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STATISTICAL FORECASTING BASED ON BINOMIAL

CONDITIONAL AUTOREGRESSIVE MODEL OF

SPATIO-TEMPORAL DATA

Yuriy Kharin, Maryna Zhurak

Binomial conditional autoregressive model of spatio-temporal data is pre-
sented. Asymptotic properties of the maximum likelihood estimators of
parameters for the binomial conditionally autoregressive model of spatio-
temporal data are studied. Statistical tests on the values of true unknown
parameters are constructed. Results of computer experiments on simulated
and real data are given.

1. Introduction

Studying the probabilistic models of spatio-temporal data is a new topical sci-
entific direction. Statistical analysis and modeling of spatio-temporal data is
a challenging task [7]–[9]. Such models allows to model adequately processes
taking into account both the dependence on time and the dependence on space.

Models based on spatio-temporal data become widely used for solving prac-
tical problems in meteorology, ecology, economics, medicine and other fields.
In [10] spatio-temporal model is used to analyse daily precipitation for 71 me-
teorological stations over 60 years in Austria. Bayesian spatio-temporal model
is applied to predict cancer cases in [2]. In [8] spatio-temporal models used to
analyse forest stand data. In [9] authors present results of simulation studies and
demonstrate the practical application of spatio-temporal processes in a study of
radiation anomaly data.
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2. Binomial conditional autoregressive model

Introduce the notation: (Ω, F,P) is the probability space; N is the set of positive
integers; Z is the set of integers; S = {1, 2, . . . , n} is the set of indexed spatial
regions or space locations (let us agree to call them sites), into which the analyzed
spatial area is partitioned; n is number of sites; t ∈ Z is discrete time; T is the
length of observation period; xs,t ∈ A = {0, . . . , N} is a discrete random variable
at time point t at site s; F<t = σ{xu,τ : u ∈ S, τ ≤ t − 1} ⊂ F is the σ-
algebra generated by the indicated in braces random variables; zj,t ∈ R1(j =
1, . . . ,m) is an observed (known) level of the j-th exogenous factor at time point
t which influences xs,t; L (ξ) means the probability distribution law of random
variable ξ; E {·}, D {·}, cov {·} are symbols of expectation, variance, covariance
of random variables; Bi(·;N, p) is the binomial probability distribution law of
random variable ξ with the parameters N ∈ N, 0 ≤ p ≤ 1:

(2.1) P {ξ = l} = Bi(l;N, p) ::= C l
Npl(1− p)N−l, l ∈ A;L{ξ} = Bi(·;N ; p).

We construct the binomial conditional autoregressive model for spatio-tempo-
ral data {xs,t} similar to [4], [7]. Provided that prehistory {xs,τ : s ∈ S,

τ ≤ t−1} is fixed, random variables x1,t, . . . , xn,t are assumed to be conditionally
independent and

(2.2) L{xs, t|F<t} = Bi(·;N ; ps, t),

(2.3) ln
ps,t

1− ps,t
=

n∑

i=1

as,ixi,t−1 +
m∑

j=1

bs,jzj,t, t ∈ Z, s ∈ S,

where as = (as,1, . . . , as,n)
′ ∈ Rn, bs = (bs,1, . . . , bs,m)′ ∈ Rm, s ∈ S, θs =(

a′s, b
′

s

)
′ ∈ Rn+m , θ =

(
θ′1, . . . , θ

′

n

)
′ ∈ Rn(n+m) is the composed vector of the

parameters of the model; ps,t can be calculated as follows:

(2.4) ps,t = ps (Xt−1, Zt) ::= exp
{
θ′sYt

} (
1 + exp

{
θ′sYt

})
−1

, s ∈ S, t ∈ Z,

where Zt = (z1,t, z2,t, . . . , zm,t)
′ ∈ Rm is the column vector specifying exogenous

factors at time point t; Xt = (x1,t, x2,t, . . . , xn,t)
′ ∈ An is the column vector

specifying the time slice of the process under consideration at time point t ∈ Z;
Yt =

(
X ′

t−1, Z
′

t

)
′ ∈ Rn+m, t ∈ Z.

Let L =
{
lj = (l1,j , . . . , ln,j)

′ ∈ An : j = 1, 2, . . . , (N + 1)n
}

be the ordered
set of all admissible values of the vector Xt; |L| = ν = (N + 1)n.

