the EC regime iff the fol-

lowing conditions for the parameters are satisfied: ac ≥ 2 and −1 < b < 3. In this

parameter set at least on equilibrium point Ek is both locally active and stable.
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Figure 3: EC region for M-HCNN model (12)

After simulations we obtain the following edge of chaos region for the M-
HCNN model (12):

Remark. In this paper, a forward Euler algorithm with a time step size
∆t = 0.0.1 is applied to all computer simulations. The dynamic hysteresis func-
tion h(x) is programmed as follows:

h(x(tn)) =



















1, for x(tn) > −1, h(x(tn−1) = 1,
−1, for x(tn) = −1,
−1, for x(tn) < 1, h(x(tn−1)) = −1,
1, for x(tn) = 1,

where tn = n∆t, n = 1, 2, . . ..

4. Simulations and applications

In this section we shall present simulations of the dynamic nonhomogeneous pat-
terns which have emerged from the M-HCNN for several cell parameter points
chosen arbitrarily within, or nearby, the edge of chaos domain. After extensive
computer simulations we obtain the following results (see Fig. 4).

As one possible application of our M-HCNN we shall present the dynamic
memories function. In the case of relaxation oscillator mode (8), the M-HCNN
has the function of dynamic memories. It is known that actual human being’s as-
sociation is not always static, but dynamic. It sometimes wonders from a certain
memory to another memory, one after another. Furthermore, a flash of inspi-
ration (new pattern) sometimes appears which is relevant to known memories.
They are called spurious memories. The generation of spurious memories can be
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Figure 4: Simulations of M-HCNN model (12)
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interpreted as the brain’s creative activity. Let us consider the dynamic memories
described by

dxij

dt
= −m(xij − 2h(xij) = d(pijx0 − xij), 1 ≤ i, j ≤ M,(13)

where d is a sufficiently large constant, pij is defined by

pij = sgn(
M
∑

j=1

sijwj),(14)

wj = sng(h(xij)h(x0)). Given M binary patterns σ1, σ2, . . . , σM , each pattern
σ contains N bit of information σ

q
i , then the coupling coefficients sij are defined

as follows:

sij =
1

N

M
∑

m=1

σ
q
i σ

q
j .

x0 is obtained from the master relaxation oscillator

dx0

dt
= −x0 − 2h(x0).(15)

For the time period satisfying wj = sng(h(x0(t))h(xij(t))) = σ1
j , we get the

following relation

pij =
N
∑

j=1

sijwj =
N
∑

j=1

sijσ
1
j =

N
∑

j=1

(
1

N

M
∑

m=1

σ
q
i σ

q
J)σ

1
j =(16)

σ1
i +

1

N

M
∑

q 6=1

σ
q
i

M
∑

j=1

σ
q
jσ

1
j .

If we assume that M ≪ N (i.e. the number of stored patterns is much smaller
than the total number of cells), then we have

pij ≈ σ1
i ,(17)

d(pijx0 − xij) ≈ d(σ1
ijx0 − xij).

Thus the master relaxation oscillator and ith cell may not synchronize com-
pletely. That is, the output pattern oscillates in the phase relation corresponding
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to the pattern σ1 for a while, but does not converge to the pattern σ1. Then,
the output pattern may occasionally travel around the stored patterns and their
reverse patterns or may travel around the new patterns which are related to the
stored patterns. Furthermore, there may be the case where the output pattern
converges to an unexpected pattern or oscillates between some of the stored and
unstored patterns. Therefore, it is necessary to carry out numerical simulations
of dynamic memories.

Remark. Prigogine’s perspective of complexity stems mainly from his deep
insights of nonequilibrium thermodynamics. In his classic book [6], Prigogine
addresses a much broader class of homogeneous systems exhibiting what he called
“dissipative structures”. In one broad stroke, he had correctly identified the
fundamental mechanism of complexity as an innate property of a homogeneous
medium to destabilize from the homogeneous “thermodynamic” branch and to
bifurcate into various spatio-temporal dissipative structures, as some relevant
parameters cross over a bifurcation boundary. Prigogine’s vision is correct but
only a qualitative one at that. All complexity related examples, problems such
as pattern generation, wave propagation and oscillations can be analyzed and
explained via local activity.
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