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LIMIT THEOREMS FOR SOME CLASSES OF

ALTERNATING REGENERATIVE BRANCHING

PROCESSES

Kosto V. Mitov, Nikolay M. Yanev

In this paper we propose and study three new classes of alternating regener-
ative (AR) branching processes. Limiting distributions are obtained for AR
Sevastyanov processes, for AR Sevastyanov processes with non-homogeneous
Poisson immigration and for AR randomly indexed branching processes. All
these processes are investigated applying renewal and regenerative methods
developed in Mitov and Yanev [16, 17].

1. Introduction

In general the alternating regenerative branching processes ( ARBP) can be in-
terpreted as follows: the process stays at zero a random time (called “waiting
period” following given distribution), after that it jumps to a positive random
level (with given distribution) starting then some ”branching mechanism” up to
the moment when the process hits zero (it is called a “life-period”). Then the
process continues in the same way, i.e. as independent copies of the first part.
The positive jump at the state zero can be interpreted as an immigration of new
individuals (objects, particles, cells, and so on) which become ancestors of some
branching processes. In this paper we consider three new classes of ARBP based
on the following three models of branching processes: Sevastyanov age-dependent
processes (Sevastyanov [23], [24]), Sevastyanov processes with non-homogeneous
Poisson immigration (Mitov and Yanev [20], Hyrien et al. [9]) and randomly
indexed Galton-Watson processes (Mitov et al. [13]).
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Comprehensive reviews of branching processes, including their applications to
biology, can be found in the following monographs: Harris [8], Sevastyanov [24],
Mode [21], Athreya and Ney [3], Jagers [10], Asmussen and Hering [2], Yakovlev
and Yanev [25], Kimmel and Axelrod [11], Haccou et al. [7] and Ahsanullah and
Yanev [1].

As particular cases of the ARBP one obtains the branching processes with
state-dependent immigration, i.e. which admit an instant immigration only in the
state zero. The first model in the case of Galton-Watson process was proposed
and investigated by Foster [6] and Pakes [22]. After that Yamazato [25] considered
continuous time Markov case. Mitov and Yanev [14, 15] investigated Bellman-
Harris processes. In all these papers the limiting results were obtained using typ-
ical ”branching methods”: p.g.f. and the relevant equations for them (functional
equations for the Galton-Watson processes, non-linear differential equations for
Markov branching processes and non-linear integral equations for the Bellman-
Harris processes).

In contrast to that, the present paper develops the application of the “regen-
erative and renewal methods” presented in Mitov and Yanev [16, 17]. Note that
these methods were applied by Li [12] for continuous-state branching processes,
by Mitov and Yanev [18] for Bellman-Harris processes with infinite offspring vari-
ance and state-dependent immigration and by Yanev et al. [27, 28] for branching
processes with random migration. For more details one can consider the review
chapter by Mitov and Yanev [19].

The paper is organized as follows. The general definition of the alternating
regenerative processes is given in Section 2 with some general conditions. In Sec-
tion 3 the branching mechanism is governed by Sevastyanov branching process
and limiting distributions for alternating regenerative Sevastyanov processes are
presented in the critical case combining all general conditions for waiting and life
periods. Section 4 deals with a complicated case of alternating regenerative Sev-
astyanov branching processes allowing a nonhomogeneous Poisson immigration
and in the subcritical case discrete type limiting distributions are obtained. Fi-
nally in Section 5 alternating regenerative randomly indexed branching processes
are introduced and limiting theorems are obtained in the critical case with finite
or infinite offspring variance.

2. Alternating regenerative processes

We consider a class of non-negative processes Z = {Z(t), t ≥ 0} for which
τ = inf{t : Z(t) = 0} is the life-period and P(τ < ∞) = 1. Assume also that
ζ = {ζi} are nonnegative independent identically distributed (i.i.d.) random vari-
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ables (r.v.) with a distribution function (d.f.) ∆(x) = P(ζi ≤ x). The sets ζ and
Z are assumed independent.

Let Zk = {Zk(t)} be the i.i.d. copies of Z = {Z(t)} with corresponding
life-periods τk and a d.f. Λ(x) = P(τk ≤ x).

We will use the sequence of the random vectors {(ζ1, τ1), (ζ2, τ2), . . . } to define
the renewal epochs S0 = 0, Sn = Sn−1+ηn, where ηn = ζn+ τn, n = 1, 2, . . . . Let
N(t) = max{n : Sn ≤ t} be the corresponding renewal process. Consider also the
alternating renewal epochs {(Sn, S

′

n+1) : S
′

n+1 = Sn + ζn+1, n = 0, 1, 2, . . . } and
introduce the process χ(t) = t− S′

N(t)+1.

