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SUMMATION BY EULER’S TRANSFORM OF THE SERIES
OF DIRICHLET, FACTORIAL SERIES AND THE SERIES OF
NEWTON

N. Obrechkoff

0. Introduction

Let the series
(0.1) ap+ay+as+...

be given, for which at first it is not suppose anything about its convergence. From
the series (0.1) Euler obtains a new one by means of the formal expansion

o0 p n+1 o0
— n+1
Sa(3) - >
n=

n=0

From this equality it follows that

1 " /n
An = —2n+1 Z <y> ay .
v=0
The series

(0.2) Ao+ Ar+ Ay + ...

is called E-transform of (0.1). If the series (0.1) is convergent, then it is easily
verified that the series (0.2) is convergent with sum equal to that of (0.1). But,
there are cases when the series (0.2) is convergent without (0.1) to be convergent.
If the series (0.2) is convergent with sum s, then they say that (0.1) is summable
by the method of Euler, or shortly E-summable, with sum s.
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By iterating the E-transform K. Knopp [1] comes to its generalization, namely:
from the series (0.1) he gets a new series by using the following expansion

o0 p n+1 o0
_ = Ak o+l =281, k>0
San(sria) = A g=2 1k

n=0 n=0
whence
Ak—;icl)q"”a n=20,1,2
n — +1 1z — Uy ly &y
(¢ + 1)t = \w
The series
(0.3) Ak oAb oAb 4.

is called Ej-transform of (0.1). If the series (0.3) is convergent with sum s,
then the series (0.1) is called Eg-summable with sum s. The Ep-summation is
the ordinary convergence, and if the series (0.1) is Ej-summable, then it is Ej, -
summable for each k; > k with the same sum. The study of this summation as
well as its application to the analytical continuation of Taylor’s series is due to
Knopp.

Another summation with a wide application is that of Cesaro. The series (0.1)
is summable by the method of Cesaro, shortly (C, k)-summable, if the expression

g 2t = (")),

tends to a definite limit when n — oco. This summation has an important sig-
nificance by studying the trigonometric series of Fourier as well as of the series
of Taylor on the boundary of their disks of convergence. H. Bohr applied this
method to the ordinary Dirichlet series
> a
n
(0.4) ;) CES

M. Riesz generalized the (C,k)-summation so that it to be applied to the
general series of Dirichlet
o0
Z ane s,
n=1

In a paper of the author of this issue it was given a more general summation
as well as its applications to the theory of the series just mentioned and all the
results already known were obtained as particular cases.
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In this paper is studied the summation of the series of Dirichlet, Newton and
the factorial one by the method of Euler-Knopp. It turns out that this method
is a powerful tool for their investigation, more powerful than the known till now.
The following theorem is established:

Let the series (0.4) be Ey-summable for s = sq, then it is Ex-summable for
each s with Rs > Rso. If Yo AF(so) is the Ey-transform of the series (0.4)
for s = sg, then the Ej-transform of this series for ®s > Rsg is a holomorphic
function f(s) in this half-plane given by the expression

n+1 et— 1

1 o] q+1
- - §—380 1 k
J(s) = I'(s — so) /0 ! 7;]5"(80) (q—i— et> et +q d

where

From here one obtains that

16 =0 (He=m)

IT'(s — s0)|

for Rs =0 > 0¢g + € > 09 = RNsy.

From this theorem it follows also that there is a real number e with the
following property: the series (0.4) is Ej-summable for each s with Rs > e
and it is not Ej-summable for s < ex. This number is called abscissa of the
Ej-summability for the series (0.4) and, moreover:

If e, > 0, then

log |AF + AY +--- + AF)

er = lim sup

N300 log(n + 1) ’
and N N
log |AZ + A +...
e = lim sup g4 ntl |
n—o0 logn
when e, < 0.

If the series (0.3) is absolutely convergent, then they say that the series (0.1) is
absolutely summable by the method of Euler, or shortly, |Ej|-summable. First,
in this issue are proved some simple basic properties of this summation which
were not pointed out till now, namely:
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If the series (0.1) is absolutely convergent, then it is |Ey|-summable for each
k > 0. Moreover, the |Ey|-summability implies | Ey, |-summability for each ki > k.

If the series
apt+ay+ags+...

is | Ex|-summable, then the series
0+ ag+ai+...
is also | Ex|-summable and conversely.

Let the series Y .~ an and Y > b, be |Eg|-summable, then their Cauchy’s
convolution Y 02 ¢y, i.e.

cn = aobp + ar1bp—1 + -+ + anpbo,
is | Ex|-summable too.
Each |Eg|-summable series is absolutely summable by the method of Borel.

Further, this summation is applied to the series (0.4) and the following prop-
erties are obtained:

If the series (0.4) is |Eg|-summable for s = so, then it is |Ey|-summable for
each s with Ns > Rsy.

If €y, is the abscissa of the |Ey|-summability of the series (0.4), then

| Ak Ak Ak
%, = lim sup og(|Ag| + [AT| +--- + A7)
N0 log(n + 1)

when e, > 0, and

_ log(|AR] + A% 4 +-..)
€, = limsup
00 log(n + 1)

9

provided that €, < 0. Moreover, one always has that e —ep, < 1.

It has to be pointed out that the proofs of these properties require rather
complicated calculations.
For the factorial series

o)

(0.5) 2)8(8“)“‘”‘”‘!(8”), seC\{0,~1,-2,...1,

the following theorem is proved:
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Let the series (0.5) be Ex-summable for s = sg, then, it is Ei-summable for
each s, such that Rs > RNsg. Of course, the points 0,—1,—2,... are excluded.
Let Y00 AX(sg) denote the Eg-transformed series (0.5) with s = sg, then its
Ey-sum is holomorphic function f(s) in the half-plane Rs > Rsg except possible

simple poles at the points 0,—1,—2,.... If Rsy >0, then
f(s)
oo 1 pn+1
= & Z Sk(so)/ 5750(1 — t)PFso ( g+1 > dt ’
(s — s9)T'(s0) = " 0 g+1—gqt g+1—gqt

where SF(sg) = > =0 Aﬁ(so), and if Rsg < 0, then

p] a, V!
/() :;5(54-1)...(84-1/)

I(s) > 1o g+1 " at
S A — S(P) s / $5750(1 — ¢ ptso+p ’
F(S—SO)F(So)l;) ”(0)0 -9 qg+1—gqt g+1—gqt

where p is an integer greater than —Rsy, Sy(zp)(so) = =0 Agp)(so) and

1 N L, aptv(p+v)!
AP (5) = L nov i ’
i (50) (q+ 1wt Vz:(:) <V>q so(so +1)... (so+p+v)

This theorem is established by another method which leads to the following
form of the function f(s), namely

f(s)

=T(s)so Z Aﬁ(SO)(Aﬁ(SO))SO Z F(I/;('j_i j—i—::—ll—)l) (A7 (s0))>™ <ﬁ) 7
=0 7=0

which holds for all admissible sy and s, such that s > Rsg.

It is also proved that if the series (0.5) is | Ej|-summable for s = s, then it is
| Ex |-summable for each s with s > Rsg. From here it comes out a representation
of f(s) by means of the Laplace integral provided that s > 0, namely:

If the series (0.5) is Ey-summable for s = sg, then

1
Fs) = /O (1 — 2)*Ly(z) do
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when Rs > 0, where the function
P(x) = Z anz"”
n=0

18 holomorphic in the disk

q q+1
xr — <
2+ 1] 7 2g+1

and moreover, it is of a finite order in the sense of Hadamard on it.

This theorem is invertible. Indeed, by a well-known theorem of Pincherle and
Nérlund, in a case of convergence the function (x) is holomorphic in the larger
disk |z| < 1.

Further, for the series of Newton

vl

(0.6) aO+Z(_1)VaV(3_1)(3_2)---(8—1/)
v=1

it is proved completely analogous theorem, namely:

If the series (0.6) is Ex-summable for s = sg, then it is Ey-summable for each
s such that Rs > Rsg, then function f(s) represented by it is holomorphic when
Rs > Rsg and if Rs <0, then

I'(s — s0)I'(1 — so)
F(l - 80)

1
= isk/lt“o(l —)n® g+1 \"* dt
—"Jo g+1—gqt g+1—qt’

where SF(so) = Y.0_o AF(s0), and Y% AF is the Ey-transform of the series
(0.6) for s =sg. If Rs >0, then

f(s)

p—1
£(s) = Z(—Umy(s —1)(s —VQ!) (s =)
v=0

(1 - > Lys=s0(] — fyn=s+p 1\
+ ( 80) ZST(ZP)(SO)/ ( ) < q+ ) dt,
I'(s—so)I'(1 —s) 0 g+1—qt qg+1—qt

v=
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where p is an integer greater than Rs, Sgp)(so) =30 A(yp)(so) and

so—1)...(so —
AP (s0) = (¢g+1) u+1z M+p< > ol (;)L—HE)!O M)'

With another method it is obtained an expression for f(s) which holds for
each admissible s and sy such that Js > Rsg, namely:

f(s)
I'(s = s0)I'(1 — so)

& . T(n+7+1) e
_T;)Aﬁ(s())bn(—s)zjor(nHH_80)648_30_1) <Q+_1> |

where

bo(s) = ao, bn(s):(8_’_1)(8_’_&273“'(8_’_”), n=123,....

