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STUDIA MATHEMATICA

ON SOLITON EQUATIONS IN CLASSICAL DIFFERENTIAL

GEOMETRY

Tihomir Valchev

In this survey report we shall briefly sketch certain problems from the
classical differential geometry of curves and surfaces that lead to nonlinear
partial differential equations known from soliton theory. Thus an alternative
viewpoint on these completely integrable equations will be presented.

1. Introduction

It is rather well-known that the modern theory of integrable systems started with
the discovery of inverse scattering method for KdV equation in the late 1960’s
[1]. It is less known, however, that many basic concepts and results in the theory
of solitons have their true origins in the classical differential geometry of curves
and surfaces. This remarkable fact motivates some to speak of “pre-history of
soliton” [10].

It all began with French engineer and differential geometer Edmond Bour [11].
In his studies of surfaces of constant negative Gauss curvature (pseudo-spheres)
Bour showed that the Gauss-Mainardi-Codazzi equations for a pseudo-spherical
surface can be reduced to sine-Gordon equation

ωuv =
sinω

ρ2
ρ > 0

for the angle ω between the asymptotic lines of the surface. Further significant
contributions to the field that shaped its classical period were made by Bäcklund,
Bianchi and Darboux [9, 11].
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This report is aimed at providing a short survey on ideas and results illus-
trating how certain 2-dimensional nonlinear partial differential equations (PDEs)
integrable through the inverse scattering method naturally arise in geometric
context. This way we will give an alternative viewpoint on these completely
integrable PDEs.

Report is organized as follows. Next section contains our main considerations
and it is divided into two subsections demonstrating two different geometrical
settings that give rise to nonlinear PDEs. In the first subsection we shall show
how the analytical description of curves moving in real Euclidean space naturally
produces evolution PDEs. We shall consider in detail the motion of inextensible
curves of constant torsion which turns out to be connected to Dym equation.
Other important examples are mKdV and NLS equations. The latter describes
the binormal motion of inextensible curves.

Subsection 2.2. is dedicated to PDEs arising in the theory of surfaces in
Euclidean space. More specifically, we will focus on a special but interesting
class of surfaces called isothermic. As it will be discussed integrable PDEs like
zoomeron and Davey-Stewartson II equations are deeply related to isothermic
surfaces.

Finally, Section 3. contains several concluding remarks.

2. Integrable PDEs & Classical Differential Geometry

2.1. Motion of Curves

Many soliton PDEs naturally appear in the study of curves in real Euclidean
space E

3, see [8, 11]. We shall demonstrate here the relation existing between
several classical scalar soliton equations and the motion of inextensible curves in
E
3. This is why we shall remind some basic facts from the differential geometry

of curves in E
3. For a more comprehensive exposition of this subject we refer to

[4, 12].

Let γ ⊂ E
3 be a smooth regular curve from the class Ck, k ≥ 3 parametrized

by its arc-length parameter s, i.e. γ : r = r(s) for r being position vector
taken with respect to some coordinate frame. We denote by t the unit tangent
vector of γ, while n stands for its (principal) normal vector and b = t × n is
its binormal vector. Then the curve is characterized by its Frenet-Serret moving
frame {t,n,b} satisfying linear system:





t

n

b





s

=





0 κ 0
−κ 0 τ

0 −τ 0









t

n

b



(1)
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where κ is curvature, τ is torsion and subscript means differentiation.

Suppose now γ moves in Euclidean 3-space sweeping a surface with position
vector r(s, t) where t ∈ (α, β) is evolution parameter. Further on, we shall

restrict ourselves with the important particular case of inextensible

curves.

Definition 1. A curve is said to be inextensible if st = 0 during motion.

It is clear that for inextensible curves s and t are two independent variables.

Yet another essential assumption: the Frenet-Serret frame of γ remains

orthonormal during motion. This implies that the evolution of {t,n,b} is
driven by linear equations of the form:





t

n

b





t

=





0 a b

−a 0 c

−b −c 0









t

n

b



(2)

where a, b and c are some smooth functions.

The formal integrability condition of (1) and (2) leads to the following rela-
tions

as = κt + τb(3)

bs = κc− τa(4)

cs = τt − κb .(5)

between the coefficients a, b and c and the characteristics of curve.

On the other hand, a, b and c can be expressed through the components
of velocity field v(s, t) := rt(s, t) in a very convenient way. Indeed, from the
compatibility condition rst = rts one easily derives

us − κv = 0(6)

vs + κu− τw = a(7)

ws + τv = b.(8)

Above we have used the representation v = ut+ vn+ wb of the velocity field.