Then the alternating regenerative process X = {X(t), t ≥ 0} is defined as
follows:

(2.1) X(t) = ZN(t)+1(χ(t))1{χ(t) ≥ 0}.

Here and later 1{A} denotes the indicator of the event A.

Note that ζ is interpreted as a set of waiting periods. If χ(t) ≥ 0 then it is
called a “spent lifetime” and if χ(t) < 0 then |χ(t)| is called a “residual waiting
time”.

The process X(t) develops as follows: X(t) = 0 during the waiting period
S′

1 = ζ1, then X(t) = Z1(t−S′

1), S
′

1 ≤ t ≤ S1 = ζ1+τ1 (during the life period τ1),
after that X(t) = 0, S1 ≤ t < S′

2 (i.e. during the waiting period ζ2 = S′

2 − S1),
then X(t) = Z2(t − S′

2), S
′

2 ≤ t ≤ S2 = ζ2 + τ2, and so on. In general, X(t) is
defined as zero during the waiting periods [Sn−1, S

′

n) and X(t) coincides with the
process Zn(t− S′

n) during the life periods [S′

n, Sn], n = 1, 2, . . . .

Further on we will consider the case when Λ(x) and ∆(x) are non-lattice
distribution functions, Λ(0) = ∆(0) = 0 and there exists

(2.2) lim
x→∞

{[1 −∆(x)]/[1 − Λ(x)]} = c, 0 ≤ c ≤ ∞.

For ∆(x) we will assume one of the following basic conditions:

m∆ =

∫
∞

0
xd∆(x) < ∞;(2.3)

m∆ = ∞, 1−∆(x) = x−αL∆(x), 1/2 < α ≤ 1,(2.4)

where L∆(x) is a s.v.f. as x → ∞ and for each h > 0 fixed ∆(t) −∆(t − h) =
O(1/t), t → ∞.

Remark 2.1. When we consider branching processes we will assume addi-

tionally that Zk(0) = Ik with a p.g.f. g(s) = E{sIk} =

∞∑
i=1

gis
i, |s| ≤ 1. For g(s)
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we will consider the following possibilities:

mI = g′(1) = E{Ik} < ∞;(2.5)

E{Ik} = ∞, g(s) = 1− (1− s)θLI(1/(1 − s)), 0 < θ < 1,(2.6)

and LI(x) is a s.v.f. as x → ∞.

Note that the random variables {Ik} can be interpreted as the immigrants at the
state zero after the corresponding waiting periods.

In the general case one of the following conditions holds:

mΛ =

∫
∞

0
xdΛ(x) < ∞;(2.7)

mΛ = ∞, 1− Λ(x) = x−κLΛ(x), 1/2 < κ ≤ 1,(2.8)

LΛ(x) is a s.v.f. as x → ∞.
The asymptotic behaviour of the processes on the corresponding cycles is

described by the following condition:

(2.9) lim
t→∞

P{Zk(t)/V (t) ≤ x | τk > t} = Ω(x)

where V (t) is a positive, non-decreasing function, regularly varying at infinity
with exponent ω ≥ 0, and Ω(x) is a proper distribution function on R+.

Further on we will apply the following “Basic regeneration theorem” proved
in Mitov and Yanev [17]:

Theorem 2.1. Assume (2.1), (2.2) and (2.9).
1. Let (2.8) hold with 1/2 < κ < 1 :
(i) If (2.3) or (2.4) is fulfilled and 0 ≤ c < ∞, then for x ≥ 0

(2.10) lim
t→∞

P{X(t)/V (t) ≤ x} = (̥1(x) + c)/(1 + c),

̥1(x) = π−1 sinπκ

∫ 1

0
Ω(xu−ω)(1 − u)κ−1u−κdu is a distribution function on

R+.
(ii) If (2.4) with c = ∞ is fulfilled, then for x ≥ 0

(2.11) lim
t→∞

P{X(t)/V (t) ≤ x | X(t) > 0} = ̥2(x),

where ̥2(x) = B−1(1−κ, α)

∫ 1

0
Ω(xu−ω)(1−u)α−1u−κdu is a distribution func-

tion on R+.
2. Let (2.8) hold with κ = 1 and Ω(0) = 0 :
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(iii) If (2.3) or (2.4) is fulfilled and 0 ≤ c < ∞, then for 0 < x < 1

(2.12) lim
t→∞

P{mΛ(V
−1(X(t)))/mΛ(t) ≤ x} = (x+ c)/(1 + c),

where mΛ(t) =

∫ t

0
[1− Λ(x)]dx and V −1(·) is the inverse function of V (·).

