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STUDIA MATHEMATICA

APPLICATION OF DISCRETE DIVIDENDS

TO AMERICAN OPTION PRICING

Dessislava Koleva-Petkova, Mariyan Milev

Dividends are a detail of financial instruments pricing which is often being
oversimplified. However, companies do declare (and pay out) flows which
can be significant. In this paper we briefly review some known approaches to
this topic. We analyse a few known drawbacks with application to American
option pricing. Due to the fact that these options rely on numerical meth-
ods for their pricing, applying discrete dividends to the chosen approach
may affect the solution quality. As we will show shortly, for some methods
there are flaws affecting positivity and smoothness of the numerical solution
while others are too computationally heavy. We find that applying discrete
dividends to an exponentially fitted scheme (the Duffy scheme) overcomes
these problems and we manage to obtain a smooth and sensible solution.

1. Introduction

American options are widely employed financial instruments. Due to the con-
tracts specifics, we only rely on numerical methods for finding their fair value.
As the continuity of the underlying stock process can be affected by the pres-
ence of dividends, when solving for the option price the latter should be taken
into account. In Section 2 we will review different existing approaches for these
real life equity attributes. In Section 3 we place an emphasis on the application
to finite difference methods. We review certain problems with Crank-Nicolson
scheme and then suggest a modification of the Duffy scheme which overcomes
these flaws. Section 4 gives a brief conclusion.
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2. Background in dividend application

We consider a standard geometric Brownian motion diffusion process with con-
stant coefficients r and σ for the evolution of the underlying asset price S

dS/S = rdt+ σdWt,

where r and σ denote, respectively, interest rate and volatility in percentages and
belong to the interval [0, 1]. If t is the time to expiry T of the contract, 0 ≤ t ≤ T ,
the price V (S, t) of the option satisfies the Black-Scholes PDE ([2])

−∂V

∂t
+ r S

∂V

∂S
+

1

2
σ2S2 ∂2V

∂S2
− r V = 0,

endowed with its initial and boundary conditions. The solution V (S, t) depends
on the two independent variables S and t. It should be noted that the option
price can move on the positive real axis interval [0,+∞).

2.1. Applying a continuous dividend yield

Let q denote the dividend yield expressed as a continuously compounded annual
percentage. Then the modified BS equation will take the form

−∂V

∂t
+ (r − q) S

∂V

∂S
+

1

2
σ2S2 ∂2V

∂S2
− r V = 0.

The call and put European option prices as defined by [12] will be

Call = Se−q(T−t)N(d1)−Ke−r(T−t)N(d2)

Put = Ke−r(T−t)N(−d2)− Se−q(T−t)N(−d1)

with d1 =
ln(S/K) + (r − q + σ2/2)(T − t)

σ
√
T − t

and d2 = d1 − σ
√
T − t.

Despite the simplicity of this approach the continuous dividend assumption
is oversimplifying and lacks accuracy.
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2.2. Applying an approximation to the spot or the strike value

Assuming a single dividend of size D paid out at time tD, the spot value of the
underlying asset price in the BS formula can be shifted with the amount of the
discounted dividend, i.e. taking S̃ = S − De−r(T−tD). For multiple dividends

one takes S̃ = S −
∑

0<ti≤T

Die
−r(ti−t) for constant interest rate r and with Di,

i = 0, 1, .., T denoting the dividend paid out at time ti. The problem with this
approach is that generally call options are undervalued. [3] suggests a similar
approach for American options which suffers from the same drawback.

As with the spot case, we can assume single or multiple dividends and modify
the strike accordingly:

K̃ = K +
∑

0<ti≤t

Die
r(t−ti).

Details on these modifications can be found at [10].
A similar approach has been proposed by [4]. In a hybrid approximation both

the spot and the strike are modified in the following way. We split the expected
dividend flows into near payments

DS =
∑

0<ti≤T

T − ti
T − t

Die
r(ti−t)

and far payments

DK =
∑

0<ti≤T

ti
T − t

Die
r(ti−t).

