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STUDIA MATHEMATICA

A NEW APPROACH TO IMPROVE THE NUMERICAL

PROCEDURE FOR 2D ANTI-PLANE

CRACK PROBLEMS IN FUNCTIONALLY GRADED

MAGNETO-ELECTRO-ELASTIC MATERIALS∗

Yonko Stoynov

Magneto-electro-elastic composite materials have extensive applications in
modern smart structures, because they possess good coupling between me-
chanical, electrical and magnetic fields. This new effect was reported for the
first time by Van Suchtelen [1] in 1972. Due to their ceramic structure cracks
inevitably exist in these materials. If these cracks extend the material may
lose its structural integrity and/or functional properties.

In this study we consider functionally graded magneto-electro-elastic ma-
terials (MEEM) subjected to anti-plane time-harmonic load. Our purpose
is to evaluate the dependence of the stress concentration near the crack tips
on the frequency of the applied external load. We use boundary integral
equation method (BIEM) for the numerical solution.

For materials with complex geometry of cracks the numerical procedure
becomes too cumbersome. To increase the speed of the computations we
derive new fundamental solutions by the Fourier transform. The more simple
form of these fundamental solutions leads to decreasing of the number of
the numerical computations. Asymptotic for small arguments of the new
solutions will be presented. The results can be used to improve the numerical
procedure based on the BIEM for complex crack configurations in MEEM.
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1. Introduction

Magneto-electro-elastic composites are advanced materials that possess large
magneto-electric effect. This effect doesn’t exist in piezoelectric or piezomag-
netic phase and has variety of applications in modern smart structures.

In this study we consider functionally graded magneto-electro-elastic mate-
rials (MEEM) subjected to anti-plane time-harmonic load. The purpose is to
evaluate the dependence of the stress concentration near the crack tips on the
frequency of the applied external load. The mathematical model is described by
a boundary value problem for a system of partial differential equations. Follow-
ing Wang and Zhang [2] for the piezoelectric case the boundary value problem is
reduced to a system of integro-differential equations along the crack.

Fundamental solutions (or Green’s functions) are one of the basic ingredients
necessary to solve boundary value problems (BVP) by the boundary integral
equation method (BIEM). A limited number of papers consider dynamic funda-
mental solutions suitable for BIEM implementation (see Dineva et al. [3]). In
our work fundamental solutions were initially derived by the Radon transform.
For complex configurations of cracks the complex form of the these solutions
leads to decreasing of the speed of the numerical computations. We will present
a new derivation of the fundamental solution using the Fourier transform and
express them as linear combinations of Kelvin functions and natural logarithms.
The more simple form of the fundamental solution will significantly improve the
numerical realization of the solution of the BVP.

2. Statement of the problem

We consider transversely-isotropic functionally graded magnetoelectroelastic ma-
terial in the coordinate system Ox1x2x3, where Ox3 is poling direction and sym-
metry axis and Ox1x2 is the isotropic plane. MEEM is subjected to anti-plane
mechanical impact on the Ox3 axis, and in-plane electrical and magnetic impacts
in the plane Ox1x2. The constitutive equations for this type of medium (see Soh
and Liu [4]) are:

(1) σiQ = CiQJluJ,l,

where x = (x1, x2), and Γ = Γ+
⋃

Γ− is an internal crack – an open arc. Here

and in what follows comma denotes partial differentiation, it is assumed sum-
mation in repeating indexes and small indexes vary 1, 2, while capital indexes
vary 3, 4, 5; uJ is the generalized displacement vector uJ = (u3, φ, ϕ), where u3
is out of plane elastic displacement, φ is the electric potential, ϕ is the mag-
netic potential; σiJ = (σi3,Di, Bi) is the generalized stress tensor, where σiJ
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is the stress, Di and Bi are the components of the electric and magnetic in-
duction respectively along Oxi axis; CiQJl is the generalized elasticity tensor

defined as: Ci33l(x) =

{

c44(x), i = l

0, i 6= l
, Ci34l(x) = Ci43l(x) =

{

e15(x), i = l

0, i 6= l
,

Ci35l(x) = Ci53l(x) =

{

q15(x), i = l

0, i 6= l
, Ci44l(x) =

{

−ε11(x), i = l

0, i 6= l
, Ci45l(x) =

Ci54l(x) =

{

−d11(x), i = l

0, i 6= l
, Ci55l(x) =

{

−µ11(x), i = l

0, i 6= l
. Functions c44(x),

e15(x), ε11(x) are: elastic stiffness, piezoelectric coefficient and dielectric per-
mittivity, while q15(x), d11(x), µ11(x) are piezo-magnetic and magneto-elastic
coefficients and magnetic permeability correspondingly.