(iv) If (2.4) with c = ∞ is fulfilled, then for for 0 < x < 1

(2.13) lim
t→∞

P{mΛ(V
−1(X(t)))/mΛ(t) ≤ x | X(t) > 0} = x.

3. AR Sevastyanov processes

Let now Z = {Z(t), t ≥ 0} be a Sevastyanov branching process. Recall that in
this case (see Sevastyanov [23, 24]) every individual (object, particle, cell, and so
on) evolves independently of the others and the joint distribution of the lifespan
η and the offspring ξ is specified as

(3.1) P{η ∈ B, ξ = k} =

∫
B
pk(u)dG(u),

for every Borel set B ⊂ R, where

∞∑
k=0

pk(u) = 1 and G(u) = P(η ≤ u), u ≥ 0.

Put h(u; s) =

∞∑
k=0

pk(u)s
k, |s| ≤ 1, for the collection of the associated probabil-

ity generating functions (p.g.f.). These assumptions define a (G,h)-Sevastyanov
process and Φ(t; s) = E{sZ(t)|Z(0) = 1} is the unique solution (in the class of
the p.g.f.) of the equation (see Sevastyanov [23, 24])

(3.2) Φ(t; s) = 1−G(t) +

∫ t

0
h(u; Φ(t− u; s))dG(u), Φ(0; s) = s.

Note that if h(u; s) ≡ h(s) then η and ξ are independent and one obtains the
Bellman-Harris branching process. If additionally G(x) = 1− e−x/µ, µ > 0, then
Z will be a Markov branching process, but if G(x) = 1[1,∞)(x) then Z will be the
classical Galton-Watson process.

Introduce the moments (k, n = 1, 2, . . . )

ak(u) =
∂k

∂sk
h(u; s)|s=1, ak =

∫
∞

0
ak(u)dG(u), µk =

∫
∞

0
ukdG(u),

Mak
n =

∫
∞

0
unak(u)dG(u),Mn ≡ Ma1

n .
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Further on in this section we will consider only the critical case a1 = 1 and
will investigate the asymptotic behaviour of the process X(t) defined by (2.1)
where now {Zk(t)} are i.i.d. copies of the considered Sevastyanov model Z(t).

Theorem 3.1. Assume (2.2) and let a3, µ3,M3,M
a2
3 and Ma3

3 be finite.
I. Let (2.5) be fulfilled and 0 < x < 1.
(i) If (2.3) is additionally supposed then c = 0 and

(3.3) lim
t→∞

P{logX(t)/ log t ≤ x} = x.

(ii) If (2.4) is additionally supposed then c = ∞ and

(3.4) lim
t→∞

P{logX(t)/ log t ≤ x | X(t) > 0} = x.

II. Let (2.6) be fulfilled with 1/2 < θ < 1 and A = µ1a2/2M
2
1 .

(iii) If either (2.3) or (2.4) with α > θ is additionally supposed then c = 0
and

(3.5) lim
t→∞

P{X(t)/At ≤ x} = K1(x),

where

(3.6) K1(x) = (π−1 sinπθ)

∫ 1

0
H(xu−1)(1 − u)θ−1u−θdu

and the d.f. H(x) has a Laplace transform

(3.7) ϕ(λ) =

∫
∞

0
e−λxdH(x) = 1− λθ/(1 + λ)θ, Reλ ≥ 0.

(iv) If (2.4) with α < θ is additionally supposed then c = ∞ and

(3.8) lim
t→∞

P{X(t)/Qt ≤ x | X(t) > 0} = K2(x),

where

(3.9) K2(x) = [1/B(1− θ, α)]

∫ 1

0
H(xu−1)(1 − u)α−1u−θdu,

B(·, ·) is the classical beta function and the d.f. H(x) has (3.7) as a Laplace
transform.

(v) If (2.4) with α = θ is additionally supposed then c ∈ [0,∞] depending of
the relevant s.v.f. For c = ∞ we have (3.8) with (3.9) but for 0 ≤ c < ∞ one has

(3.10) lim
t→∞

P{X(t)/At ≤ x} = (K1(x) + c)/(1 + c),

where K1(x) is defined by (3.6) and (3.7).
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P r o o f. If Z(0) = 1 then we have (see [23] and [24])

Q1(t) = P{Z(t) > 0} = P{τ > t} ∼ 2M1/a2t, t → ∞,(3.11)

lim
t→∞

P{Z(t)/At ≤ x | Z(t) > 0} = 1− e−x, x ≥ 0, A = µ1a2/2M
2
1 .(3.12)

In the case (2.5) one has to mention only that g(s) ∼ 1−mI(1− s) as s ↑ 1
and QI(t) = 1− Λ(t) ∼ mIQ1(t) as t → ∞. Then under the condition (2.3) one
can obtain from (2.2) and (3.11) that c = 0. Note that V (t) = At and as t → ∞
one has

mΛ(t) =

∫ t

0
QI(x)dx ∼ (2mIM1/a2) log t,mΛ(V

−1(X(t))) ∼ (2mIM1/a2) logX(t).