Theorem 2.1. For the model (2.2), (2.3) the observed vector process Xt is
the n-dimensional nonhomogeneous Markov chain with the finite state space L
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and the one-step transition probability matrix Q(t) = (qI,J(θ, t)), I = (is), J =
(js) ∈ L:

(2.5) qI,J (θ, t) =

n∏

s=1

C
js
N (exp {a′sI + b′sZt−1})js

(1 + exp {a′sI + b′sZt−1})N
.

P r o o f. Let us prove that vector process Xt for the model (2.2), (2.3) is the
n-dimensional nonhomogeneous Markov chain. Using model assumptions (2.2),
(2.3) and conditional independence of random variables x1,t, ..., xn,t ∈ A in case
of fixed σ-algebra F<t = σ{xu,τ : u ∈ S, τ ≤ t− 1} ⊂ F we get

P
{
Xt = It

∣∣∣Xt−1 = It−1, . . . ,X1 = I1

}
=

= P
{
x1,t = i1,t, . . . , xn,t = in,t

∣∣∣Xt−1 = It−1

}
=

=

n∏

s=1

P
{
xs,t = is,t

∣∣∣Xt−1 = It−1

}
= P

{
Xt = It

∣∣∣Xt−1 = It−1

}
.

Thus, the Markov property is valid, and Xt is the n-dimensional nonhomoge-
neous Markov chain. The one-step transition probability matrix Q(t) = (qIJ(t))
is determined by taking into account (2.1), (2.3) and the model property of con-
ditional independence:

qI,J(t) = P
{
Xt = J

∣∣∣Xt−1 = I
}
=

n∏

s=1

P
{
xs, t = js

∣∣∣Xt−1 = I
}
=

=

n∏

s=1

C
js
N pjss (I, Zt) (1− ps (I, Zt))

N−js

=

n∏

s=1

C
js
N

(
ps (I, Zt)

1− ps (I, Zt)

)js

(1− ps (I, Zt))
N .

By condition (2.4) we have:

qI,J (θ, t) =

n∏

s=1

C
js
N (exp {a′sI + b′sZt−1})js

(1 + exp {a′sI + b′sZt−1})N
.

that coincides with (2.5). �
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Corollary 2.1. Under conditions of Theorem 2.1, the matrix of transition
probabilities H(t1, t2) = (hI,J (t1, t2)), hI,J(t1, t2) = P{Xt2 = J |Xt1 = I}, I, J ∈
L, for t2 − t1 steps from time point t1 to time point t2 (t1 < t2, t1, t2 ∈ Z) is:

(2.6) H(t1, t2) = Q(t1 + 1)Q(t1 + 2) . . . Q(t2).

Corollary 2.2. Under conditions of Theorem 2.1, if vector of exogenous fac-
tors Zt = Z = (z1, . . . , zm)′ ∈ Rm does not depend on t, then the one-step
transition probability matrix does not depend on t, and Markov chain Xt is ho-
mogeneous:

(2.7) Q = (qI,J(θ)) ∈ [0, 1]ν×ν , I, J ∈ L,

(2.8) qI,J(θ) =

n∏

s=1

C
js
N

(
exp

{
a′sI + b′sZ

})js(1 + exp
{
a′sI + b′sZ

})
−N

,

the n-dimensional Markov chain is ergodic, and single stationary probability dis-
tribution π = (πI) ∈ [0, 1]ν exists:

Q ′π = π,
∑

I∈An

πI = 1.

Proofs of Corollaries 2.1, 2.2 of Theorem 2.1 are presented in [5].

Lemma 2.1. For the model (2.2), (2.3) the observed vector process Xt is
nondegenerate process for any finite coefficients values {θs} and finite {zi,t}, that
means in (2.4):

0 < ps,t < 1, s ∈ S, t ∈ Z.

Lemma 2.2. For the model (2.2), (2.3) in case of any finite values of coeffi-
cients {θs} and finite values {zi,t} the covariance matrix cov{Xt,Xt} is positively
defined and takes the form:

cov{Xt,Xt} = Ndiag {pi(Xt−1, Zt)(1 − pi(Xt−1, Zt))} +D ∈ Rn×n, i ∈ S,

D = (dij) ∈ Rn×n, dij = N2cov
{
(1 + exp(−θiYt))

−1, (1 + exp(−θjYt))
−1
}
.

