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STUDIA MATHEMATICA

MONOTONE EMPIRICAL BAYES ESTIMATORS

FOR THE REPRODUCTION NUMBER

IN BOREL-TANNER DISTRIBUTION*

George P. Yanev, Roberto Colson

We construct a monotone version of an empirical Bayes estimator for the
parameter of the Borel-Tanner distribution. Some properties of the estima-
tor’s regret risk are illustrated through simulations.

1. Introduction

The probability mass function (p.m.f.) of Borel-Tanner (BT) distribution is

(1.1) pr(x; θ) = cr(x)θ
x−re−θx x = r, r + 1, . . . ,

where 0 < θ < 1, r is a positive integer, and cr(x) := rxx−r−1/(x− r)!

The BT distribution arises, for example, in branching processes models and
queueing theory. Originally (1.1) was derived as the distribution of the number
of customers served in a busy period of a single-server queuing process, starting
with r customers and having traffic intensity θ, assuming Poisson arrivals and
constant service time. Later BT distribution reappeared in the theory of branch-
ing processes. If the number of offspring of an individual is Poisson distributed
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with mean 0 < θ < 1, then the total progeny of a Galton-Watson process start-
ing with r ancestors is a random variable with p.m.f. (1.1). More recently, the
distribution has been used to model a variety of real-world phenomena includ-
ing: coalescence models (Aldous (1999)), highway traffic flows (Koorey (2007)),
propagation of internet viruses (Sellke et al. (2005)), cascading failures of en-
ergy systems (Ren et al. (2013)) and herd size in finance modeling (Nirey et al.
(2012)). Our interest in estimating θ stems from its role as reproduction num-
ber of an epidemic infection modeled by a branching process (Farrington et al.
(2003)).

In the context of branching processes, the Bayesian statistical approach was
first explored by Dion (1972) and Jagers (1975), Section 2.13 (see Guttorp (1991),
Chapter 4). Adopting the Bayesian framework, suppose θ ∈ Ω is a realization
of a random variable Θ, having a prior distribution G. It is well-known that,
under the squared error loss, the value θG(x) of the Bayesian estimator for θ is
the posterior mean

(1.2) θG(x) = E [Θ | X = x] =

∫

Ω
θx+1−re−xθdG(θ)

∫

Ω
θx−re−xθdG(θ)

.

Example 1 Let the prior G be Beta(v,w) for v,w > 0. One can verify (see
Moll (2015), p.97 for the evaluation of the integrals) that (1.2) yields

(1.3) θG(x) =

w−1
∑

k=0

(−1)k
(

w − 1

k

)

(x− r + v + k)!

xk+1
[ex − Expx−r+v+k(x)]

w−1
∑

k=0

(−1)k
(

w − 1

k

)

(x− r + v + k − 1)!

xk
[ex − Expx−r+v+k−1(x)]

,

where Expj(x) :=

j
∑

k=0

xk/k!.

Example 2 In the particular case of Uniform(0, 1) prior, (1.3) simplifies to

(1.4) θG(x) =
x+ 1− r

x

ex − Expx+1−r(x)

ex − Expx−r(x)
.

In what follows, we shall adopt the empirical Bayes (EB) approach, which relies
on the assumption for existence of a prior G which, however, is unknown. Suppose
our estimation problem is one in a sequence of similar problems with the same
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prior distribution. In this scenario, the results of previous studies can be used to
estimate the prior G and/or the Bayes rule θG directly. More precisely, consider
a sequence of independent copies

(X1,Θ1), (X2,Θ2), . . . , (Xn,Θn), . . .

of the random pair (X,Θ), where Θ has a distribution G, and conditional on Θ,
X has the BT distribution (1.1). Assume that Xi, i = 1, 2, . . . are observable, but
Θi, i = 1, 2, . . . are not observable. We let Xn+1 stand for the present random
observation, and X(n) := (X1, . . . ,Xn) denote the n past observations. Let θn+1

be the present parameter value of Θ. An EB estimator θn(X(n),Xn+1) =: θn(X)
for the parameter θ is a function of the currently observedXn+1 and the past data
X(n). In general, it is difficult to find an estimator θn(X) for θ by estimating
the Bayes rule θG directly. In case of BT distribution, Liang (2009) succeeded in
constructing such EB estimator θn(X) for θG as follows. For x = r, r + 1, . . . let

ψn(x) :=
1

n

n
∑

j=1

c1(Xj − x)I{Xj ≥ x+ 1}

cr(Xj)
and qn(x) :=

1

n

n
∑

j=1

I{Xj = x}

cr(x)
.

Define an EB estimator θn(X) for each x = r, r + 1, . . . by

(1.5) θn(x) := min

{

ψn(x)

qn(x)
, 1

}

, qn(x) 6= 0.

By definition, the Bayesian estimator θG(X), under squared error loss function,
minimizes the Bayes risk defined as

R(G, θG) := E(X,Θ)[Θ− θG(X)]2.

The Bayes risk of the EB estimator θn(X) is

R(G, θn) := EnE(Xn+1,Θn+1)[Θn+1 − θn(Xn+1)]
2.