We then define S̄ = S −DS and K̄ = K +DKer(T−t) and finally obtain

Call = S̄e−q(T−t)N(d1)− K̄e−r(T−t)N(d2)

Put = K̄e−r(T−t)N(−d2)− S̄e−q(T−t)N(−d1).

All modifications to the spot and strike should be reflected in the values of d1
and d2.

A common problem for these methods is that volatility remains constant after
the spot or strike shifts which leads to underpricing or overpricing the option.
Also, it is hard to predict distant dividends.
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2.3. Applying an adjustment to volatility based on underlying spot

or strike

Beneder and Vorst in [1] define adjusted volatility based on the spot underlying
taking the form:

σ̄S = σ

√

√

√

√

(

S

S −DS
1

)2 t1
T

+
∑

1<j<N

(

S

S −DS
1

)2 tj − tj−1

T
+

T − tN
T

.

This expression is used together with the spot approximation already defined.
The two adjustments are used directly in the BS formula.

In a similar manner one can define strike-based volatility adjustment:

σ̄K = σ

√

√

√

√

t1
T

+
∑

1<j<N

(

S

S +DK
j

)2
tj − tj−1

T
+

(

S

S +DK
N

)2 T − tN
T

.

This expression can be employed together with the strike modification defined
above.

Both approaches suffer from poor performance in case of multiple dividends.

2.4. Closed-form formula from Haug

E. Haug, J. Haug, A. Lewis in [11] define closed form formulae for European and
American options with a single dividend. They have integral representation that
possesses no explicit solution.

CE(S,D, tD) = e−r(tD−t)

∫ ∞

0
f(S −D, tD)φ(S0, S, tD)dS,

is the price of a call option where tD denotes the time when a dividend of size D
is paid out and φ(S0, S, tD) is the lognormal density. For European options

f(S −D, tD) = CBS(S −D, tD)

and for American options

f(S −D, tD) = max{(S −K)+, CBS(S −D, tD)}.
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2.5. Binomial trees

The original approach has first been proposed by Cox, Ross and Rubinstein
[6]. This numerical method is based on building a discretized binomial tree of
possible values at each time step for the underlying asset value. At each node, the
underlying path can take two different values – it can go either up or down with
a certain probability. After reaching maturity, one solves the tree backwards.
This approach is widely employed for path-dependent financial contracts such as
American options and convertible bonds. For applying discrete dividends one
needs to shift the entire tree with the dividend size. This new binomial tree is
non-recombining which makes it computationally inefficient.

2.6. Finite Difference Methods

These schemes aim in approximating the solution of a PDE by solving a set of
discretized equations. Partial derivatives are approximated by taking differences
(forward, backward or central) for a predefined discrete time step ∆t and asset
step ∆S. The obtained set of equations is then solved backwards. A discussion
on different methods can be found in [14].

The most famous schemes are the explicit, implicit and Crank-Nicolson. They
all rely on taking central differences when discretizing the partial derivatives with
respect to the underlying asset S, i.e.

∂V

∂S
=

V i
j+1 − V i

j−1

2h
,

∂2V

∂S2
=

V i
j+1 + V i

j−1 − 2V i
j

h2
.

Here, V i
j denotes the value of the option at i-th point in time and j-th point

in the discretized interval [0, Smax]. The time step has a size of k and the asset
step has a size of h.

The Crank-Nicolson method ([7]) takes the average of the explicit and implicit
schemes (which take the time derivative as a forward and backward difference,
correspondingly). It is accurate at order O(k2, h2). As the implicit method,
Crank-Nicolson is unconditionally stable. However, in the presence of points of
discontinuity in the initial conditions or with special boundary values, small asset
steps may introduce spurious oscillations. The latter may even lead to obtaining
negative option prices. A discussion on these effects can be found in [8], for
example.

3. Duffy scheme with dividends – smoothness and performance

The scheme introduced by Duffy [9] is an interesting alternative to the previously
described methods. It is an implicit, exponentially fitted scheme, based on a
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hyberbolic cotangent function. Consider the operator L defined as:

LV = −∂V

∂t
+ µ(S, t)

∂V

∂S
+ σ(S, t)

∂2V

∂S2
+ b(S, t)V,

where µ(S, t) = rS, σ(S, t) =
1

2
σ2S2 and b(S, t) = −r.