Proofs of Lemmas 2.1, 2.2 are presented in [6].
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3. Statistical estimation of parameters

Theorem 3.1. The log-likelihood function for the model (2.2), (2.3) under
the observed spatio-temporal data {Xt : t = 1, 2, . . . , T} takes the additive form:

(3.9)

l(θ) =
n∑

s=1

ls (θs) ,

ls (θs) =

T∑

t=1

(
xs,tθ

′

sYt − N ln
(
1 + exp

{
θ′sYt

})
+ lnC

xs,t

N

)
.

P r o o f. Using the generalized formula for multiplying probabilities and
properties of the Markov chain defined in Theorem 2.1 we construct the likelihood
function:

L(θ) = P {X1, . . . , XT } = P{X1}
T∏

t=2

P
{
Xt

∣∣∣Xt−1

}
.

Expressions for P{X1} and P
{
Xt

∣∣∣Xt−1

}
are found in Theorem 2.1:

P{X1} =

n∏

s=1

C
xs,1

N

(
exp

{
b′sZ1

})xs,1
(
1 + exp

{
b′sZ1

})
−N

,

P
{
Xt

∣∣∣Xt−1

}
=

n∏

s=1

C
xs,t

N

(
exp

{
θ′sYt

})xs,t
(
1 + exp

{
θ′sYt

})
−N

, t ≥ 2.

Then we get

L(θ) =

T∏

t=1

n∏

s=1

C
xs,t

N

(
exp

{
θ′sYt

})xs,t
(
1 + exp

{
θ′sYt

})
−N

=

=

n∏

s=1

T∏

t=1

C
xs,t

N

(
exp

{
θ′sYt

})xs,t
(
1 + exp

{
θ′sYt

})
−N

.

Find the log-likelihood function:

l(θ) = lnL(θ) = ln

(
n∏

s=1

T∏

t=1

C
xs,t

N

(
exp

{
θ′sYt

})xs,t
(
1 + exp

{
θ′sYt

})
−N

)
=

=

n∑

s=1

T∑

t=1

(
xs,t

(
θ′sYt

)
− N ln

(
1 + exp

{
θ′sYt

})
+ lnC

xs,t

N

)
=

n∑

s=1

ls (θs) ,

that coincides with (3.9). �
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To find the maximum likelihood estimators (MLE) {θ̂s} of the parameters of
the model we need to maximize the log-likelihood function (3.9):

(3.10) l(θ) → max
θ∈Rn(n+m)

.

Theorem 3.2. In case of the model (2.2), (2.3), if m = 1, z1,t = z 6= 0
does not depend on t and Markov chain Xt ∈ L is stationary, then for any
finite coefficients values {θs} and finite z ∈ R1 the Fisher information matrix is
nonsingular block-diagonal matrix (here Yt = (X ′

t−1, z)
′):

(3.11) G = Ndiag
{
E
{
YtY

′

t pi(Xt−1, z)(1 − pi(Xt−1, z))
}}

, i = 1, . . . , n.

Theorem 3.3. Under Theorem 3.2 conditions, if T → +∞ the constructed
by (3.10) maximum likelihood estimators {θ̂s} are consistent and asymptotically
normally distributed:

(3.12) L
{√

T (θ̂ − θ0)
}
→ Nn(n+1)

(
0, G−1

)
.

where G is determined by (3.11).

Proofs of Theorems 3.2, 3.3 are presented in [6].

4. Statistical hypotheses testing

Theorems 3.1–3.3 are used to construct statistical tests for testing of hypotheses
on the values of true unknown parameters {θ0s}:

H0 : θ
0 = θ∗;

H1 = H0 : θ
0 6= θ∗.

where θ∗ ∈ Rn(n+1) is some fixed (hypothetical) value of parameters. Let’s con-
sider the statistic:

(4.13) gT = g (X1, . . . ,XT ) ::= T (θ̂ − θ∗)′G(θ̂ − θ∗) ≥ 0,

where θ̂ is the maximum likelihood estimator for model parameters, G is the
matrix determined by (3.11).