Therefore by (2.12) from Theorem 2.1 (iii) one obtains (3.3).
Assume now (2.4) and (2.5). Then one can prove from (2.2) that c = ∞.

Hence (3.4) follows by (2.13) of Theorem 2.1 (iv).
In the case (2.6) instead of (3.11) one has as t → ∞

1− Λ(t) = 1− g(1 −Q1(t)) = Qθ
1(t)LI(1/Q1(t)).(3.13)

Then from (2.2) and (3.13) under the conditions of the case (iii) one obtains
c = 0 while in the case (iv) one has c = ∞.

Now from (2.6) and (3.12) one can prove that for Reλ ≥ 0 and t → ∞

E{e−λZ(t)/At | Z(t) > 0} = 1− [1− g(Φ(t; e−λ/At))]/[1 − Λ(t)](3.14)

∼ 1− {[1 − Φ(t; e−λ/At)]/Q1(t)}
θ → 1− {λ/(1 + λ)}θ = ϕ(λ).

Therefore we are able to apply Theorem 2.1 (i) (with ω = 1 and κ = θ) and
to obtain from (2.10) the relation (3.5) with (3.6) and (3.7). Similarly one can
apply Theorem 2.1 (ii) (with ω = 1 and κ = θ) to obtain (3.9). The final case
(v) can be proved in the same way. �

Corollary 3.1. From (3.7), (3.6) and (3.9) applying the Tauberian theorem
(see e.g. [4, 5]) one obtains as x → ∞ that

1−H(x) ∼ x−θ/Γ(1 − θ),

1− K1(x) ∼ (1− θ)x−θ/Γ(1− θ),

1−K2(x) ∼ (1− θ)x−θ/(1 − θ + α)Γ(1 − θ),

i.e. for the three d.f. we have a normal domain of attraction of a stable law with
parameter θ.

Remark 3.1. The process X(t) can be interpreted as a generalization of the
processes with state-dependent immigration, i.e. with instantaneous immigration
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only in the state zero, considered by Foster [6] and Pakes [22] in the case of
Galton-Watson process, by Yamazato [26] for Markov branching process and by
Mitov and Yanev [14, 15] for Bellman-Harris processes. Especially, the limiting
result (3.3) was first proved by Foster, and after that by Yamazato and by Mitov
and Yanev (for the cited above processes).

4. AR Sevastyanov processes with non-homogeneous Poisson im-

migration

Let us now assume that along with the (G,h)-Sevastyanov process Y = {Y (t)}
there is a sequence of random vectors (Uk, νk), k = 0, 1, 2, . . . , independent of
Y, where 0 = U0 < U1 < U2 < . . . , are the jump points of a non-homogeneous
Poisson process Π(t) (of course independent of Y) and {νk} are i.i.d. positive
integer-valued r.v. with b = Eνk < ∞.

Let r(t) be the intensity of Π(t), i.e. P{Π(t) = n} = e−R(t)Rn(t)/n! for

n = 0, 1, 2, . . . and R(t) =

∫ t

0
r(x)dx.

Suppose that at every jump point Un, a random number νn of new individuals
immigrate into the process Y, and they participate in the evolution as the other
individuals. Let {Y νi(t)}∞i=1 be independent and identically distributed processes
which have the same branching mechanism asY but they started with the random
number of ancestors νi, i.e. Y νi(0) = νi, i = 1, 2, . . . . Then the Sevastyanov
process with non-homogeneous Poisson immigration Z = {Z(t)} can be defined
as follows (see Mitov and Yanev [20]):

(4.1) Z(t) =

Π(t)∑
i=1

Y νi(t− Ui) if Π(t) > 0;Z(t) = 0 if Π(t) = 0.

Note that the Sevastyanov process Y νi(t − Ui) started with νi ancestors but at
the random moment Ui.

We will investigate the asymptotic behaviour of the process X(t) defined by
(2.1) where now {Zk(t)} are i.i.d. copies of the proposed Sevastyanov model (4.1)
with a non-homogeneous Poisson immigration.