If the series (0.6) is |Ex|-summable for s = sp, then it is |Ej|-summable for
each s with Rs > Rs.
At the end the Borel summation is applied to the factorial series. The series

(0.1) is B-summable if
OO n
B an®
p(z) = Z Tl

n=0

is an entire function and the integral

/O " emp(2) da

is convergent. The following theorem is proved:

Let the series (0.5) be B-summable for s = sg, then it is B-summable for each
s such that Rs > Rsg. If Rsg > 0, then its sum f(s) is given by

I'(s)

1 oo
= — — 4)5—S0,,50—1 —t(1—u)
) = TG = s0) /0 (1 —u)**0u™™ du /0 h(tu)e dt,

where

T 0 "
h(z) = “to(t)dt, d(x .
() /0 © (*) T;) so(so + 1 .. (s0+mn)
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If Rsg < 0 and m is a positive integer such that m > —Rsq, then

m—1

ann!
S)ZZs(s—l-l)...(s—l—n)

n=0

—i-& /1(1 — )0y gy, /OO H(ut)e™ 19t gy
L(s0)I'(s = s0) Jo 0 ’

where

1. On the absolute summation by Euler’s transform

By Knopp, the series

(1.1) > an
n=0

is absolutely summable by Euler’s transform of order k, shortly |Ej|-summable,
if the series

o0 n
1 n
ko oAk _ - _ ok
E An7An_W§ <V>q” Yay, q=2"—1, k>0,
n=0 v=0

is absolutely convergent.

This summation is studied in the first part of the paper, its new basic prop-
erties are established and thus the results of Knopp are filled up. The following
theorems are proved:

Theorem 1. If the series (1.1) is absolutely convergent, then it is |Ey|-
summable for each k > 0.

Indeed,

1 " /n
k n—v
Al = e Z (0)a 1
Z [Anl < (q+ )nHt an “lan]
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m m 1 .
=SS e ()0

v=0
But
Ui 1 <n) ad 1 n
qn—l/ < < >qn—y
nz;/ (q + 1)n+1 v nz;/ (q + 1)n+1 v
B 1 1 _q
g+ 1 (i )”“ |
q+1
Hence,

o0 [o¢]

S OAR < fan]

n=0 n=0
and thus the theorem is established.

Theorem 2. If the series (1.1) is |Ex|-summable, then it is |Ey, |-summable
for each k1 > k.

This theorem is an immediate corollary of the preceding one, since if § >
0, then the Fjs-transform of the series (1.1) is the FEs-transform of its Ej-

transform. Moreover, the sum ) |a},| decreases by increasing of k.

Theorem 3. If the series
apt+ay+as+...

is |Ex|-summable, then the series
(1.2) O+ap+ay+ag+...

is also |Ey|-summable, and conversely.

Let, as before, Y-°° | A% be the Ej-transform of the series (1.1) and > o0 Ak
be that of (1.2), then

[e’e] p n+1 [e’e]
— Ak n+1
S (i) =k

n=0 n=0

o0 P n+1 o0

_ Ak n+1
Sar () =LA
n=1 q+ 1- q= n=0
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whence one easily gets that

1 [eS) o
(1.3) L Sk oS Ak
q +1- 4= n=0 n=0

This relation yields that

— 1 n—1 N q n—1—v
L Y (i .
! Q+1 v=0 Y <q—|_1>

g} gt inZl' k‘<q+1>nly

nOz/O

S (i)

n=v+1
1 m—1 % q © m—1
—= 2 D (=) =214l
1 qg+1
v=0 n=0 v=0

and thus the first part of the theorem is established. The relation (1.3) gives that
Ap = (q¢+ 1)AfZ 1 qAF whence the second part immediately follows.

Hence,

Theorem 4. If the series Y >~ (an, Y ,—obn are |Eg|-summable, then their
Cauchy’s convolution Y 0" o Cn, C¢n = Aobp + a1bp—1 + -+ + apby is also |Eyl-
summoable.

IEY > 0 An, Doo2 o B, D one o Cp are their Ej-transforms, then [1, p. 131]
Cn=(q+1)(AoBn + -+ + AnBo) — q(AoBn-1+ -+ + An-1Bo),

and since the series Y2 |An|, D7 |Bn| are convergent, the same holds for the
series > > |Chl.

Theorem 5. If the series Y .o ay, is |Ex|-summable, then it is also |B|-
summable.

It is well-known that the series > > ;a, is absolutely summable by Borel’s
method ([2]) when the integral

(1.4) /000 e uM (2)| dz, u(z) = Z a—nx”,
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is convergent for each A =0,1,2,....
If we denote

1 " /n n—u _
(1.5) s = CES > <V>q Suy Sn= Yy,
v=0

v=0

then

oo

(1.6) e (at1)z Z ((q+ D) e*xzs’;ﬁ = h(z),
= n=0 ’

whence by the substitution of (¢ + 1)z by z, one gets that

& S(k) "
—e N S _
) nz;) AN CESIAA

B a
) ot =g(),

n=0

where a,(lk) = s,({“ — sgi)l. Therefore,

/ x)| dz <Z "H‘ e Tx"dx

Sl e N

and since

| g@las = — Oo\h’(a:)lda:,
0

q+1
oo
e
0

is convergent. But according to the previous theorems it is possible to increase
or decrease the indices of the terms of the series (1.1) with an arbitrary integer
and, hence, the integrals(1.4) are convergent, i.e., the theorem is established.

the integral
dz

[ee]
Y it
n!

n=0
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The series (1.1) is summable by the method of Abel and Poisson, shortly
A-summable, if the function

(e} [e.e]
(1.7) flx) = Zanx” =(1 —x)zsnx”, Sp=ag+ai + -+ an,

tends to a definite limit when x — 1 — 0. By Whittaker [3] the series (1.1) is
absolutely summable by this method, or |A|-summable, if the integral

/ 1) d

Theorem 6. If a series is |Ey|-summable, then it is also |A|-summable.

is convergent.

Let the Laplace transform

L(g) = / T e i () de

be applied to both parts of (1.7). Then after simple calculations one gets that

o0

+1)" S
1.8 (k) q = S LR—
(1.8) Z (s+q+ 1)”+1 nz% (s+ 1)t

Both series in it are convergent for s > 0. If 1 is replaced by z, then
S

x <1 when s >0 and x — 1 when s — 0. The function f(z), defined by (1.6),

is exactly equal to
o0

Sn
Snz:% (s + Dt

But if s > 0, then (1.8) yields that

o (gt 20 — (k) Q+1
=3 I S S S e
0 v=0

n=

oo oo v
q+1)” 1 B (k) g+1
81;)@ (@+1+s)p g+l =2 o g+s+1

=0
qg+1+s Y
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1
=9t

= , then ¢ tends to 1 when s — 0, hence,
qg+s+1

f(x) =) alt = ().
v=0

From here it is seen that also the function ¢(t) corresponds to the series

Yooto a,(,k), which is the Ej-transform of (1.1). If this series is convergent, i.e.,
the series (1.1) is Ej-summable, then () tends to a definite limit when ¢t — 1
and the series (1.1) is A-summable. If (1.1) is |Ej|-summable, i.e., the series

Yo |a7(1k)| is convergent, then by a theorem of Fekete [4] the series (1.1) is |A|-
summable.

2. Summation of Dirichlet’s series by the method of Euler-Knopp
Let the series

(2.1) ap+ay+as+...

be given.
This series is summable by Euler’s method generalized by Knopp [1] of arbi-
trary order k > 0, shortly Ep-summable, if the transformed series

(2.2) i Ak
n=0

where, as before,

1 " /n
k _ —v __ ok
(23) An = 7(q i 1)n+1 E (y) qn a,, q=2"-—1, k>0,
v=0

is convergent. The theory of this summation method is given by Knopp in the
papers already cited, as well as its application to the analytic continuation of a
function given by its Taylor’s series.

In the present work this method is applied for the first time to the ordinary
series of Dirichlet by creating a full theory of this problem. It turns out that the
method in question is a very convenient tool for studying the series

o0

(2.4) Y (n“T”D

n=0

which are mostly used in the applications.
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Theorem 7. Let the series (2.4) be Ey-summable for s = sg. Then it is
Ej.-summable for each s such that ® s > R sg. Moreover, the Ej-transform of
the series (2.4) is a holomorphic function for ® s > R sg which is given by the
exTPression

1 00 0 q + 1 n+1 €t 1
2.5 = ps—s0—1\ " gk dt
@5 1) F(s—SO)/o 2 ”<q+et> etq

n=0

where "
Sh=3 Ak,
v=0

First, the substitution of s by s — sg allows to suppose that sgo = 0. From
(2.3) it follows that

a, = (—1)" n 3 NI ﬂ Y k
(26) v= 0 e () () A
Let
(2.7 > Akis)
n=0

be the Ej-transform of the series (2.4), i.e.,

1 " /n
k(o _ _
(28) An(S) = W Z <V> qn V(V + 1) s(ll,.
nu=0
Then, substituting of a, by its expression from (2.6), one obtains
n n 14 "
q n _ v g+1 k
o= () ZooC)e 2 () (57) 4
g+1) = v A0 \M q
and the exchange of order of summations gives that

o (G v () S ) e

p=0 v=p

By taking in view that
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and by setting v = pu + 7, one gets that

o= () S C) (52 S (e

n=0 7=0

But if ® s > 0, then

1 o
1)"5 = s—1_—(u+7+1)¢t
(p+7+1) —I‘(s)/o t° e dt,
ie.,
(29) 0= () S () ()b
at1l/) = q Iz
where

Thus the representation

(2.10) Ak (s)

() B o) () [

is obtained. From (2 8) d( 9) it follows that

S0 () S (5 o

n=0 n=0 u=0
m m
+1\* n q "
-2 (50) L () () ot
MZ%M - nZM 1) s

21
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By setting n = p + 7, one gets that

> An(s)
n=0

B S Cata] (L W
“:OF(S) 0 T q+1

7=0

The use, for the sake of simplicity, of the notations

(2.11)  Lyu(s) = F(ls) / Ootsfle*w)tmz_f <“ j7> (HLJT (1—e Y at

0 7=0

leads to the relation
(2.12) Sh(s) =D An(s) =Y Al u(s).
n=0 pn=0

Recall that if S¥(s) denotes the sum
Sn(s) = Af(s) + Af(s) + - + A5(s),
then (2.12) yields
(2.13)  Sp(s) = S§hm,0(s) + SThm,1(s) + - + Sp_1hmm—1(5) + Splon,m (s),

where
hmi(s) = lmﬁ‘(s) — lm7i+1(8), 7= 0, 1, 2, e, — 1.