An important special case of motion is when v = wb. The requirement of
inextensibility of γ is crucial due to the following statement:

Theorem 1. A pure binormal motion is possible for inextensible curves only.
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In the case of binormal motion of curves (7) and (8) immediately show that

a = −τw b = ws(9)

while system (3)–(5) is now reduced to

κt + 2wsτ + wτs = 0(10)

τt =

(

wss − τ2w

κ

)

s

+ κws(11)

For curves of constant curvature equation (10) immediately gives w = τ−1/2 and
equation (11) turns into

τt =
1

κ

[(

τ−1/2
)

ss
− τ3/2 + κ2τ−1/2

]

s
(12)

known as extended Dym equation.

From the extended Dym equation one can obtain usual Dym equation [11]

τt =
(

τ−1/2
)

sss
.(13)

Equation (13) is remarkable for it is completely integrable but does not have the
Painlevé property.

Apart of the Frenet-Serret moving frame {t,n,b} one can employ so-called
natural Frenet frame {t,n1,n2} for n1 and n2 being relatively parallel nor-
mal vectors of unit length [2]. For a regular inextensible curve of the class C3

parametrized by its arc-length parameter the natural Frenet frame is governed
by equations:





t

n1

n2





s

=





0 k1 k2
−k1 0 0
−k2 0 0









t

n1

n2



 .(14)

Above k1 and k2 play the role of curvatures connected to curvature κ and torsion
τ through relations

k1 = κ cos θ k2 = κ sin θ ⇔
κ =

√

k21 + k22 τ = θs θ = ∢(n1,n).

Following ideas from [6] we shall show how one can easily obtain mKdV and
NLS equations using the natural Frenet basis. Consider a curve γ moving into E

3
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in such a way that the natural Frenet frame remains orthonormal during motion,
i.e. we have:





t

n1

n2





t

=





0 a1 a2
−a1 0 a3
−a2 −a3 0









t

n1

n2



(15)

for some coefficients a1, a2 and a3 being smooth functions of s and t. Then the
integrability condition of (14) and (15) leads to equations

a1,s = k1,t − k2a3,(16)

a2,s = k2,t + k1a3,(17)

a3,s = a1k2 − a2k1(18)

Like before there exists a simple connection between the components of the
velocity v = rt = ut+ v1n1 + v2n2 and the coefficients a1 and a2 as given below:

us = v1k1 + v2k2,(19)

aσ = vσ,s + ukσ σ = 1, 2(20)

Assume now v1 = k1,s and v2 = k2,s. From (19) and (20) we immediately get

u =
k21 + k22

2
aσ = kσ,ss +

k21 + k22
2

kσ

and equations (16), (17) and (18) give rise to the following coupled mKdV equa-
tions

kσ,t = kσ,sss +
3(k21 + k22)

2
kσ,s(21)

or equivalently to a single complex mKdV equation

Ut = Usss +
3|U |2
2

Us(22)

for complex curvature function U := k1 + ik2.
Consider now the case of pure binormal motion, i.e. u = 0. From (19) we

determine
v1 = −k2 v2 = k1(23)

hence (20) and (18) give

a3 = −k21 + k22
2

.

Finally (16) and (17) are reduced to focusing NLS equation

iUt + Uss +
|U |2
2

U = 0(24)

for the complex curvature function introduced before.
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2.2. Isothermic Surfaces

We have already discussed in the introduction of paper how soliton theory orig-
inated in the study of surfaces of constant negative Gauss curvature. Thus the
sine-Gordon equation was the first soliton equation appearing in differential geom-
etry. A few other interesting integrable PDEs appear in the theory of isothermic
surfaces. In this subsection we shall follow the book by Rogers and Schief [11]
which we recommend for further reading.

Let S : r = r(u, v), (u, v) ∈ D ⊂ R
2 be a parametric regular smooth surface

from the class Ck, k ≥ 2 in Euclidean 3-space E
3. Assume (u, v) provide a

conformal parametrization of S so that the first fundamental form reads:

I(u, v) = e2ϕ(u,v)
(

du2 + dv2
)

(25)

for ϕ being some smooth function. Sometimes u and v are called isothermic
parameters because these are harmonic functions, i.e.

∆gu = ∆gv = 0.

Above ∆g is the Laplace-Beltrami operator associated with the metric g induced
on the surface. Harmonic functions, in turn, can be viewed as steady solutions
to heat equation whose level sets are known as isotherms in physics.

If conformal parameters form conjugate lines, i.e. the second fundamental
form of S is diagonal, then we shall call such parameters isothermic. The con-

jugacy requirement above is nontrivial!

Definition 2. A surface is called isothermic if it enjoys an isothermic para-

metrization.

In accordance with our discussion above, for an isothermic surface the second
fundamental form can be written down as:

II(u, v) = e2ϕ(u,v)
(

κ1du
2 + κ2dv

2
)

(26)

where u and v are isothermic parameters and κ1 and κ2 are principal curvatures.

Isothermic surfaces are a large class of surfaces including surfaces of revolu-
tion, constant mean curvature surfaces and quadrics. An example of isothermic
surface is Enneper surface, see Fig. 1.