Consider first the subcritical case a1 < 1 and assume additionally that

there exists the Malthusian parameter β < 0 :

∫
∞

0
e−βua1(u)dG(u) = 1.
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Introduce the moments (k, n = 1, 2, . . . )

ak(β) =

∫
∞

0
e−βuak(u)dG(u), µk(β) =

∫
∞

0
e−βuukdG(u),

Mak
n (β) =

∫
∞

0
e−βuunak(u)dG(u).

Theorem 4.1. Assume (2.2), (2.6) and r(t) = r(t+ 1)−ρ, 1/2θ < ρ < 1/θ,
r > 0. Let µ1(β), a2(β), M

a1
1 (β), and Ma2

1 (β) be finite.

(a) If additionally (2.3) is fulfilled then c = 0 and

(4.2) lim
t→∞

P{X(t) ≤ x} = D(x) =

[x]∑
k=1

qk, x ≥ 0,

where Ψ(s) =
∞∑
k=1

qks
k = 1−Q(s)/Q(0), Ψ(1) = 1, and

Q(s) = lim
t→∞

e−βt{1 −Φ(t; s)}, s ∈ [0, 1].

(b) Suppose additionally (2.4).

(i) If ρθ < α then c = 0 and one has (4.2).

(ii) If ρθ > α then c = ∞ and

(4.3) lim
t→∞

P{X(t) ≤ x | X(t) > 0} = D(x) =

[x]∑
k=1

qk, x ≥ 0.

(iii) If ρθ = α then c ∈ [0,∞] depending of the s.v.f. L∆(x). If L∆(x) → ∞
then c = ∞ and we have (4.3). If L∆(x) → 0 then c = 0 and we have (4.2).
If L∆(x) → C ∈ (0,∞) then 0 < c = rCQ(0)Eνk/(−β) < ∞ and one has

(4.4) lim
t→∞

P{X(t) ≤ x} = (D(x) + c)/(1 + c).

P r o o f. Introduce the p.g.f. Ψ(t; s) = E{sZ(t) | Z(0) = 0}, |s| ≤ 1. As it is
given in [9] and [20]

Ψ(t; s) = exp{−

∫ t

0
r(t− u)[1− g(Φ(u; s)]du},Ψ(0; s) = 1,

where the p.g.f. Φ(t; s) = E{sY (t) | Y (0) = 1}, |s| ≤ 1, satisfies the non-linear
integral equation (3.2) (see [23, 24]).
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Under the assumptions of the theorem it was shown by Sevastyanov (see [24],
Section IX.3, Theorem 2) that for every s ∈ [0, 1]

(4.5) lim
t→∞

[1−Φ(t; s)]e−βt = Q(s),

where 1−Q(s)/Q(0) is a p.g.f.

On the other hand, for every ρ > 0 and other conditions of the theorem it
was proved in [9], Theorem 5.3, that for C = rbQ(0)/(−β)

1−Ψ(t; 0) = P{Z(t) > 0} ∼ Ct−ρ, t → ∞,(4.6)

lim
t→∞

P{Z(t) = k | Z(t) > 0} = qk, k = 1, 2, . . . ,(4.7)

where Ψ(s) =

∞∑
k=1

qks
k = 1 −Q(s)/Q(0), Ψ(1) = 1, and Q(s) is well determined

by (4.5).

Now from (2.6) and (4.6) it follows that

1− Λ(t) ∼ Cθt−ρθLI([1−Ψ(t; 0)]−1), t → ∞.(4.8)

It means that under conditions of the theorem κ = ρθ ∈ (1/2, 1) and the
condition 1 of Theorem 2.1 is fulfilled. If additionally one uses (2.3) then it is
not difficult to see that by (2.2) one obtains c = 0. Now from (4.7) it follows
that in our case (2.9) is fulfilled with ω = 0 and V (t) ≡ 1. Hence Ω(x) ≡ D(x)
from (4.2). Therefore by Theorem 2.1, (2.10), one obtains now the case (a) of
the theorem. The case (b) follows in the same way. One has to take into account
only that in (2.2) from (2.4) and (4.8) one has: c = ∞ if ρθ > α, c = 0 if ρθ < α
and 0 ≤ c ≤ ∞ if ρθ = α. �

Corollary 4.1. Consider the Markov case G(x) = 1 − e−x/µ, µ > 0, and
h(u; s) ≡ h(s). Assume additionally that

0 <

∫ 1

0
{[βx+ f(1− x)]/[xf(1 − x)]}dx < ∞,

where f(s) = [h(s)− s]/µ is the infinitesimal generating function. Then

Ψ(s) =

∞∑
k=1

qks
k = 1− exp{β

∫ s

0
dx/f(x)},Ψ(1) = 1.