It follows now an application of a theorem of Toeplitz. This theorem says
that if it is given an infinite matrix (ay, ) which transforms a sequence s, into

the sequence
[ee]
ln = E AniSi,
i=0

then, the necessary and sufficient conditions which ensure that each convergence
sequence s, to be transformed into convergent sequence t,, are the following:

1) Y20 lan <M, n=0,1,2,...,

2) limy, 00 @n; = a; to exist for ¢ =0,1,2,...,
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3) limy 00 D iog Gni = A to exist.

Then,
[o.¢] o
77,11—>H;o tn = (A - Z ai> nll_}fglo Sp + Z Sia;.
i=0 i=0
It is easily seen that if Rs > 0, then the term S¥ [, . (s) in (2.13) tends to
zero when m — oo. Indeed, by assumption S,]fl tends to a finite limit and

_ 1 > s—1_—(m+1)t
linm(s) = F(s)/o t* e dt

obviously tends to zero when m — oo.
It remains the theorem of Toeplitz to be applied for the expression

SERm.0(5) + S¥hmi(s) + -+ % 1 hmm_1(s).

From (2.11) it is immediately seen that if s > 0 and p is fixed, then I, ,
tends to the limit

(2.14)  lLu(s) = ﬁ /OOo ts_le_(”+1)t§;) <“ JTF T) (1— et <qq?)T dt

| A noa \ !
B A e L dt
o < (A-e )q+1>

_ ! /Ootsl a1\,
RO/ ey

when m — oo and, hence, hy, ;(s) tends to h; = l;(s) — lj4+1(s). Since

m—1

Z hmi(s) = lm,o(S) - lm,m(s)a

1=

the left side tends to

1 > o 1q+1
lo(s) == [ ! dt
Ot [

when m — oo and from (2.14) it is seen that ho(s) = ly(s).

It is at hand now to be studied whether the condition 1) of Toeplitz’s theorem
is fulfilled, i.e. whether the sequence

{Uhm,o ()] + [hm1 (8)] + -+ 4 [hmm—1(8) [zt
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is bounded. To that end the function
m—
Z <M + 7 ) r

has to be considered. It is easily seen that

1 a , 1 a
Y 1 ey = =9
(I4+z4+2"+---+2") A da

= i (1—z")(1—2)""}

9u(2)

and Leibnitz’s rule yields that

where u(z) =1 — 2"t v
The general term in (2.12), i.e.

is equal to

_i<”> (m+Dm(m —1)...(m —k+2)z"T1=F (4 — k).

! \ k (1 — z)u—k+1
1 ! (m+1)! (1 — k) ymtl—k
T R —R) (m—k+ T ek

m 4 1 szrlfk
:‘< k ><1—z>~k+l’

and hence,
o _
m+1 ZmA1=k
2.1 = — _
(2.15) 0u(2) kzo( e
If q
=(1—-et)——,
( ‘ )q—i—l

then [, ,,(s) can be written as follows

[ — L/Oo ts—le—(;H-l)tg (z)dt
T (s) Jo : '
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From here one gets that

1

Ponu(s) = 0 /0 5 lem e g, (2) — e~ WD L (2)) dt,

whence

1 1 _
|ham,u(8)| < ‘F(3)|/0 t7 e e Mg, (2) — e (“+1)tgu+1(z)|dt, o= Rs.

Then,

(2.16) |hm,u(3)|
1 00 - H m+1 szkJrlefut
< Al — it
—u%$|ﬁ ‘ Z% o)L=z

1 00 U_lef(quQ)t m+1 -
+|F(8)‘/0 t 1—=2 </.L—|—1>Z dt—Oz“(S)‘i‘ﬁ“(S),

(1—2)et -1
1—2z

and hence,
m—1 m—1 m—1
> Nhmu($)] <D auls) + Y Buls) = P(s) + Qum(s)
n=0 n=0 p=0
Further,
m+1 _
0. 1 m + 1 m—p
dt
()] = 75 ‘/‘ §j R (H+1>Z
1 —t m+1
/OO T ML et ot gy
s)| 11—z [
/OO to— 1 7t —t N )m+1 Ut
z .
s)]| 1—2
But

g q
=(1—e¢t <—— 0<t<
( 6)q+1—q+1’ < 00,

ie,1—2>(¢g+1)7! 0<t< oo, and hence, for the function

_ _ g qg+et
H=etldtz=etr(1—¢et =
V) =e +z=er+(-e) g =T
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it follows that ¢ (¢) <1, 0 <t < oo. Therefore,
e N L1
s)| D)l

i.e., the sequence {\Qm(s)|}§:0 is bounded.
For the sum P,,(s) one has that

|Qm (s I,

(2.17)  [Pn(s)]

1 Ul,ll—z—etm” m+ 1 ke nt
ST 2 TS

pn=0 k=0
_ 1 /Oo jolgtl =2~ et T (m + 1> pmtl=ke—kt i@t
IT(s)| Jo l—z = = k) (1—z)ptl-k
m—1
_ 1 % o1t mA LN 1k, ke
= t? e e "tdt
TG Jo 2\

1 /oo jo1 m—1 e fm+ 1\ e—mtym+l-k 0
T o 2y )am e
m—+1
‘/ a1—tz<m 1> mA—k —kt gy

TleT (W) dt,

L [ T
Fm )'<\r<s>|/o R AT

Thus it is proved that the sequence (2.16) is bounded, i.e., the conditions of
Toeplitz’s theorem are completely satisfied. But if u is fixed, then it follows that

_ R T e N A
o (s) = lu(s)—lwl(s)_r(s)/ot et+q<q+et> "

hence

Hence, the series (2.4) is Ej-summable for each s such that Rs > 0 with sum
f(s) given by (2.5) with sg =0, i.e.,

1 [ -1 g+ 1\"!
= £ - dt.
/() F(s)/o et+q§S“ (q—i—et
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From the proof it is seen that the Ex-summation of the series (2.4) is uniform
on each compact subset of the half-plane {s : Rs > 0}, i.e., the representation
(2.5) holds uniformly on each such subset of the half-plane {s : s > Rsg}.

From the latter theorem it follows that there exists a real number e;, with the
property that the series (2.1) is Eg-summable for each s such that s > e, and
it is not Ep-summable if s < e;. This number is called, as it is assumed, the
abscissa of the Eg-summation for the series (2.4).

Theorem 8. If the series (2.4) is Ex-summable for s = sqg = o + ity and &
s an arbitrary positive number, then

(2.18) f(s)=0 <%> , s=o+it,

provided that o > og + €.

It can be assumed that sp = 0 and then (2.18) is a consequence of the repre-
sentation (2.13). Indeed, the sequence {S¥}>° , is bounded since it is convergent,
ie., |S¥| < A < oo, n€N. Then,

100 < g [ 2 ()
\ et—l—q q+et '

If t > 0, then

et—1§: g+ e 141 1 g+1
et +q g \g+et S eltggtet ) gt Tt

q—l—et

whence
A o 1
1f(s)] < tt /t"let$dt

\T ) Jo +6 T(s)] Jo ge t+1

Alg+1) /OO “10-1 I'(o)

<=2 o g = A(g+ 1) =

IT(s)[ Jo I'(s)|

The series (2.1) is called absolutely Eg-summable, shortly |F|-summable, if
the series (2.2) is absolutely convergent.

Theorem 9. If the series (2.4) is |Ex|-summable for s = sg, then it is |Ey|-
summable for each s with s > Rsp.
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It can be supposed that sy = 0, i.e., that the series (2.7) is convergent for
so = 0 which means that the series > 02 |A¥| is convergent. One has to prove
that the series > o |A%(s)| is convergent provided that R®s = o > 0. From
(2.10) it follows that

|45 ()]

1 4\ gk (9NN [0 e —tyn—
§|F(s\ 751 > 145 ) L 1o e (Dt (] — eTtynTh gy,
0

Ho

whence, as before,

> 1AL(s)
n=0

|Z\Ak‘/ o1 —(;H—l)tz <Mi7>(1—e_t)T <q%>7 B

e

0
r
0 T q+1
7=0
0 q—i—et
</ R / t”l—ti(ﬁl)t dt
0 q+e 0 qg—+e

<(g+1) /OOO 7 le b dt = (¢ + 1)T(0).

Hence,

i.e., the series (2.7) is absolutely convergent when Rs > 0 and thus the theorem
is proved.