Let {ru, rv,N} be the Gauss moving frame of S. Taking into account (25)
and (26) the Gauss-Weingarten equations for an isothermic surface of the class
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Figure 1: Enneper surface.

Ck, k ≥ 3 can be written down in the following matrix form:





ru
rv
N





u

=





ϕu −ϕv κ1e
2ϕ

ϕv ϕu 0
−κ1 0 0









ru
rv
N



 ,(27)





ru
rv
N





v

=





ϕv ϕu 0
−ϕu ϕv κ2e

2ϕ

0 −κ2 0









ru
rv
N



 .(28)

The integrability condition of overdetermined system (27), (28) gives rise to the
Gauss-Mainardi-Codazzi equations

ϕuu + ϕvv + κ1κ2e
2ϕ = 0(29)

κ1,v + (κ1 − κ2)ϕv = 0(30)

κ2,u + (κ2 − κ1)ϕu = 0(31)

After introducing the new variable

z = −(κ1 + κ2)e
ϕ

√
2
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in (29)–(31) we get classical Calapso equation

∆
(zuv

z

)

+ (z2)uv = 0 ∆ := ∂2
u + ∂2

v .(32)

The Calapso equation is completely integrable and upon formal change of variable
v → iv it turns into

�

(zuv

z

)

+ (z2)uv = 0, � := ∂2
u − ∂2

v(33)

Equation (33) is completely integrable and originally it was obtained by Calogero
and Degasperis [3]. What makes (33) remarkable is that it enjoys soliton solutions
with varying velocity (boomerons and trappons) as well as with varying amplitude
(zoomerons). Thus there exists a whole “zoo” of various species of solutions hence
the name zoomeron equation was derived.

Let us consider a surface S immersed into m+ 2 dimensional real Euclidean
space. Now the immersion of S in E

m+2 is characterized by a field of m second
fundamental forms II(u, v).

Definition 3. A surface in E
m+2 is isothermic if there exist parameters u

and v such that its first and second fundamental forms read:

I(u, v) := e2ϕ(u,v)
(

du2 + dv2
)

II(u, v) := e2ϕ(u,v)
(

κ1du
2 + κ2dv

2
)

where ϕ is a smooth function while κ1 and κ2 are principal curvature fields of S.

Like in the case of isothermic surfaces in 3-space one can derive vector Calapso
equation

zuv = σz ∆σ +
(

z2
)

uv
= 0(34)

upon introduction of new variables

z = −(κ1 + κ2)e
ϕ

√
2

σ = e−ϕ (eϕ)uv .

For an isothermic surface in E
4 z is a 2-vector. In terms of complex-valued

function Φ such that z = (Re (Φ), Im (Φ)) equation (34) is transformed into:

Φuv = σΦ ∆σ +
(

|Φ|2
)

uv
= 0.(35)

This equation is a stationary reduction of classical Davey-Stewartson II equation

iΦt = Φuv − σΦ ∆σ +
(

|Φ|2
)

uv
= 0.

Thus we have just seen that Davey-Stewartson II equation is intimately connected
to isothermic surfaces in E

4.
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3. Conclusions

In this short survey report we have considered two typical situations in classical
differential geometry that lead to 2-dimensional integrable PDEs: the motion of
inextensible curves in Euclidean space and the theory of surfaces in Euclidean
space. As a matter of fact, those can be viewed two different aspects of the same
problems—while the theory of surfaces provides a stationary setting, inextensible
curve motion gives a dynamical one. Indeed, the integrability condition of Frenet-
Serret equations (1) (resp. (14)) and (2) (resp. (15)) is an analogue of Gauss-
Mainardi-Codazzi equations being the integrability condition of classical Gauss-
Weingarten equations for a surface.

We have mainly been focused in this report on the simplest case of curves
and surfaces in real Euclidean 3-space. As we have seen, this setting gives rise
to 2-dimensional scalar PDEs. A natural question is to find similar geometric
setting that produces the multicomponent counterparts of the afore-discussed
scalar equations. This problem has partially been solved in the case of mKdV
and NLS equations, see [6, 7]. For example, vector mKdV equation

~kt = ~ksss +
3|~k|2
2

~ks

naturally arises when a curve moves in E
m+1. Above ~k = (k1, k2, . . . , km) stands

for the curvature vector of the curve taken with respect to natural Frenet frame
and |~k|2 = k21 + k22 + · · ·+ k2m.

Another appealing direction for further study is to consider motion of curves
in a pseudo-Rimannian manifold with pseudo-Euclidean space being an important
special case. What makes pseudo-Rimannian case harder and more interesting
at the same time is the existence of isotropic vectors. This makes the standard
moving frames inconvenient and requires picking up different basis to provide a
more appropriate description.

At the end, it is worth mentioning that completely integrable systems may
also arise in a differential geometric context rather different than we have dis-
cussed here. For instance, certain N-wave systems appear in the study of isopara-
metric hypersurfaces in spheres [5].
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