P r o o f. Under the conditions one can use the following relations (see [24],
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Ch.II.2, Th.1 and Ch.II.4, Th.1) as t → ∞

1− Φ(t, 0) ∼ Q(0)eβt, Q(0) > 0,

[1− Φ(t, s)]/[1 − Φ(t, 0)] → exp{β

∫ s

0
dx/f(x)}.

Then from the proof of Theorem 5.3, [9], one hasQ(s) = Q(0) exp{β

∫ s

0
dx/f(x)}.

Therefore Ψ(s) = 1−Q(s)/Q(0) = 1− exp{β

∫ s

0
dx/f(x)}. �

Remark 4.1. Consider the critical case a1 = 1 (and then β = 0). Assume

additionally that 0 < R =

∫
∞

0
r(x)dx < ∞, r(t) ↓ 0, and there exists a function

k(t) such that k(t) → ∞, k(t) = o(t), and r(k(t)) = o(1/(t log t)), t → ∞. Then
under the conditions of the Theorem 3.1 we have all asymptotic results (3.3)–
(3.10). The proof is similar to Theorem 3.1 where one has to use Theorem 5.2
from [20] instead of Theorem 2 from [24], Section IX.3.

5. AR randomly indexed branching processes

Let now W = {Wn} be the classical Galton-Watson branching process defined
recurrently as follows

W0 = I,Wn+1 =

Wn∑
k=1

Vk(n), n = 0, 1, 2, . . . ,

where {Vk(n)} are i.i.d. random variables with a p.g.f. h(s) =

∞∑
k=0

pks
k, |s| ≤ 1

(interpreted as an offspring p.g.f.). As usually hn(s) denotes the n-th iteration
of h(s).

Introduce the set J ={Jk} of i.i.d. non-negative random variables with a

d.f. F (x) = P{Jk ≤ x} and let ν(t) = max{n :

n∑
k=1

Jk ≤ t}, t ≥ 0, be the

corresponding renewal process.

Then the process Z(t) = Wν(t), t ≥ 0, is called a randomly indexed GW
branching process (see Mitov et al. [13]). Introduce the corresponding p.g.f.
φ(t; s) = E{sZ(t)|Z(0) = 1}, |s| ≤ 1. Let {Zk(t)} be i.i.d. copies of Z(t) and
define the regenerative process X(t) by (2.1.
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Further on we will investigate the critical case h′(1) = 1. More precisely we
will assume that

(5.1) h(s) = s+ (1− s)1+γ£(1/(1 − s)), γ ∈ (0, 1],

where £(x) is a s.v.f. as x → ∞. In fact (5.1) means that h′(1) = 1 but the
variance is infinite for 0 < γ < 1 or γ = 1 and £(x) → ∞. The variance will
be finite if γ = 1 and £(x) → b for some b ∈ (0,∞). In this case the offspring
variance is 2b = h′′(1) and h(s) takes the following form:

(5.2) h(s) = s+ b(1− s)2 + o((1− s)2), s ↑ 1.

These “branching properties” will be combined with the following “renewal”
conditions:

0 < d =

∫
∞

0
xdF (x) < ∞;(5.3)

1− F (x) = x−δLF (x), δ ∈ [0, 1), LF (x) is a s.v.f. as x → ∞.(5.4)

Let M(t) is a s.v.f. such that

(5.5) γMγ(t)£(M(t)t−1/γ) → 1, t → ∞.

Introduce the s.v.f. L(t) = Mθ(t)LI(t
1/γ/M(t))L∆(t). Let us denote by T the

time to extinction of the process {Wn}, i.e.

T = min{n : W0 = 1,Wn > 0, n = 2, 3, . . . , T − 1,WT = 0}.

Note that P{T > n} = P{Wn > 0} and in the case (5.1)

ET =
∞∑
n=1

[1− hn(0)] = K ∈ (0,∞).

Introduce the s.v.f. L∗(t) = L∆(t)/[K
θLI(t

δ/LF (t))L
θ
F (t)].

Theorem 5.1. Assume conditions (2.2), (2.5), (5.2), and (5.3) in the case
that 1− F (t) = o(t−2), t → ∞.

(a) If additionally (2.3) is fulfilled then c = 0 and if (2.4) with α = 1 is
supposed then c = 0 for L∆(x) → 0 and 0 < c < ∞ for L∆(x) converging to some
constant. Then

(5.6) lim
t→∞

P{logX(t)/ log t ≤ x} = (x+ c)/(1 + c), x ∈ (0, 1).