Replacing the derivatives, the fitted operator is defined by

Lh
kU

i
j = −

U i+1
j − U i

j

k
+ µi+1

j

U i+1
j+1 − U i+1

j−1

2h
+ ρi+1

j

δ2xU
i+1
j

h2
+ bi+1

j U i+1
j ,

where h and k are the space and time step, respectively. The factor ρ is defined
as

ρi+1
j =

µi+1
j h

2
coth

µi+1
j h

2σi+1
j

.

From here we obtain the matrix equation

AU i+1 = U i

where A is a tridiagonal iterative matrix such that

A = [ai,j] = tridiag

{(

−
ρij
h2

+
µi
j

2h

)

k;

(

2ρij
h2

− bij +
1

k

)

k;−
(

ρij
h2

+
µi
j

2h

)

k

}

.

A thorough analysis of the favourable properties of this scheme can be found in
[13] and [9]. It is shown that the numerical solution is always positive. Conver-
gence to the true solution is ensured regardless of the volatility size. For σ → 0
we have that

lim
σ→0

ρ = lim
σ→0

µh

2σ
=











µh

2
, if µ > 0

−µh

2
, if µ < 0

In this border case we have a first-order implicit scheme which is stable and
convergent.

The chosen space and time step sizes h and k do not affect the solution
stability. It does not suffer from spurious oscillations for extreme parameter
values and behaves good for special conditions. Discontinuities in the initial or
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boundary conditions do not affect the solution quality. These properties make the
Duffy scheme a strong candidate for pricing options with more complex structures
that would challenge the performance of other numerical methods.

In what follows we apply dividends to the Duffy finite difference method.
We build this model extension which according to our knowledge has not yet
been performed. We based our implementation on [5] employing the Gauss-
Seidel method with successive over-relaxation (SOR). Applying this method on
a system of equations Ax = b when solving for x we build an iterative scheme
based on some known initial x(0) and it takes the form

x
(k+1)
i = x

(k)
i +

ω

aii

(

bi −
i−1
∑

j=1

aijx
(k+1)
j −

N
∑

j=i

aijx
(k)
j

)

i = 1, . . . , N.

Here ω is the over-relaxation parameter, 1 < ω < 2 and k is a counter. The
scheme also takes a criterion for convergence ǫ as an input parameter and the
iteration continues until we fall within the tolerance, i.e. until

‖x(k+1) − x(k)‖ < ǫ.

The key point when dealing with dividends is that we have to make a shift
with the expected cash flow size at the point in time when the dividend will be
paid out. Using the SOR implementation we ensure a smooth transition at the
discontinuity caused by the dividend payment.

An example is run on an American put option with current underlying value
of 40, strike = 40, rate = 0.1, volatility = 0.05, time to maturity of one year, and
an expected dividend of size 5 in 0.6 years from evaluation date. The volatility
level is considered low (σ2 ≪ r) In our example ω = 1.2 and ǫ = 0.0001.
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Figure 1: Crank-Nicolson scheme for an American put option
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Figure 1 plots the result obtained by the Crank-Nicolson finite difference
scheme using the SOR method. As one can easily see, the price function suffers
from spurious oscillations. In certain extreme cases these can even result in a
negative solution. Then, Figure 2 provides the outcome of employing the Duffy
scheme on the very same option. The undesired price fluctuations are gone and
the result is a smooth function.
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Figure 2: Duffy scheme for an American put option

4. Conclusion

This paper presented a brief outline of different approaches towards dividend
effects on option pricing, together with the main problems in their application.
Starting from some classical and oversimplifying methods we went through dif-
ferent argument adjustments and extensions of existing numerical methods. The
Duffy finite difference scheme is suitable for applying discrete dividends and we
showed this by comparing its solution to the one obtained by the Crank-Nicolson
method. The latter suffers from spurious oscillations as opposed to the smooth
solution obtained by our extension of the Duffy scheme. That is, given that we
are equipped with relevant information about future dividends size and timing,
we can effectively use the Duffy finite difference scheme for finding the fair value
of options written on the underlying equity.
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