In this case, i.e., when sg = 0, another representation can be given to the
function (2.5). First, from (2.11) it follows that

ey ”t0—12<“j7><1_e—t> (%) @<a+yrd.

[, pu(5)] <



Summation by Eulers transform of the series of Dirichlet . .. 29

Let € be an arbitrary positive number and A be such that
[e.e]

Z |AF| <&

n=A\+1
and let

o0

A
=3 Al u(s)+ > = Akl = Pua(s) + Quals).
n=0

p=A+1

Then,

I'(o
Quals)] < (g + DT S L4k < =g+ 1)
Further, if A is fixed, then

A
lim P, \(s) =) AFlL(s)
n=0

n—oo
and, hence,
lim Sk Z Ak
n—oo
ie.,

1 1 - g at1 ptt
f(s) ) /0 t ;0 i\ g1 e dt, Rs>0

If sy is not equal to zero, then

1 S—s0— q+1
f(S):m/ t IZAk 80 < >dt §RS>§RSO.

From the theorem just proved it follows that there exists an abscissa €, for
the | Fg|-summation. That means € is a real number with the property that the
series (2.4) is |Ey|-summable if s > €, and it is not |Ey|-summable when Rs <
€. Since each Ej-summable series is |Ej, |-summable if k; > k and each |Ej|-
summable series is |Ej, |-summable when k; > k, as it was already established, it
follows that e;, <'e; and e, <'ex, k1 > k.

Theorem 10. Ifex > 0, then

log |AF + A} ... + Ak
(2.19) e = limsup oglAg + AT+ F Ay,
n—00 log n
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Let a be the right-hand side of (2.19) and let @ > 0. Then for each € > 0
there exists K = K (g) > 0 such that

>4l
v=0

A consequence of the last inequalities is that if ®s = ¢ > a + ¢, then the
series

(2.20) = |SF < K(n+1)*", n=012,....

o0

1 [ et —1 g+1
2.21 o1 k dt
(2:21) F(S)/o e“rqzs“ <q+6t>

n=0

is absolutely convergent.
This series is majorized by the series

1 00 et -1 o0 q+ 1 p+1
o1 + 1)t [ Z—— dt.
ol 2 5

It is easily seen by induction that if |z| < 1, then

1

oS
Pr" = R = — =1,2,3,...
;nl‘ p(u), u 1_$7P 3 &y Dy )

where R, is a polynomial with deg R, = p+2 and R,,(0) = 0. Hence, if p > o+,
then

But

and hence,
et —1 g+1\"!
to'fl 1 a+e
€t+q§(”+ ) (q—l—et)

=07 P ) = O(t7 %), 0,
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i.e., the integral in (2.17) really exists when o > a + «.

It is at hand now to be proved that S¥(s) tends to the sum of the series
(2.21) when m — oo provided that s > o + 2¢ and it is sufficient to establish
this when s is real. The starting point is again the representation

I 1
lm,m(S) = ?8)\/0 t 16 ( +1)t dt = m

From the last equality it follows now that lim,, ;o0 S¥ lmm(s) = 0 when
Rs > a + ¢ and as in the proof of Theorem 1, one has to establish that if
Bnu(8) = (u+ 1) % hy, u(s), p=0,1,2,...,m — 1, then the sequence

(2.22) {Tn0 ()| + (1 ()] + -+ [om,n—1 ()| Yoo

is bounded for each s with Rs > o + 2¢.
From the inequality (2.16) it follows that

m—1 m—1 m—1
223) 3 ()] < S0+ D Fau(s) + 3 (n+ 1B, (s)
u=0 u=0 u=0

Further,

ma+25 [ee] tafleft
<

L)l Jo 1-2

Qu(s) < mTEQp(s) (7t + 2™+ dr,

1
where z = (1 — e_t)L. Since 1 — 2 < ——,
q+1 qg+1

. (q+ 1)ma+2a /oo 1 e—t + q m+1
()< MM [ e c *4 dt.
)<L ¢ (Tra

1
If A= ————, then the right-hand side can be written in the form

e(q+1)
Qum(s) < QW(s) + QP (s),

where

2e A ¢ m—+1
A1) (o) — (¢ +1(m+1)F / 01—t <€ + Q> &
O (5) ()] AL ’
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_ —+1
0 (s) = U Dim+ )7 [ e (5 )
" IT'(s)] A 1+¢q
Since
e t+gq - e tgq
1+4qg = 14g¢

<1, A<t <oo,

from the inequality

50) gy < @HDT@) oo (e )™
A < Cgom sy ()

it follows that lim,,_ oo @g)(s) = 0 for each s with ®s > 0 and, hence, the
sequence {Qg)(s)}%zo is bounded when $s > 0.
It is easily seen that if 0 <t < 1, then

—t
i O VS
1+g¢
Indeed, the function
e t+gq
t) = +M—1, 0<t<]1,
() T e

is increasing and therefore ¢(t) < (0), ie., ¢(t) <0, 0 <t <1.
Further, since A < 1/A,

_ 1/A
QW(s) < (m+41)>t2 / o e (1 — At dt
0

1/
< (m+ 1)a+25/ ta—l(l o )\t)m—l—l dt
0

1 —o a—+2e
— )\0/ to'fl(l _ t)erl dt = A (m + 1) F(U)F(m + 2)’

whence
Q4 (s) = O((m+1)***(m +1)77) = o(1), m — o0,
provided that ¢ > «a + 2¢.

In a similar way it can be proved that the sequence {ﬁm(s)}ﬁzo is bounded
when Rs > o + 2¢ and then (2.22) yields that the sequence (2.20) is bounded

for each such s. But ¢ is an arbitrary positive number, hence, the series (2.4) is
Ep-summable for each s with s > a.
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Conversely, let the series (2.4) be Ey-summable for s = a > 0, i.e., if

k
50) = g 32 () mtes e
then the series -
> Ak ()
n=0

is convergent. Then the equality (2.7) yields that

4y = (~1)" (g + )" (v + 1)° i(—w(:) (@>”A,’z<a>,

=0
and hence,

1
A=~ E " ay,
+1
(¢+ 1)+t~

) B (e () () s
|

u=0

St (S S () (Do e

n=0 V= K

() S 0) () e meor (" Juer e

7=0

If Aw, A%w, ... are the difference sequences for the sequence {wm }2°_, then

n—p n—p
Z(—l)f( >(u+7+ 1) = A" (4 1),

T
7=0

- () S (252 (e

From here one gets that
k q + 1 a n n— «
Apla) | — A (p+1)
0 q I

and hence,

m n n

ZAk Z<q+1>

n=
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S () 1)

If v is a positive integer, then AY(u + 1)* = 0 when v < «. Hence, in this

case
m min(a,m—p) q v A+ v
k _ k v «
she =3 A 3 (L) ("7 ) A+
ie.,
m—o (0% q v ILL+Z/
sj;(a):zAﬁ(a)Z<?> < ) >A”(M+1)a
n=0 v=0 q
- '~ qa \'(u+v
s ab@X (L) (M)A
p=m—a+1 v=0 1

= Fp(a)+ Gpla), m>a—1.

But AY(p+ 1)® is a polynomial of p of degree a — v and, hence, there exists
a constant L such that

AY(p+ 1) < L™, v=0,1,2,...,a

Since the series Yo ; A¥ () is convergent, the sequence
¢]
m—x
k
- Z Ay(a)
“:0 m=«

is bounded, i.e., \Sﬁl_“(aﬂ < K and, hence,

« 14
[Fim ()] < K1LZ <%) <M j/_ V)Ma_y < Lym®.
v=0

Since in G, () there are a summands, i.e., a finite number not depending
on a and, moreover, |A¥(a)| < Ka, it holds the inequality |G (a)| < Lom®.
Further, the inequality |S¥ | < (L1 + Lo)m® yields that

lim sup og |5y ‘ <
m—00 logm

and thus the proof when « is a positive integer is finished.
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The case when a > 0 is not an integer requires considerable efforts. If p =
[a] +1,ie., o <p<a+1, then it is easy to see that the integral

0o 2 p—1
(2.24) gp(a) = /O (e_t —1+t— % 4.4 (_1)]’ (pt_ 1)'> t—a—l dt

is absolutely convergent. Indeed, the integrand is O(t*~*"Y),p —a — 1 > —1,
when ¢ — 0 and it is O(#*~*72),p —a — 2 < —1, when a — co. After setting nt
instead of ¢, one gets that

1 0 p—1yp—1
029w L (e Cp ) e,
g9(a) Jo (p—1)!

whence

V(i Q) _ L ooefnt o eft vy—oa—1
(2.26) M) = /0 (1= eyt

provided that v > p. Then,

$h- 5 A S (L) ("0 ) A"

n=0 v=0

=0 = q+1
< k — q \' (p+v
14 (0%
+ Y AN <—q+1> ( y >A(u+1)
p=m—p+1 v=0
= Kp(a) + Lin(a) + My (a)
Then,
m—p Ak(a) oo M—H q v N+V
L. (o) = r / <—> < )e(’”rl)t 1—e Hr ot
() ;;) 9(e) Jo ,,z:; q+1 v ( )
m—p A
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where
' u+v q
_ v _ _ t
(2.27) Gup(2) = Z ( 5 >z , z=(1—-¢e" 1
v=p q
ie.,

H 1-v +p—v
m+1 Pilas [+ p ZHFP
1= (") e S () e
0

v=

= gip(2) = 9 (2)-

It has to be noted that in fact gl(m),(z) does not depend on m. Further,

T[>
(2.28) (@) = m/o a1, (““’tgﬁ%(z) dt
1 > oot oy gr = 1D (0) — 1D ()
9(@) Jo A
then
(2.29) ZA’:n LS ZA’“ VAL, (@)
= L) (a) — LP (),
and
m—p—1
(2.30) LY S’“ )AL, (o) + S, (@)1, (@),
WD, (@) =10, (@) =18 (@)
m—p—1
2
(2.31) LP(a)= Y SHa)h®,(a) + S5 _ ()P, (o),
n=0
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Further,
Sk (@) (@) + Sk (@12 (a) = SE_(@)lnm—p
1 o0
=Sk _ < " )— / o lem(m=ptt,p gy
P ) gl

o0
= O(mP) / tpme=le=(m=p+Vt gt — O(m®).