Assuming quasi-static approximation in the Maxwell equation the governing
equation in the frequency domain in absence of body force, electric charge and
magnetic current is the following:

(2) σiQ,i + ρQJω
2uJ = 0

where ρQJ =

{

ρ,Q = J = 3
0, Q, J = 4or 5

, ρ(x) is the mass density, ω > 0 is the frequency.

We assume that all material properties depend on x in one and the same way
and describe this by an inhomogeneity function h(x): c44(x) = h(x)c44, e15(x) =
h(x)e15, ε11(x) = h(x)ε11, q15(x) = h(x)q15, d11(x) = h(x)d11, µ11(x) = h(x)µ11.

When the incident SH-wave interacts with the cracks a scattered wave is
produced. The total displacement and traction at any point of the plane can be
calculated by the superposition principle:

(3) uJ = uinJ + uscJ , tJ = tinJ + tscJ ,

where tJ = σiJni and ni = (n1, n2) is the outer normal vector.uinJ and tinJ are
displacement and traction of the incident wave fields uscJ and tscJ are the scattered
by the cracks wave fields.We impose the following boundary conditions: tJ = 0,
tinJ = −tscJ

(4) tJ = 0 or tinJ = −tscJ , x ∈ Γ

(5) uscJ → 0 when (x21 + x22)
1/2 → ∞.

The boundary condition (4) means that the cracks are free of mechanical traction
and also they are magnetoelectrically impermeable. Permeable cracks are also
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used in literature. Impermeable and permeable crack models are discussed in
details in Dineva et al. [3]. We will reduce the boundary value problem (2), (4)
and (5) to an equivalent system of integro-differential equations along the cracks
and then solved this system numerically.

3. Boundary integral equation method

The fundamental solution u∗KM of (2) is the solution of the equation:

σiQ,i + ρQJω
2uJ = δJMδ(x, ξ),

where δJM is the Kronecker symbol and δ(x, ξ) is the Dirak’s delta function.
Following [3], [5] the fundamental solution can be represented in the following
way

u∗KM = h−1/2U∗

KM ,

where U∗

KM is solution of:

(6) CiJKiU
∗

KM,ii + [ρJKω2 − CiJKik
2
i ]U

∗

KM = h−1/2(ξ)δJM δ(x, ξ).

Equation (6) is with constant coefficients if pJK = CiJKih
−1/2(h1/2),ii = const.

When a system with constant coefficients is obtained we find the fundamental
solutions in a closed form using direct and inverse Radon transform and calculus
with generalized functions.

Following Wang and Zhang [2] and Gross et al. [6]the following representation
formulae are valid:

(7)

tscJ (x, ω) = CiJKl(x)ni(x)

∫

Cr
{[σ∗

ηPK(x, y, ω)△uP,η(y, ω)

−ρQP (y)ω
2u∗QK(x, y, ω)△uP (y)]δλl

−σ∗

λPK(x, y, ω)△uP,l(y, ω)]nλ(y)}dΓ(y),

where ∆uJ = uJ |Cr+ − uJ |Cr− are jumps of the displacement along the crack

or crack opening displacement (COD),Cr = Cr1
⋃

Cr2, Cr+ and Cr− are the

upper and lower bounds of the cracks correspondingly, u∗KM is the fundamental
solution and σ∗

iJK = CiJMlu
∗

KM,l,
Since the fundamental solution and incident wave field are known, using (7)

we obtain integro-differential equation along the crack, where unknowns are COD:

(8)

tinJ (x, ω) = −CiJKl(x)ni(x)

∫

Cr
{[σ∗

ηPK(x, y, ω)△uP,η(y, ω)

−ρQP (y)ω
2u∗QK(x, y, ω)△uP (y)]δλl

−σ∗

λPK(x, y, ω)△uP,l(y, ω)]nλ(y)}dΓ(y), x ∈ Cr.
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The equation (8) is solved numerically. Once COD are found we can calculate
the scattered field at every point on the plane using (7).