Theorem 4.1. Under Theorem 3.2 conditions, if hypothesis H0 is true and
T → ∞, then statistic gT is asymptotically chi-square distributed with n(n + 1)
degrees of freedom:

(4.14) LH0{gT } → χ2
n(n+1).
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P r o o f. For proving the theorem we use the the asymptotic property (3.12)
from Theorem 3.3. Let us consider the sequence of random vectors:

(4.15) ξT = (ξTk) =
√
TG1/2

(
θ̂ − θ∗

)
∈ Rn(n+1).

If hypothesis H0 is true, then by (3.12), (4.15) we get the convergence:

LH0 {ξT } → Nn(n+1)(0, In(n+1)),

that means

(4.16) ξT
D−→ η = (ηk) ∈ Rn(n+1), L{η} = Nn(n+1)(0, In(n+1)),

where Im is the identity (m ×m)-matrix. By (4.13), (4.15) the statistic gT has
the equivalent form:

gT = T
(
θ̂ − θ∗

)
′

G
(
θ̂ − θ∗

)
= ξ′T ξT ,

from which by (4.15) we have for T → ∞:

gT
D−→ η′η =

n(n+1)∑

k=1

η2k.

Therefore, using the definition of the central χ2-distribution, we come to the
statement (4.14) of the theorem. �

Consider a family of decision rules based on statistic gT and Theorem 4.1:

(4.17) d = d (X1, . . . ,XT ) =

{
0, gT < ∆;
1, gT ≥ ∆,

where ∆ > 0 is some threshold value.

Corollary 4.1. If threshold value ∆ in (4.17) has the form:

∆ = F−1
χ2
n(n+1)

(1− α) ,

where Fχ2
n(n+1)

(·) is the distribution function of χ2 probability distribution with

n (n+ 1) degrees of freedom, then for T → ∞ the asymptotic size of the test (4.17)
is equal to the given significance level α ∈ (0, 1).

Theorem 4.2. Under Theorem 4.1 conditions for the sequence of contiguous

hypotheses H1T =
{
θ0 = θ∗ + T−1/2a

}
, where a is some nonzero vector from

Rn(n+1), if T → ∞, then the test statistic gT is asymptotically noncentral chi-
square distributed with n(n + 1) degrees of freedom and noncentrality parameter
∆2 = a′Ga:

(4.18) LH1T
{gT } → χ2

∆2,n(n+1),
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and the power of the test satisfies the asymptotics:

(4.19) wT = PH1T
{d = 1} → w∗ = 1− Fχ2

∆2,n(n+1)

(
F−1
χ2
n(n+1)

(1− α)

)
.

P r o o f. If hypothesis H1T is true and if T → ∞, then we get from (3.12):

(4.20) LH1T

{√
T (θ̂ − θ∗ − 1√

T
a)

}
= L

{√
T (θ̂ − θ∗)− a

}
→ Nn(n+1)(0, G

−1).

Let us consider random vector ξT defined in (4.15). By (4.20) we have

LH1T
{ξT } → Nn(n+1)(G

1/2a, In(n+1)),

that means

(4.21) ξT = (ξTk)
D−→ η = (ηk) ∈ Rn(n+1), L {η} = Nn(n+1)(G

1/2a, In(n+1)).

Then the statistic gT from the test (4.17) is represented as the sum of the
squares:

(4.22) gT = T
(
θ̂ − θ∗

)
′

G
(
θ̂ − θ∗

)
= ξ′T ξT → η′η =

n(n+1)∑

k=1

η2k,

and {ηk} are asymptotically normally distributed according to (4.21). By the
definition of noncentral χ2-distribution [1] we obtain the first statement (4.18) of
the Theorem. Calculate the asymptotic power of the test using (4.22) and (4.18):

wT := P
{
d = 1

∣∣∣H1T

}
= PH1T

{gT ≥ ∆} =

= 1−PH1T
{gT < ∆} → 1− Fχ2

∆2,n(n+1)
(∆) =

= 1− Fχ2
∆2,n(n+1)

(
F−1
χ2
n(n+1)

(1− α)

)
. �

5. Optimal forecasting statistic

Consider now the problem of forecasting of the future state XT+τ in τ ≥ 1 steps
ahead based on observations until the time point t = T inclusively: X1, . . . ,XT .
Denote some forecasting statistic

X̂T+τ = gτ (X1, . . . ,XT ; θ) ,

where θ is the vector of true values of the model parameters. Let us characterize
the error of forecasting of the future state XT+τ in τ ≥ 1 steps ahead based on
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statistic gτ (X1, . . . ,XT ; θ) by the matrix mean square (MS) risk of forecasting:

r (τ) = E

{(
X̂T+τ −XT+τ

)(
X̂T+τ −XT+τ

)
′
}

∈ Rn×n.