0

For the sum in Lg)(a) it holds the estimate

For h,(%?ﬂ(a) one gets that

1 a1l ity — -
\h,%?u(a)\ém/o e e Mg (2) — e g (=) d

< 1 /Oot—“‘l - i (m ’ 1) S
> € T Na—or 1
l9(a)] Jo e ANV S

—(p+2)t
/ (m + 1) i gy
l9(@)| —z \p+1

:Aﬂ(a)+BN(a)7 M:0>172>"'>m_p_17

1—z—et

11—z

whence

m—p—1 m—p—1 m—p—1 _ _

Yo hG@l < Y0 Au@+ Y Aue) = Apla) + Bu(a)

u=0 p=0 n=0

Further,
1 m— p 1
Em /oot a— (m-i—l) m—p 7(#“'2) dt
a)| = pw+1

1 COtalmp ) 1)
my-l— —l/—|— lt
a)|/0 1—22

37
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But

so that

m—p
Bn=0 <mp+1 / Tty (m _p> zm'fpzp+1e<v+1>t>
0 v

v=1

=0 (mpH/ Pl (g7t 4 )P dt)
0
o) —t\ m—p
=0 merl/ tPae=t <Q+€ ) dt
0 q + 1
0o —t/m\"" P

=0 mo‘/ tp—ae=t/m are dt ] .

0 qg+1

If A€ (0,1) and 7 = —log A, then

(2.32) l—e™®>Xz, 0<z<T.

Indeed, since e=* — Az > 0,0 < z < 7, the function p(z) =1 —e% — Az is
increasing in the interval [0, 7] and, moreover, ¢(0) = 0.
A consequence of the auxiliary statement just proved is that

0 —t/m\ P
Im (@) = /0 pae=t/m <%) dt = O(1), m — oc.

Let mT o0
Ty (@) :/ +/ = J () + I (a).
0

mT

If 0 <t < mr, then (2.32) yields that

g+ e t/m B 1—et/m Y

g+1 g+1 ~ m(q+1)

and the well-known inequality (1 —¢/n)" < e !,0 <t < n, gives that

JW(@) =0 ( / " gtim =)t dt)
0
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o
_0 ( / tpaew(m))t) ,
0

q+etm cate’
qg+1 —

If t > mr, then

and, hence,
o0 o
J(Q)(a) < ,ymp/ tpfaeft/m — ,ympmpoﬂrl/ tp*aeft dt.
mT T

Therefore, lim, 00 (2)( ) = 0 and thus it is established that

et m—p—=1 p m—v+1,—ut
fa 1 7t m + 1 €
o ) (" i
1 /OO a1 l—et mfl m+1 m_z_l ZMV e Ht gt
= e _— -
()| Jo q+1 = O A )

1 /OO a1 mzp:l (m + 1) Zmvtle—vt Ut
9@ Jo > Uy )T

1%

m—p—1
< KmPt2 /OO a1 Z <m —-—pP— 1> Sm—k+ptl gy
0 1%

v=0

q p+2 00
— K <?> mp+2/ t—a—le—t(l _ e—t)p+2(z + e—t)m—p—l dt
q 0

00 —t\ m—p—1
< me+2/ tp—a+1 u dt
0 q+1 ’

where K, L are constants not depending on m and then, as above, it follows that

Ap(a) = O(m?).
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It remains the sum
m—p—1

to be estimated when m — oo. Slnce

m—p—1

Y Su@hD,(a)

pu=0

m—p—1
<S Z |h7(fb?u(a)\7 S = Const.,
n=0

it is sufficient to know the asymptotic behavior of the sum

m—p—1

Y h(a)

n=0

when m — oo.
Let 0 < a <1, then p=1 and

_gml(z):z“xujl) <1iz)ﬂ_y+1=ﬁ—h

v=0
1 o0 1
@ ()= L [ Tmastane (L
2pte) =~y [ e (u—awl )dt
and . - ) -
(2) - _ —a—1_—(u+1)t —€
M) =~y )T
R
g(a) Jo
Then,
W) ( / - at<q+1>“+2 dt+L/ootae(““)tdt
ol a)| lg(a)] Jo
=0((p+D* H+0((p+1)* ) =0((u+1)*"),
ie.,

W] < H(p+ 1)@,
where H is a constant not depending on m. Hence,

m—p—1 m—p—1

Yo Ihu@l= Y O((p+1)*7") = 0(m®).

MZO H’ZO
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From (2.27) it holds that

1-
—gpu(2) = u+1 Z P (1= 2)"

1
and replacing e~f by 1 — 4 z, one gets that the function

f(z) = _gp,u(z) + e_tgp,qul(Z)

becomes .

f(Z):W
S (1) )

(1—2) u+2 Za%”'z

then f(z) can be written in the following form

If

f(2) = ¢(2) + 9(2),

where

z
w(z)zg(l_qurQ Zall«yVZ)u
Zp_2
=22
q v=0

= + 14 +1
Sevur((212)- L) -5
= p—1—r7 p—1—71 q
The Maclaurin expansion of the function f begins with a monomial of degree

p and that of ¢ begins with a monomial of degree p — 1 and therefore, that of ¥

has to begin with a monomial of degree p. But ¢ is a polynomial of degree not
greater than p, i.e.,

(2.33) B(2) = aup?,
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where
p+14+p\g+1 _
23 o= (") o, o
p— q
The function ¢ is, in fact, the reminder of Maclaurin’s formula for the function
(1 — 2)~#~2 multiplied by £ and then, the Lagrange formula implies the equality
q

()= WEDEA3). . (n+p)eP

(p— 1)lg(1 — fz)ptrtl 0<<1,
whence
(p+2)(p+3)...(n+p)?
2.
(2.35) 0(z) < TR
Further,
hg?u(oz) _ / oo~ (Dl (1) dt + 1 / (1)
o) J 7@ Jo
= H{"(a) + H{? (o)
Then,
HP (o) < Ki(u+ 1)P—1/ a1 ,—~(ur1)t g
0
= K1(H + 1)0171 /0 p—o—2,—t gy KZ(,U N 1)0171'
Further,
~ dt
(1) p—1 p—o—1_—(u+1)t @
‘Hﬂ ()l sl /0 ! ‘ (1 —z)ptl
o L1\ 1
s+ 1) : q+et (n+1) TSy

=O0((p+ 1)), K;=Const., j=1,23,

hence, h,(i?#(a) = O0(p*1), ie. \hg?ﬂ(a)\ < Kp® !, where K is a constant not

depending on m. Then

Do @)= 0((u+1)*"") = O(m®)
p=1 p=1

and thus the theorem is proved.
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Theorem 11. If ex is a negative number, then

log |Af + AF  + ...
(2.36) er = limsup 8 1A + A |
n—00 log(n + 1)

i

where

1 " /n

k —

Ap = 7@ Ty E <V>q" Yay,, n=0,1,2,....
v=0

Let B be the right-hand side of (2.36), then for each ¢ > 0 there exists
K = K (g) such that

AR+ AF L+ AE L+ <K+ 1) n=0,1,2,3,....

Let —a = B+2¢ < 0 and let >0 A¥(—a) be the Ej-transform of the series
(2.4) for s = —a. Then,
Aj(—a) = AR (B +2)

g \'~=(a+1\" [\
=(—— S AFAT TR+ 1),
<q+1> Z( q > <u> WB )
n=0
Let at first a be an integer. In such a case if n > «, then

o) £ (5 Qe

p=n—o K

q
=0

7=0 q

But since 7 is fixed, then

<n> AT (n—74+1)% = g,n®+0(n* 1), n— oo,

’
and hence,
N N N
S Tor =00 3 AL+ 30 O(14L_ 0
n=m n=m n=m

N N
1
_ E -1,,B8+ey _ E
_gTQva-i-n:mO(na n 5) _gTQn’N+n:mO <n1+5> .
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Further, if R = AF + Ak + ..., then

n

N

vaN = Z na(RnfT - Rn7T+1)

n=m
=m*RE 4+ (m+1)%—m*)Rypy1_r+...
HN) = N = )Ry, — N*Ry o
But since |RE| < K((n+ 1)) and n® — (n — 1) < K1n®'n=1,2,...,

‘Q < K 1 + 1 + L + + L + L
m,N 2 me (m+1)1+5 (m+2)1+5 N1l+e Ne |’

whence it follows that the series (2.4) is convergent for each s such that Rs > £.
Let now « be not an integer and let p = [a] + 1. If v > p, then