(b) If additionally (2.4) is fulfilled then c = ∞ for 1/2 < α < 1 and for α = 1
with L∆(x) → ∞. Then

(5.7) lim
t→∞

P{logX(t)/ log t ≤ x | X(t) > 0} = x, x ∈ (0, 1).
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P r o o f. Note first that under the conditions of the theorem one has (see
[13], Theorem 4, (i))

(5.8) 1− Λ(t) = P{Z(t) > 0 | Z(0) = I} ∼ mId/bt, t → ∞.

On the other hand, one has by Theorem 6 from [13] that

(5.9) lim
t→∞

P{Z(t)[1 − Λ(t)] ≤ x | Z(t) > 0} = 1− e−x, x ≥ 0.

Therefore from (5.8) and (2.3) one can see by (2.2) that c = 0. Similarly
from (5.8) and (2.4) with α = 1 one obtains that c = 0 for L∆(x) → 0 and
0 < c < ∞ for L∆(x) → constant. It follows from (5.8) that (2.8) is fulfilled with
κ = 1. The relation (5.9) means that (2.9) holds with V (t) = mId/bt, ω = 1 and
Ω(x) = 1− e−x.

Note that mΛ(t) =

∫ t

0
[1 − Λ(x)]dx ∼ (mId/b) log t, t → ∞. Hence by Theo-

rem 2.1, (2.12), one obtains (5.6).

Now from conditions (b) and (5.8) it is not difficult to see that in (2.2) one
obtains c = ∞. Therefore the limiting distribution (5.7) follows from (2.13) of
Theorem 2.1. �

Theorem 5.2. Assume conditions (2.2), (2.6), (5.1) and (5.3) in the case
that 1 − F (t) = o(M(t)t−1−1/γ), where M(t) is defined by (5.5). Suppose also
that 1/2 < θ/γ ≤ 1.

(a) If (2.3) or (2.4) with α > θ/γ is fulfilled then c = 0 but if (2.4) with
α = θ/γ is supposed then 0 < c < ∞ in the case when L(t) converges to some
positive constant. Then

lim
t→∞

P{X(t)M(t)/(t/d)1/γ ≤ x} = (E1(x) + c)/(1 + c),

where

(5.10) E1(x) = [π−1 sin(πθ/γ)]

∫ 1

0
Dθ,γ(xu

−1/γ)(1− u)θ/γ−1u−θ/γdu

and the d.f. Dθ,γ(x) has a Laplace transform

(5.11) ϕθ,γ(λ) =

∫
∞

0
e−λxdDθ,γ(x) = 1− λθ/(1 + λγ)θ/γ , Reλ ≥ 0.

(b) If suppose additionally (2.4) with α < θ/γ or α = θ/γ with L(t) → ∞
then c = ∞ and

(5.12) lim
t→∞

P{X(t)M(t)/(t/d)1/γ ≤ x | X(t) > 0} = E2(x),
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where

(5.13) E2(x) = [1/B(1 − θ/γ, α)]

∫ 1

0
Dθ,γ(xu

−1/γ)(1− u)α−1u−θ/γdu,

B(·, ·) is the classical beta function and the d.f. Dθ,γ(x) has (5.11) as a Laplace
transform.

P r o o f. Under the conditions of the theorem it was proved in Theorem 4,
(ii), of [13] that

(5.14) Q(t) = P{Z(t) > 0 | Z(0) = 1} ∼ (d/bt)1/γM(t), t → ∞,

where the s.v.f. M(t) is determined by (5.5). On the other hand, by Theorem 7
of [13] one can see that

(5.15) lim
t→∞

P{Z(t)Q(t) ≤ x | Z(t) > 0;Z(0) = 1} = Dγ(x), x ≥ 0,

where the d.f. Dγ(x) has the following Laplace transform

(5.16) ϕγ(λ) =

∫
∞

0
e−λxdDγ(x) = 1− λ/(1 + λγ)1/γ , Reλ ≥ 0.

Since (2.6) is supposed then from (5.14) one obtains as t → ∞

1− Λ(t) = P{Z(t) > 0 | Z(0) = I} = 1− g(1 −Q(t))(5.17)

= Qθ(t)LI(1/Q(t)) ∼ (d/bt)θ/γMθ(t)LI((d/bt)
−1/γM−1(t)).

Now using (5.15)–(5.17) and (2.6) one can obtain for t → ∞

E{e−λZ(t)Q(t) | Z(t) > 0;Z(0) = I} = 1− [1− g(φ(t; e−λQ(t)))]/[1 − Λ(t)](5.18)

∼ 1− {[1 − φ(t; e−λ/At)]/Q(t)}θ → 1− {λ/(1 + λγ)1/γ}θ = ϕθ,γ(λ).