The difference

S(θn) := R(G, θn)−R(G, θG) ≥ 0,

called regret risk of θn, is a standard measure of the quality of θn. In particular,
θn is asymptotically optimal for G if lim

n→∞
S(θn) = 0. Liang (2009) proves that

θn given by (1.5) is asymptotically optimal and studies the rate of convergence
to zero of S(θn).
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2. Monotone Empirical Bayes Estimator

As Van Houwelingen (1977) points out, one issue with the EB estimator θn(x) is
that it is not monotone with respect to x for given data values X1 = x1, . . . ,Xn =
xn. On the other hand, it is not difficult to see that the BT distribution (1.1)
has monotone likelihood ratio (MLR) in x, i.e.,

pr(x; θ2)

pr(x; θ1)
=

(

θ2
θ1

)x−r

e−(θ2−θ1)

is an increasing function of x for 0 < θ1 < θ2 < 1. Hence, monotonicity is a
desirable property for θn(x). Estimators for discrete distributions with MLR can
be made monotone applying a procedure developed in Van Houwelingen (1977).
Consider a simple randomized version of the estimator θn(x) represented by the
following function D(a;x) for a ∈ [0, 1]:

D(a;x) :=

{

0 if θn(x) > a,
1 if θn(x) ≤ a.

The number D(a;x) is the probability that an estimate θn(x) less than or equal
to a is selected given X = x. Hence D(a, x) is a c.d.f. on the action space (0, 1)
for every X = x. Define for a ∈ [0, 1]

α(a) := E(D(a;X)) =
∑

{x: θn(x)≤a}

pr(x; a).

Denote F (x; θ) :=

x
∑

k=r

pr(k; θ) for x ≥ r and F (r − 1; θ) = 0. Now, we can

construct a randomized estimator with D∗(a;x) as follows

D∗(a;x) :=















0 if α(a) < F (x− 1; a)
α(a) − F (x− 1; a)

F (x; a)− F (x− 1; a)
if F (x− 1; a) ≤ α(a) ≤ F (x; a)

1 if F (x; a) < α(a),

D∗(1;x) = 1, and D∗(0;x) = lim
a↓0

D∗(a;x). Let a ∈ (θ0, θ1) be fixed. From the

construction of D∗, it is clear that EaD
∗(a,X) = α(a) = EaD(a,X). It was

proven in Van Houwelingen (1977) that D∗ represents a monotone estimator,
which dominates the initial estimator represented by D by having lower Bayes
risk, i.e., for all θ ∈ Ω

R(θ,D∗) ≤ R(θ,D).
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Finally, it is not difficult to see that, under the squared error loss function, D∗

itself is dominated by the non-randomized estimator

θ∗n(x) :=

∫ 1

0
a dD∗(a;x).

Indeed, using Jensen’s inequality, we have

R(θ, θ∗n(X)) = E(θ − θ∗n(X))2

= E

(
∫ 1

0
(θ − a) dD∗(a,X)

)2

≤ E

(
∫ 1

0
(θ − a)2 dD∗(a,X)

)

= R(θ,D∗(a,X)).

3. Numerical Study

In practical applications, there is a compelling argument (Liang (2009)) for θ
to take on values in a sub-interval of (0, 1). Let the prior G̃ be the uniform
distribution on (0.5, 0.8). Assuming r = 3, we find the Bayesian estimator θG̃(X)
and calculate its (minimum) Bayes risk to be

E[θG̃(X)−Θ]2 = 0.0021.

The maximum likelihood estimator θmle(X) = (X − 3)/X has regret risk

S(θmle) = E[θmle(X)− θG̃(X)] = 0.0935.

r n Ŝ(θn) Ŝ(θ∗n) S(θmle)

3 100 0.0488 0.0242 0.0935
(0.0012) (0.0008)

3 500 0.0178 0.0082 0.0935
(0.0004) (0.0001)

Table 1: Estimates for the regret risks of θn, θ
∗
n, and θmle (with standard errors

in parentheses)

Now adopt the EB framework. Consider n = 100 independent copies

(3.6) (X1,Θ1), (X2,Θ2), . . . , (X100,Θ100)
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Figure 1: EB, Monotone EB, and Bayesian estimates based on one simulation for
n = 500, r = 3, and prior U(0.5, 0.8)

of the random pair (X,Θ), where Θ is an uniform (0.5, 0, 8) variable and, given
Θ, X has the BT distribution (1.1). Assume that Xi are observable, but Θi are
not observable. For our simulation study, we draw 10 sets like (3.6). For the

kth, 1 ≤ k ≤ 10, set, the EB estimate θ
(k)
100(x) is calculated. The value of S(θ100)

is estimated by the average (for the 10 samples) Ŝ(θ100) :=
1

10

10
∑

k=1

S(θ
(k)
100) and

the standard error is calculated. Next, the EB estimator is monotonized and the

estimate θ
∗(k)
100 (x) is computed. Similarly to S(θ100), we estimate S(θ∗100) by the

average Ŝ(θ∗100). The entire procedure is repeated with n = 500 in (3.6). The
numerical results are given in Table 1. The improvement of θ∗n over θn is quite
substantial. It is surprising that even in the case n = 500, θn lacks monotonicity
completely. To give more insight, the complete results for one set (3.6) of size
n = 500 are presented in Figure 1.
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