To construct forecasting statistic X̂T+τ = gτ (X1, . . . ,XT ; θ) we will calcu-
late also the conditional matrix mean square risk for the forecast under fixed
prehistory {X1,X2, . . . ,XT }:

(5.23)
rc (τ, X1, X2, . . . , XT ) ::=

= E

{(
X̂T+τ −XT+τ

)(
X̂T+τ −XT+τ

)
′
∣∣∣X1, X2, . . . , XT

}
∈ Rn×n.

To find matrix mean square risk by conditional matrix mean square risk we
use the formula:

r (τ) = E {rc (τ,X1,X2, . . . ,XT )}

Theorem 5.1. Under known parameters the MS-optimal (in terms of min-
imum of the mean square risk r (τ)) forecasting statistic X̂T+τ = gτ (XT ; θ) , by
T previous observations {Xt, t = 1, 2, . . . , T} for the model (2.2), (2.3) in τ ≥ 1
steps ahead has the form:

(5.24) X̂T+τ =
∑

J∈L

JhXT ,J (T, T + τ) ,

where hI,J (t1, t2) is defined in (2.6).

P r o o f. MS-optimal forecasting statistic is defined by conditional mathe-
matical expectation [3]:

X̂T+τ = E
{
XT+τ

∣∣∣X1, X2, . . . , XT

}
.

Since dependence in {Xt} is determined by Markov chain of first order, the
forecasting statistic depends only on XT :

X̂T+τ = E
{
XT+τ

∣∣∣XT

}
.

By definition of conditional mathematical expectation of discrete random variable
we obtain:

X̂T+τ =
∑

J∈L

JP
{
XT+τ = J

∣∣∣XT

}
=
∑

J∈L

JhXT ,J (T, T + τ) ,

that coincides with (5.24). �
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Corollary 5.1. Conditional mean-square risk for forecasting statistic (5.24)
under fixed prehistory {X1,X2, . . . ,XT } is

(5.25) rc (τ,XT ) =
∑

J1∈L

∑

J2∈L

J1 (J1 − J2)
′ hXT ,J1 (T, T + τ)hXT ,J2 (T, T + τ) ,

where hI,J (T, T + τ) is determined by (2.6).

P r o o f. Calculate conditional mean-square risk according to (5.23):

rc (τ,XT ) = E

{(
X̂T+τ −XT+τ

)(
X̂T+τ −XT+τ

)
′
∣∣∣XT

}
= X̂T+τ X̂

′

T+τ+

+E
{
XT+τX

′

T+τ

∣∣∣XT

}
− X̂T+τE

{
X ′

T+τ

∣∣∣XT

}
− E

{
XT+τ

∣∣∣XT

}
X̂ ′

T+τ =

(5.26) = E
{
XT+τX

′

T+τ

∣∣∣XT

}
− X̂T+τ X̂

′

T+τ .

According to (2.6) we have:

E
{
XT+τX

′

T+τ

∣∣∣XT

}
=
∑

J∈L

JJ ′P
{
XT+τ = J

∣∣∣XT

}

(5.27) =
∑

J∈L

JJ ′hXT,J (T, T + τ) .

Substituting (5.24), (5.27) into (5.26), we obtain:

rc (τ, XT ) =
∑

J∈L

JJ ′hXT ,J (T, T + τ)−

−
(
∑

J∈L

JhXT ,J (T, T + τ)

)(
∑

J∈L

JhXT ,J (T, T + τ)

)
′

=

=
∑

J1∈L

∑

J2∈L

J1 (J1 − J2)
′ hXT ,J1 (T, T + τ) hXT ,J2 (T, T + τ) ,

that coincides with (5.25). �

In case of parametric prior uncertainty we construct the forecasting statistic
using “the plug-in” principle [3]:

(5.28) X̃T+τ =
∑

J∈L

Jh̃XT ,J(T, T + τ),

where h̃XT ,J(T, T+τ) = hXT ,J(θ̂;T, T+τ) uses the maximum likelihood estimator

θ̂ instead of the true value θ.
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6. Results of computer experiments

To illustrate performance of forecasting we present results of computer experi-
ments on simulated and real statistical data.