4. New derivation of the fundamental solution

Here we will present new fundamental solutions for the case h(x) = 1, which
corresponds to homogeneous material. The system that we have to solve has the
following form:

c44∆u∗33 + e15∆u∗43 + q15∆u∗53 + ρω2u∗33 = δ(x, ξ)

c44∆u∗34 + e15∆u∗44 + q15∆u∗54 + ρω2u∗34 = 0

c44∆u∗35 + e15∆u∗45 + q15∆u∗55 + ρω2u∗35 = 0

e15∆u∗33 − ε15∆u∗43 − d11∆u∗53 = 0

e15∆u∗34 − ε15∆u∗44 − d11∆u∗54 = δ(x, ξ)

e15∆u∗35 − ε15∆u∗45 − d11∆u∗55 = 0

q15∆u∗33 − d11∆u∗43 − µ11∆u∗53 = 0

q15∆u∗34 − d11∆u∗44 − µ11∆u∗54 = 0

q15∆u∗35 − d11∆u∗45 − µ11∆u∗55 = δ(x, ξ)

where ∆ =
∂2

∂x2
1

+
∂2

∂x2
2

.

After linear transformation and introducing the coefficients:

c̃44 = c44 +
q215
µ11

, ẽ15 = e15 −
d11q15

µ11

, ε̃11 = ε11 −
d211
µ11

we obtain:

c̃44∆u∗33 + ẽ15∆u∗43 + ρω2u∗33 = δ(x, ξ)

c̃44∆u∗34 + ẽ15∆u∗44 + ρω2u∗34 = 0

c̃44∆u∗35 + ẽ15∆u∗45 + ρω2u∗35 =
q15

µ11

δ(x, ξ)

ẽ15∆u∗33 − ε̃11∆u∗43 = 0

ẽ15∆u∗34 − ε̃11∆u∗44 = δ(x, ξ)

ẽ15∆u∗35 − ε̃11∆u∗45 =
d11

µ11

δ(x, ξ)

q15∆u∗33 − d11∆u∗43 − µ11∆u∗53 = 0
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q15∆u∗34 − d11∆u∗44 − µ11∆u∗54 = 0

q15∆u∗35 − d11∆u∗45 − µ11∆u∗55 = δ(x, ξ)

In a similar way the following system is obtained:

ã∆u∗33 + ρω2u∗33 = δ(x, ξ)

ã∆u∗34 + ρω2u∗34 =
ẽ15

ε̃11
δ(x, ξ)

ã∆u∗35 + ρω2u∗35 =

(

q15

µ11

−
d11

µ11

ẽ15

ε̃11

)

δ(x, ξ)

ẽ15∆u∗33 − ε̃11∆u∗43 = 0

ẽ15∆u∗34 − ε̃11∆u∗44 = δ(x, ξ)

ẽ15∆u∗35 − ε̃11∆u∗45 =
d11

µ11

δ(x, ξ)

q15∆u∗33 − d11∆u∗43 − µ11∆u∗53 = 0

q15∆u∗34 − d11∆u∗44 − µ11∆u∗54 = 0

q15∆u∗35 − d11∆u∗45 − µ11∆u∗55 = δ(x, ξ)

where: ã = c̃44 +
ẽ215
ε̃11

.

We will apply Fourier transform to solve the above system. The Fourier
transform is defined as:

F (g)(η) =
1

2π

∫

R2

g(x)e−i<x,η>dx,

where g ∈ ℑ(R2).
For generalized functions f ∈ ℑ′ we have:

(F (f), g) = (f, F (g)), g ∈ ℑ

Some basic properties of the Fourier transform are the following:

F (af + bg) = aF (f) + bF (g)

F (Dαf) = (−iη)αF (f)

F (f(x− ξ)) = e−i<x,ξ>F (f)
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F (δ(x, ξ)) =
1

2π
e−iηξ .