1 [ee]
AV (n®) = —— / tmo—lent(1 — 7ty gt
0

Further, under the assumption that n > p it holds the representation

o= () B (22 (0

n=0
g \" < g+ 1\" . (n _
+<—> > (—) AR A (4 1)
qg+1 e N4 7
- Cn(_a) + Dn(_a)
Then,
I (—a) = Z Cn(—a)
n=p
1 o~a( ¢ \"" & 1 —(ut1)t ¢
= — —_— A / T e W 1—e " Hdt
9 );“()(q—i—l) “(u) 0 ( )
1 & i g \""(n 1 —(ut1)t ¢
L S ()Y [Tt e
o
gla) = " S \at1 ) Jo
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m—p 14 o0
A <q " 1> /O tfaflef(,qul)t(l - eft)u dt

H’ZO v=p

m—p

L
g(a)

1 =

" @ =

By taking into account the numbers L,(%?p(oz),lg?“(a), h%?“(a),j =1, 2, de-

fined by the equalities (2.28), (2.29), (2.30) and (2.31), one obtains that

[e.e]
/0 t_o‘_le_(“ﬂ)tg#,p(z) dt.

m—p
Jm(_a) = Z Z A}]il’f(”r%}l 1(71?p(a) - Lg?p(a)v
n=0
m—p
L (@) = D (Ry — Ryl (a)
pn=0
) <« 5 40 )
= Rolm,O(a) - Z Rﬂ(lm,p—l(a) - l%,),u,(a)) - Rm—P'f’llm,mfp(a)
p=1
) ~ 5 () )
= ROlm,O(a) - Ruhm,u—l(a) - Rm—P+1lm,m—p(a)>
pn=1
as well as
m—p
L () = Rolyy) Z Ruhiy), -1 (@) = Rinpiilyn (@),
Then,

1 2
Rin—ps1lin (@) = Ron—pialinr (@) = R bnm—p (@)

p 00
m q 1 —a—1_—(m—p+1)t —t
= Rp— — | —= e p 1-— Pdt
p+1<m—p> <q+1> g(a)/o ‘ =€)

= m’éuremp/OO tpmo—le=(m=pt1)t dt>
0

= O(mPTemPm =P+ = O(m?) = o(1).
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Further,
R, [ _._
Rol (@) = RollZh(a) = Rolma(a) =~ [~ 407 1e g, (2)at,
’ ’ g(a) Jo
where )
= 1— zmpt
gop(z) =) 2= e P
v=p
_ (1 —t)p q p q+1 (1 B Zm—p-f—l)
B ‘ qg+1) qe 'l
whence
: Ry > —a—1_—t
lim —— t e ‘gop(z)dt
m—o0 g(a) Jo

g+1 q p/ool —t dt
= R ta 1_6 p .
gla) <q+1> 0 ( ) ge t 41

Since |z] < % <1, l(l) ,.(a) tends to zero when m — oo provided that p
q
(2)

is fixed. Moreover, as it was already mentioned, l;,/,(c) does not depend on m.
Hence, the series

(2.37) ZR W, (@), b2 (@) =12 () — 12, (a),

has to be studied whether is it convergent. Since o < p < «a + 1, |h£,2z?“(a)\ <
KuP~? it holds the inequality |R,, hm)u ()| < LpPrepp=2, But a = —f8 — 2¢,
hence, f+e+p—2< f+e+a—1=—1—¢, ie., the series in (2.37) is absolutely

convergent which means that there exists

m—p
: (2 _
Jim_ > Ryuhy,,), () = B(a).
pn=1
It remains to be studied the asymptotic of the expression

m—p
= Z Rﬂhi}b?u—l(a)
pn=1

when m — oco. To that end it is used the representation

p—l m+1-v —t
(1) R S SR o U o AW T P
) = i [ ZO< v )T T
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1 m + 1 o0 a1l 7( Zm—l—l—“
_ t @ ,U«+1)t7dt A _B '
9(e) < I ) /0 ‘ 1—2 m”“(a) mnu‘(a)

Further,

<m+v:((m+mmm—UmW%m+D <m—%

I m+l—p(m—p)...(m+p—1-—p)\ pn
and if v = —f — ¢, then

pWlm+1—p)m—p)...(m—p+1—p)>p(m—p+1—pP

Since p > a = v —

g, it follows that p > ~ and it is easily seen that if
1 < pu < m, then

m—p m—p —

1 B+e o) m+1—p
D | RuBul(e) K37 (”” )”— | et
- =\ Jlg@l o —z

— +1—
0

1 m—p+1l—p) 1—2

1S9 m—p - +1—
< KQmerl'y/ tfozflef(qul) Z (m p) zm Iz i@t
0

] " 1—=2

o0
< KqmPti= / %z 4 e HmP gt
0

—t\ m—P
= KymPt17 /OO ot (LT° re dt.
0 q+ 1

But it was already established that

00 —t\ M—P
1
(/t%%4<““ > ﬁ:O<———O
0 qg+1 mp—at

and since v —a = —f —e — (= — 2¢) = ¢, it follows that

m—p

1 1
Z R, By, ,(a) = O <mp+1_7W> =0 < E) =o(1), m — oc.

m
p=1

It remains now the behavior of the sum

m—p
Su(@) = Y Apu(a)
pn=1
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to be studied when m — oo.
q 2q 1

Sincel—z—et=(1-et)——<—-t 0<t<oo and 1—2>——,
qg+1 " qg+1 qg+1
it holds the inequality

oo m—p p—1 m+1—v
— —ut m—+1 z
s <10 [T S 2 ("))
pn=1 v=0
Further,

m+1—v

o X tuil m+1\ =z
() < K o “eH S
Smla) < 5/0 " ;” ‘ ZO< ’ )(1_2)“_th

m—p—1 m—p  _
:K5/Oota Z <m+1)zm+1y Z e pt dt
0 = v i1 W (1 =z
m—p—1

[eS) m-+1 Zm—l—l—l/ m—p—1 g>\
_ K5/ =3 < >e(u+1)t7 S
0 — v l—z &~ (k+14+X)
—t

Wheregzlc;, 0<g<l.
—z
Since the sequence {(v + 14 X\)77}52 is decreasing and, moreover,

n

1— n+1 1 1—
Ygte <= ——— <,
A=0 N

g 1—g 1—z—et

M=Const., v=12,..., n=1,2,..., 0<t< o0,
by a theorem of Abel,

m>p+1, t>0.

Then,

00 m—p—1 m+ 1
Sm(a) < Ke / ety ( )(V—i—l)’yszrl”e(”Jrl)tdt

14
0 v=0

and taking into account the inequality

1 —-p—1
(V+1),Y<m+ )<mp+27<m P >, m>p+1,

v v
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one gets that

o m—p—1 m—mn—1
Sm(Oé) < KGmp—|—2—'y/ t—a—le—t Z < p )zm—l—l—ue—l/t dt

0 v=0

o
< K7 mP”‘”/ tmotPtle=t (4 emtymPl gy
0

o'} —t\ m—p—1
= K7 mp+2’7/ tfa+p+1e—t <q te > dt
0

:O<mp+27 1_>:O< 1_>:O<i>:o(1), m — 00,
mpt2—a my— me

and thus the first part of the proof is finished.

Let now the series (2.4) be Ei-summable for some s = —a < 0, i.e., the series
o
(2.38) > An(-
n=0

k pr— J—
Ap(—a) = q+1n+12(> a(v+1)% n=01,2...,

is convergent.
Further,

1 " /n
k __ n—v _
An_i(q—i—l)”*'l g <V>q a,, n=0,1,2...,
v=0

- HEHZOAZ%—a) () (7)o (" e

v=

_ iAk(_a) <n> < q >n,u 1 /OO taflef(,qul)t(l _ eft)nju dt.
=" rn) \qg+1 L'(a) Jo

Moreover,

ZAﬁ:ZZAZ( gnu+ZZAk ) gn,u(@),

n=m p=0 u=mn=p

then
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where

and
v 1 o v—p LT

Sup(0) = 3 gnla) = m/0 ot <u+l>tz< )z it v

n=p 7=0

The following equalities

o0
: _ _ a—1_—up+1)t
(2.39) Vlggo dypula) =du(a) = —/0 t“"e A=t

1 o0
lim 6, (o) = lim —/ ol g —
0

V—00 V—00 F(a)

are immediate consequences of the preceding one.
Let now I, ,(—c) be defined as

Lno(=a) = Y Y Au(=a)g(n,p)(a), v=m,

p=mn=p
then ,
I (—a) = Z Aﬁ(—a)(sy,u(a)
u=m
v—1
= _Sfm—l(_a)(su,m(a) + Z by (@) = by pr1(a), v=>m+1,

u=m

where

Sm-1(—a) = Af(—a) + Af(—a) + - + Ay 1 (~a).

Further, the series
(2.40) S S (=a) (6(0) = S (@)
u=m

is absolutely convergent. Indeed,

L (% a1 e l—z—e
5#(06) — 5M+1(Oé) = m o t (& m dt
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00 1 _
_ / a1 = (ut1)t g+ D\ 1-et dt
0 q+ et 1—=z
> 1
- o, —(ut1)t -
o[ et nar) =0 (o)

—a)}52,, is bounded since the series (2.38) is

and, moreover, the sequence {Sﬁ(

convergent.
A consequence of the convergence of the series (2.40) as well as of the equalities

(2.38) is that if m is fixed, then

(241)  lim L(@) = =S5 (@)dn(a) + 3 SE@)@,(@) — ur1(a))-

V—r00
p=m

urn(@)) = 3 85(0)(3u() — b ()
u=m
v—1

<| 3 @) b))~ 3 St —Spr1 (@),

p=m-+p p=m+p

hence
liﬁsipAm7y(a)

m—+p—1 m+p1

> Sha)Sunla) = dupss(e) = 3 shia (@)= 8o (a)

and letting p — oo, one gets the equality (2.41).