6.1. Experiments on simulated data

We consider the model (2.2), (2.3) with the following values of parameters:

(6.29)
n = 3, N = 2, A = {0, 1, 2}, S = {1, 2, 3}, z = 2,
θ1 = (−0.2,−0.18,−0.15, 0.2)′ , θ2 = (−0.18, 0.24,−0.05,−0.1)′ ,
θ3 = (0.13,−0.13,−0.29, 0.3) ′ .

Estimates of the MS-forecast error (5.23) calculated by M = 500 Monte-Carlo
replications for different values of T, τ are presented in the Table 1.

Table 1: Monte-Carlo estimation of the MS-forecast error

s T = 16, τ = 3 T = 17, τ = 2 T = 18, τ = 1

1 0.509467 0.381694 0.450632

2 0.344748 0.498119 0.500252

3 0.417257 0.4541 0.481359

Figure 1 illustrates simulated data and computed “plug-in” forecasts by T =
16 observations in τ = 3 steps ahead for the site number s = 1.

Figure 1: Illustration of forecast of simulated data for the site s = 1
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6.2. Experiments on real data

We use real data (http://www.gks.ru/) that describes the level of criminality
xs,t determined by number of registered crimes in 3 regions (n = 3) of the Russian
Federation for 19 years (T = 19); exogenous variable z1,t is the average salary for
these three regions. We consider the model (2.2), (2.3) with the following models
characterizations: N = 3, m = 1, A = {0, 1, 2}, n = 3, S = {1, 2, 3}. Total
number of parameters for the model is n ∗ (n +m) = 12. Statistical estimators
of the parameters obtained by these real data are

θ̂1 = (−0.015,−0.15, 0.84,−0.91) ′ , θ̂2 = (0.17, 0.93, 1.6,−3.02)′ ,

θ̂3 = (−0.86, 7.62, 2.65,−10.14)′ .

To illustrate performance of the forecasting statistic (5.28), we use the MS-
forecast error for the region s:

(6.30) r̂s =
1

τ

τ∑

t=1

(x̂s,t − xs,t)
2 ,

where {xs,t : t = 1, . . . , T ; s ∈ S} is the observed data, which is used to construct
the forecasting statistic, {xs,t : t = T + 1, . . . , T + τ ; s ∈ S} are true future val-
ues which are needed to be forecasted, {x̂s,t : t = T + 1, . . . , T + τ ; s ∈ S} are
estimates calculated by the forecasting statistic (5.28).

To study the performance of the constructed forecasts for the considered
model, experiments were conducted on real data for different sizes of base period
T = 17; 18; 19. The values of the MS-forecast error (6.30) for different values of
T, τ are presented in the Table 2.

Table 2: Values of the MS-forecast error

s T = 16, τ = 3 T = 17, τ = 2 T = 18, τ = 1

1 0.49 0.18 0.29

2 0.006 0.005 0.003

3 0.0004 0.0001 0.0001

Figure 2 illustrates real data and computed ”plug-in” forecasts in τ = 3 steps
ahead for the region number s = 1.
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Figure 2: Illustration of forecast of real data for the region number s = 1

7. Conclusion

The Binomial conditional autoregressive model of spatio-temporal data is devel-
oped. It is proved that under this model the observed process is the nonhomo-
geneous vector Markov chain with finite space of states. Probabilistic properties
of this model are studied. An algorithm for computing the maximum likelihood
estimators for model parameters is developed; asymptotic properties of estima-
tors are studied. Decision rule for statistical hypotheses testing is built and an
asymptotic expression of the power of the test is obtained for a family of con-
tiguous alternatives. The forecasting statistic that minimizes mean-square risk of
the forecast error is built. The forecast error is calculated; “plug-in” forecasting
statistic is constructed in the case of unknown model parameters. The computer
experiments are carried out on simulated and real data.
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