We apply the Fourier transform to the equation:

ã∆u∗33 + ρω2u∗33 = δ(x, ξ)

and obtain:

(−|η|2 + k2)F (u∗33) =
1

ã

1

2π
e−iηξ

where k = ω

√

ρ

ã
or F (u∗33) =

1

−|η|2 + k2
1

ã

1

2π
e−iηξ in a similar way we obtain:

F (u∗34) =
1

−|η|2 + k2
1

ã

1

2π
e−iηξ ẽ15

ε̃11

F (u∗35) =
1

−|η|2 + k2
1

ã

1

2π
e−iηξ

(

q15

µ11

−
d11

µ11

ẽ15

ε̃11

)

F (u∗43) =
ẽ15

ε̃11
F (u∗33) = F (u∗34)

F (u∗44) =
ẽ15

ε̃11

1

−|η|2 + k2
1

ã

1

2π
e−iηξ ẽ15

ε̃11
+

1

|η|2
1

ε̃11

1

2π
e−iηξ

F (u∗45) =
ẽ15

ε̃11

1

−|η|2 + k2
1

ã

1

2π
e−iηξ

(

q15

µ11

−
d11

µ11

ẽ15

ε̃11

)

−
1

|η|2
1

ε̃11

d11

µ11

1

2π
e−iηξ

F (u∗53) = F (u∗35),

F (u∗54) = F (u∗45)

F (u∗55) =
1

−|η|2 + k2
1

ã

1

2π
e−iηξ

(

q15

µ11

−
d11

µ11

ẽ15

ε̃11

)2

+
1

|η|2
1

ε̃11

d11

µ11

1

2π
e−iηξ

−
1

µ11

1

|η|2
1

2π
e−iηξ

The inverse Fourier transform is defined as:

F−1(f) = F (f(−x)), f ∈ ℑ′

F−1(F (f)) = f, F (F−1(f)) = f, f ∈ ℑ′

F and F−1 are one-to-one on ℑ′.
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To obtain the fundamental solution we need the following formulae:

F−1

(

1

|η|2 − k2
e−iηξ

)

= −
1

2π
K0(ik|x − ξ|)

F−1

(

1

|η|2
e−iηξ

)

= − ln |x− ξ|

(see H. Bateman, A. Erdelai [7], I. S. Gradshteyn and I. M. Ryzhik [8]), where
Kν(z) is the Kelvin function of order ν.

Applying the inverse Fourier transform we have:

u∗33 =

(

1

2π

)2 1

ã
K0(ik|x − ξ|)

u∗34 =
1

ã
(
1

2π
)2
ẽ15

ε̃11
K0(ik|x − ξ|)

u∗35 =
1

ã

(

1

2π

)2 (

q15

µ11

−
d11

µ11

ẽ15

ε̃11

)

K0(ik|x− ξ|)

u∗43 = u∗34

u∗44 =
ẽ15

ε̃11

1

ã

(

1

2π

)2
ẽ15

ε̃11
K0(ik|x− ξ|) +

1

ε̃11

1

2π
ln |x− ξ|

u∗45 =
1

ã

(

1

2π

)2 (

q15

µ11

−
d11

µ11

ẽ15

ε̃11

)

ẽ15

ε̃11
K0(ik|x− ξ|) +

1

ε̃11

d11

µ11

1

2π
ln |x− ξ|

u∗53 = u∗35,

u∗54 = u∗45

u∗55 =
1

ã

(

1

2π

)2 (

q15

µ11

−
d11

µ11

ẽ15

ε̃11

)2

K0(ik|x− ξ|)

+

(

1

ε̃11

d11

µ11

−
1

µ11

)

1

2π
ln |x− ξ|

To implement fundamental solutions in BIEM we need also the asymptotic of the
fundamental solutions for small arguments. If we use the asymptotic formula (|z|
is small):

K0(z) ∼ − ln
(z

2

)

− γ

we conclude that we have: u∗KJ ∼ AKJ ln(r), where K,J = 3, 4, 5 and r = |x− ξ|
and AKJ depend only on the material constants as was shown above.
For the derivatives of the fundamental solutions we have to use the formula:

K ′

0(z) = −K1(z),
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(see I. S. Gradshteyn and I. M. Ryzhik [8]) and the asymptotic formula for small
arguments:

Kα(z) ∼
Γ(α)

α

(

2

z

)α

, α > 0.

The asymptotic for the derivatives has the following form:

u∗KJ,j ∼ BKJ
1

r
r,j,

where BKJ depend on the material constants.

5. Conclusion

We considered functionally graded magneto-electro-elastic materials under anti-
plane wave.

A new derivation of the fundamental solution is presented which simplifies
the numerical procedure.

The results can be used to find stress concentration near crack tips for
magneto-electro-elastic materials with complex crack geometry.
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