Further, the sum
Z Z Au(@)gn (o

n=m pu=0

is to be studied when v — oo provided that m is fixed. Since

zy: g (a) = L /OO ta_le_(#'i'l)t zy: n 2NTH
= o L(a) Jo H

n=m
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and moreover, the series
o
> (””) p=(1-e)—L,
7=0 'u ¢+ 1

is uniformly convergent in the interval [0, 00), it follows that there exists

v

L,u,m(a) = Vlggo Z gn,,u(a)

00 (e}
= / a1 o= (ut1)t Z (m + T) THm—p gy
0 —0 H
and hence, there also exists
(2.42) Jm(@) = M Jym(e) =) Ap(e) Lym(a).
n=0

Let

fm,u(z) _ Z <m + 7') ZT“F’H’L*,U, —
A

7=0 H

then, as it is easily seen,

1 a* X 1d _
Fmu( )_M!w Z P = #!@(Zm( —2)7h)
=m—u
1z
==Y m(m—=1)...(m—p+1)z"P(1 -z
S
:ipgw A
o I-=2)p+1-p
where
P ~m(m—1)...(m—-p+1)
e =1 (p—p 1)
p(p f—p
and hence,
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Since Aﬁ(a) = Sﬁ(a) - Sﬁfl(a), the equality (2.42) yields that

(2.43) Im(a) = Sy, (a +25k (@) = Lyt1,m(e))

Further,

. ) o S,]%(OZ) 00 a—le_(m+1t s m4+ A >\
(2.44) S (@) L, m () () /0 ! )\z:;]< >

o Sﬁz(a) > a—le—(m+1)tL = # m — 00
- T ), ! <1—z>m+1‘0<<m+1>a>’ o
)

For T'(o)(Lym(a) —Lut1m(a)) one gets that

L(@)(Lym (@) = Lyg1,m(@))

p

m
_ o~ (D)t
_/0 p ZD p+1dt

ptl m—p

_ a—1,—(p+2)t
/0 t ZDmqul — z)p—ptl dt,

whence
L. m(a) — Ly, m()
1 >~ 1~ (ut1)t et ¢ zmP
= — ¥ e Dbt
o/ pz:o P
1 > 1—(u+1) i 2P
- / tote=(k ) dt
L'(a) Jo = mu+1 (1 — z)n—p+2

_F(Oé m,pu—+1 1—

and hence,

(2.45) Z SE)T), + Zsk )T () + Zsk )T

L[ it ey purr 2700 (1) @) 3)
—) 0 t e D dt Tm,ﬂ(a) + Tm,#(a) + Tm,u(a)v

53
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Further, N
TS ()T (a)
0 1oz —et Tl Zm7P
_ a1 "27C¢ Sk(a)D% A (5 o V2P 1
© o ql—z—et A k ZmP (n+1)t
_ a—1- ~ = p - 0 o
- /0 P Y Y Sk D e
p=0 p=p
But 1
m— —(p+1)t
3 e
{mm—=1)...(m=p+ 1)} > L s T
p=p
e—(p+1)t mp-l 1 e M
S ol-z = pHNe+HA-1) (A1) (=)

the sequence

{ : X
P+Np+A-1)...(\+1)f,_,

is decreasing and, moreover,

" e 1—2z
Z(l_z)A<1_2_€7t, n=0,1,2,..., te(0,00),
A=0

a theorem of Abel yields that

m—1 —(p+1)t —(p+1)t
(& m (&
> Dm,ﬂi(1 —y < ( >7 t € (0,00).
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For J,S,?)(a) one gets that

(2.47) J3) (@)

m

= L /OO o1 1 Zm:Sk(a) M) 1= ()t gy
I'(a) Jy 1—2 ’ w1

=0

00 m 1
=0 / to‘_le_tz R G | = O <—a> .
0 m

p=1

(

It remains J\; )(a) to be estimated. From the inequality

pr —DP = P
T T (i D (p—p 1)

> 0,

it follows that the sequence {D%“}zo:l is decreasing and since

—t

16 <1, 0<t<oo,
—z
—ut o9
the same holds for the sequence {67} , hence,
(1 - Z)“ y,:l
m—1 _“t —pt m—1
P € € p
Z(ng,u o Dm,,u-i—l) (1 — Z)” < (1 — Z)p Z(Dgl,u - Dm,u—i—l)
p=p p=p
e Pt m\ e Pt
< D? = —_.
(L—zp ™ (p>(1—2)p
Then
» o 1 m—1 m
2.48 J) =0 / talet mPePt gt
(248) D) =0 [ty 3 () e

=0 </OOO t ez 4 e ™ dt) =0 (%) .

As a consequence of (2.45), (2.46), (2.47) and (2.48) one gets that J,,(a) =
1 1
O ( —; | and then from (2.43) and (2.44) it follows that J,(a) = O <—>, ie.,

m moe
the proof of Theorem 11 is finished.
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Theorem 12. Let €y be the abscissa of the |Eg|-summation for the series
(2.4). Ife, >0, then

log(|AR| + |A¥|| + ... | Ak
(2.49) £ = lim sup og(JAg| + [Af[[ + - - - [A7])
n—o00 log(n + 1)

)

where {AE}2° ) are given by the equalities (2.3).

The proof proceeds as that of Theorem 5. More precisely, it is based on the
representation

(2.50) zm: Ak(s) = i Al u(s)
p=0 =0

where

o
Al ol 1
()= q+1u+1;)<>q A

_ 1 = oot f(u+1)m_“ TSV A T
zm,u(s)_‘r(sﬂ/ot ¢ > L Ja=e™ T+ 1 dt,

v=0

provided that o = R8s > 0. Then (2.50) leads to the inequality

m 1
k 1 1 q+1 Hr
2 14l 8|—\P “'/ < +et> “

P B/Oota_let—1<q+1>“+1dt
~ D(s)] “Jo el +q \g+e

o0 m—|—1
+ B ot < g+1 > = IV (s) + IP(s),

where

= |A§| + 145 + ... 1AF], m=0,1,2,....

Let a be the right-hand side of (2.49) and let & > 0. Then from (2.49) it
follows that for each ¢ > 0 there exists K = K (¢) such that

B, <K(p+1)**, p=0,1,2,....
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Then

00 tya+te—1
L) (s) < Kl/o (et — 1)ote

and the integral in the right-hand side is convergent provided that o > o + €.
For the integral Lg)(s) one gets that

I (s) < K. ma"'e/ o1 (q > dt
m ( )— 2 0 q—l—et

1 m+1 00 m—+1
+1 +1
= Kom®Te / ot 4 dt + / o1 4 dt
0 q+et 1 q+et

Since

1 1 t
a < a Sl———, 0<t<1,
g+et T qg+1+t q+2

it holds that

1 m+1 1 m+1
1 ¢
/ o1 ((4F dt < / (- dt
0 q+et 0 q+2

1/(q+2) 1
=(q+ 2)"/ o N1 =)™t at < (¢ + 2)"/ 7l — )™t at
0 0

T()D(m + 2)

=(q+ Q)Um,

and hence,

a+te ! o—1 q+ 1 m a—o+e
m t dt = 0O(m )=o(1), m — oc.
t
0 q+e

Further,

+1
m‘”+s/mt"1 IELN gy < ete (41 m/oot"lq“dt
1 q+e qgt+e 1 q+e

and since

1\ [ 1
mate (q::: > / t”_l% dt =o(1), m — oo,
qgre 1 qgre

it follows that I\ = o(1), m — oco. Thus it is established that the series (2.4) is
| Ex |-summable for each s such that ¢ = Rs > «,
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Let now the series (2.4) be |Ej|-summable for s = a > 0, i.e., the series (2.6)
is absolutely convergent for s = a. If « is a positive integer, then the inequality

B, (o) < émﬁ(a)\ng ("I (L) vt e

and the fact that AY((x + 1)*) = 0 when v > «, leads to the asymptotics of
BE (a) when m — oo, namely that BX (a) = O(m®).

If « is not an integer and p = [a] + 1, i.e., @« < p < p+ 1, then (2.25) and
(2.26) yield that

where
m—p+1 p—1 [t q v
W= 3 X (“T) (L) 1A
n=0 v=0 q
= Y Iy ("7 (L) o]
p=m—p+2 v=0 I
and
m—p+1 m N
=3 1l (") (L) e e
= = v q—+
But

p
) e
[(a) =~ S |4k (o) / t-a-le=Grte() _ c~tP P, (1) dt,
0

n=0

Pmm(t):mip<u+p+y> (q%y(l_e_t)y

v=0 ®

and since

<“+p+”> <K(u+1)p<“+”), n=0,1,2...,
7 7

it follows that

m—p+1

(o)
L(e) < Ky Yo (n+ DP|45(a)] / e W1 — e TPQy i (t) dt,
=0 0
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where
m—p—p ,Uf+V q v .
m(t) = — 1—e)",
Qpm 1) ;) ( 7 ><q+1>( =
and hence,
]1(73)(@) < K, Z(M + 1)p|Aﬁ(a)|/ tfa—lef(lurl)t(l —e P at
=0 0
< Ky Z(“ + 1)p\Aﬁ(a)\/ o=l —(ut)t 1
=0 0
m 00
— 1 Y+ 1)7Af(@)] [ e tar
pu=0 0
ie.,
< Ksm® ) |Af(a)| < Kym®.
pn=0
Since

(“ * ) A1+ 1] = O 1) = O(u®),
1

it follows that
I (a) + I (a) = O(m*), m — oo,

and thus the theorem is proved.
Theorem 13. Ife; is negative, then

B . log(|An| + |Aps1| +-.2)
2.51 =1 .
251 L )

Let, as in the proof of Theorem 5, 8 € (—00,0) be the right-hand side of
(2.51), € > 0 be such that 8+ 2¢ < 0 and —a = 5+ 2¢, i.e., @« > 0. Then there
exists a positive K = K () such that

|Ap| + [Apt1| + [Ango| + - < K(n+ 1) n=0,1,2,... .