Then from (2.2), (2.3) and (5.17) with 1/2 < θ/γ ≤ 1 it is not difficult to see
that c = 0. Similarly in the case (2.4) with α > θ/γ. But if (2.4) and (5.17) with
α = θ/γ are fulfilled, and L(t) → K ∈ (0,∞), then in (2.2) one can observe that
0 < c < ∞.

Note that (2.8) is fulfilled with κ = θ/γ because of (5.17). It follows from
(5.18) and (5.14) that (2.9) holds with V (t) = 1/Q(t) and Ω(x) = Dθ,γ(x), where

ϕθ,γ(λ) =

∫
∞

0
e−λxdDθ,γ(x). Therefore by Theorem 2.1, (2.10), one obtains (a)

with (5.10) and (5.11).
If (2.4) with α < θ/γ holds then in (2.2) one obtains that c = ∞ and similarly

in the case α = θ/γ with L(t) → ∞. Hence by Theorem 2.1, (2.11), the relations
(5.12) and (5.13) follow. �
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Corollary 5.1. From (5.10), (5.11) and (5.13) applying the Tauberian the-
orem (see e.g. [4, 5]) one obtains as x → ∞ that

1−Dθ,γ(x) ∼ x−θ/Γ(1− θ),

1− E1(x) ∼ x−θ[sin(πθ/γ)]/[(πθ/γ)Γ(1 − θ)]

1− E2(x) ∼ x−θ/[αB(1 − θ/γ, α)Γ(1 − θ)],

i.e. for the three d.f. we have a normal domain of attraction of a stable law with
parameter θ.

Theorem 5.3. Assume conditions (2.2), (5.1) and (5.4) with δ ∈ (1/2, 1).

(i) If (2.3) is fulfilled then c = 0;

(ii) If (2.4) and (2.5) are fulfilled then c = 0 for δ < α, c = ∞ for δ > α and
c = lim

x→∞

{L∆(x)/[mIKLF (x)]}, c ∈ [0,∞] for δ = α.

(iii) If (2.4) and (2.6) are fulfilled and δθ ∈ (1/2, 1) then c = 0 for δθ < α,
c = ∞ for δθ > α and c = lim

x→∞

L∗(x), c ∈ [0,∞] for δθ = α.

(A) Then in the case 0 ≤ c < ∞ one has

(5.19) lim
t→∞

P{X(t) ≤ x} = (D(x) + c)/(1 + c), x ≥ 0,

where

(5.20) D(x) =

∫
∞

0
P{W[y] ≤ x | W[y] > 0}dF2(y),

and

(5.21) Π(y) = E{min(T, [y] + 1)}/ET, y ≥ 0.

(B) In the case c = ∞ one has

(5.22) lim
t→∞

P{X(t) ≤ x | X(t) > 0} = D(x), x ≥ 0.

P r o o f. Under the conditions of the theorem the following result holds (see
Theorem 5, (ii), from [13])

(5.23) Q(t) = P{Z(t) > 0 | Z(0) = 1} ∼ KLF (t)t
−δ, t → ∞.

By the conditions of the theorem we have also the following limiting distri-
bution (see Theorem 9 from [13])

(5.24) lim
t→∞

P{Z(t) ≤ x | Z(t) > 0;Z(0) = 1} = D(x), x ≥ 0,

where D(x) is defined by (5.20) and (5.21).
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Then as t → ∞ from (5.23) one has when (2.5) is fulfilled

(5.25) 1− Λ(t) ∼ mIQ(t) ∼ mIKLF (t)t
−δ,

while for (2.6) one obtains

(5.26) 1− Λ(t) ∼ Qθ(t)LI(1/Q(t)) ∼ [KLF (t)]
θLI(1/Q(t))t−δθ .

Now from (2.2) using (5.25) and (5.26) it is not difficult to check that all
relations (i), (ii), and (iii) are correct. From the limiting relationship (5.25) and
(5.26) it follows that the condition (2.8) is fulfilled with κ = δ or κ = δθ and
in both cases κ ∈ (1/2, 1). On the other hand, the limiting distribution (5.24)
shows that (2.9) is fulfilled with V (t) ≡ 1. Therefore the limiting distributions
(5.19) and (5.22) with (5.20) and (5.21) follow by applying Theorem 2.1, (2.10)
and (2.11), where Ω(x) ≡ D(x), ω = 0 and therefore ̥1(x) ≡ D(x) and ̥2(x) ≡
D(x). �
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