Further, let as before, Y°°  A¥(—a) be the Ej-transform of series (2.4) for
s = —a and let a be an integer. Since A" 7#(u+1)* =0 when n — p > a,

Ak (—a) = (q%l) 3 (Z2) (2) o ve - 3 (),

p=n—oa H A=0
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where

A
() _ Ak 9 NN AN a
e = by (1) (D)2 as e

Let R =|AF| 4+ |AF ||+ ..., then, since

n

O

) (n— N AR | < Kol ARy |(n— A,

it follows that
N+m

> (@)
n=N

< Ko {(N — N*Ry_» — Ry-xs1) + Z(N + v =N (R yon — Rz+u+1>\)}

v=1

— Ky {(N—/\)aRﬁf\;_)\—kzn:Rﬁ“wl,_)\((N—ku—)\)“— (N+v—1 —)\)O‘)}

v=1
— Ko R i (N +m— N2

Since RI; = O(p°*t) and (p+ 1) — p* = O(p*~1),p — oo, it follows that
Hmy—eo(N — A)*RE_ =0 and imy—oo(N +m — A\)*Ry4m—x = 0, hence

o0 N o 1
S I (@) < Ka(N = \)*Ry_ + K3 ) sy
n=N v=1
That means the series > 7 | |J7g)‘)(a)| is convergent for each A =0,1,2,...,«
and so does the series Y °° | Ak (—a)|.
Let now a be not an integer. Then,
L) S LY AL (n+1)°
n=0
m m
<Ly (R =Ry )(u+1)* <Ly Ri((p+1)" = p®)
u=0 p=0

Ly{ RE+ Z Rﬁ((u +1)% — %) — RF (m 4+ 1)
pn=1
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But since Rfj = O(pP*¢) and (u+1)® — p® = O(u®=1), it follows that
G|
I$)=0 | Ri+Y  —= | =0(1), m - oc.
1
p=1

In a similar way one gets that Lg)(oz) as well as L(,%)(oz) = O(1) when m — oo

and, hence, the series (2.4) is |Ex|-summable for each s such that Rs > 5.
Let, conversely, the series (2.4) be |Ej|-summable for s = a < 0, i.e., the
series (2.29) is convergent. Then, taking into consideration that
1 1

[o¢]
1) = — t—a—l —(ptr+1)t dt
wtv+ ) = T F(—a)/o ¢ :

one gets that

v=0 =
" n q n—v
= R k
_I,Z;)<V> <q+1> A”( Oé)an,(Oz),
where 1 .
by (a / gl =+t _ —tyn—v g
vl@) = = ), ( )
Hence,
A LA .\
Z Al = Z <V> (?) |Af (=) |bnp ()
n=m n=m v=0 q
A U n q n—v
- Z Z <V> (?) |Al]f( a)‘bn,y(a)
n=m v=0 q
A A n q n—v
! Z Z <V> <? ‘Aﬁ(_a)‘bn,y(a)
n=mn=v q
= JTSJ:,))\(Q) + Jéi))\(a)
But
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A n—v
1 n q /OO —a—1 —(v+1)t —t\n—v
= e t 1-— dt
a2 () <q+ 1) e e
1 > —a—1_,—(v+1)t — (v +7 q ! —t\T
L
<F(—a)/0 t e ;) . ] (1—e"")"dt
1 a1 —(v+1)t q —t ot
= T(Ca) /0 t e 1 Py 1(1 e) dt

1 o0 1\
_ / ga-l (q * > dt
I'(=a) Jo q+e

whence
lim sup B, () < By(a),
A—00
where »
1 > 1\”
By(a) = / ta1<Q+ ) "
I'(=a) Jo q+e
Since
I2\ (o ZW )| Bya(a)

and the series Y °° (| A%(—a)| is convergent, it follows that

o0

I (@) = lim I (@) < 37 AL (~a)[By(a).
v=m
Let Sp(—a) = [Af(—a)[+Af(—a)+ - +|Af(—a)]|, then | A}(—a)| = S(-
Sk (a),v =1,2,... and hence
Y AN (=a)[By(a) = Sp.(~a DI a) = Byyi(a)).
v=m v=m—1

But the sequence {B,(a)}52, is decreasing and, moreover,

o0
Bp(a) =0 (/ e lem(m1)) dt> = O(m®), m — oo,
0

ie.,

a)—
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which yields that pAS) () = O(m®), m — oc.

It remains
1
i (@)
)\ m n q n—v m ( )
_ k(_ 3| — ki v
=33 (0) () M= X ataiee,
where
(v) () (_a \"
=3 (1) (7)ol
to be studied. Since (1 — e_t)L < ——, from
g+1 " g+1
G\ (@)
o 1 /OO t—a—l —(v+1)t i: n q Y (1 —t)n—l/ dt
- T(—a) Jo ‘ = \v)\g+1 ¢

it follows that there exists

A—00
1 q m—v o0 ] B B
— 1 e lem AN L ety VL () di
seniee=3 B A A
where
> m—+T q T ¢
H,(t) = —_— 1—e™)7, 0<t < o0,
=% (") (Fh) 0o 0stess
and hence, there also exists
o ) ) NC | 4k v
AP (e) = Jim Ji2h(e) = 3 lAE(-e)IGE (@)
Further, if z = (1 — e’t)L, then
g+1
q " —t\m—v
— 1-— H,,(t
(745)  a-er
_ - m+T m—v+T __ - T+V T
-5 ("= 2 ()

and, as in the proof of Theorem 6, one gets that Jg)(a) = O(m®), m — oo.
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Theorem 14. The inequalities e, <€, < er + 1 hold true.

The left inequality one is evident. In order to prove the right one, it is
sufficient to establish that if the series (2.4) is Eg-summable for some s = s,
then it is | Ej|-summable for s = sgp + a,a >. It may be assumed that sp = 0 and
in such a case the change of @ by —«a immediately gives the representation

An(@)

_ L - n k © a—le o SNH 5 = —€_t L
_F(a)l;)(u)A“/o t*te(—(p+1)1) dtz = (1 )q—i—l

Since the sequence {A¥}2 ; tends to zero,

[Ap(@) <K /O ottt n—p gy
n=0

oo [ee) —t\
- K/ o Lot (e 4 )" dt = K/ go—le=t <7q e ) dt.
0 0 q+1

) i\
/ tolet (q ++61 > dt =0(n"%), n— oo,
0 q

But

hence the series > °° |A¥(a)| is convergent for each o > 1. In fact, a more
general theorem is established, namely:

Theorem 15. If the sequence {|AF (s0)|}52 is bounded, then the series (2.4)
is |Ex|-summable for each s such that fs > Rsg + 1,

3. Summation of factorial series

The general form of these series is

ay

(3.1) a0+;(5+1)(s+2)...(5+v)’

seC\Z,7Z ={-1,-2,-3,... }.
Let

> An(s)
n=0
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be the Ej-transform of the series (3.1), i.e

k ay

1 n n—v
An(s) = W;}(»‘l (s+1)(s+2)...(s+v)

n=1,23,..., Ak(s)=ao.

A basic result for the Ei-summation of the series (3.1) is the following theo-
rem:

Theorem 16. Let the series (3.1) be Ej-sumable for some s = sy, i.e., the

series
o0
k
Z An(SO)
n=0

is convergent. Then, it is Ey-summable for each s € C\ Z~ such that Rs > Rsg
and its Ei-sum is a function f(s) holomorphic in the region H(sp;s) = {s: Rs >
Rso} \ Z~ with possible poles at the points of the set Z~. Moreover, if Rsy > 0,
then

1)
(32) J(s) = I'(s— sj r [(sp+1) ZSk (50)Tu(5039),

1 pt1
1 dt
T;L(SO; 3) = / ts_so(l — t)“+80 < a4+ > ;
0 qg+1—qt q+1—qt

where

Sk 80 ZAk 80

If Rsg < 0, then

p—1
ay

f(S):l/Z()(s+1)(3+2)...(s+V)

I'(s+1) ‘
F(S — So)F(SO =+ 1) l;] Sﬁ’P(SO)T%p(Sov 5)7

1 p+1
1 dt
T%p(SO; s) = / 5701 — t)u+so+p < q ‘|‘_ ) —
0 g+1—qt g+1—qt

+
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where p is a positive integer greater than —Rso,

o
Sk (s0) = ZAz]f,p(So)
v=0

and

1 Y v a
Ak sq) = v—T T+p )
s20) = oyt 2 O ervmrs
Let Rs > RNsg > 0 and let as before

a
- v>1.

bo(s) = ag, by(s) = +DG+2)... (s+v)  ~

If

(so+1)(so+2)...(s0+v)

Ao(s03s) =1, Ay(s0:s) = (s+1)(s+2)...(s+v)

) Vzl?

then the series (3.1) can be written in the form

oo

(3.3) D " bu(50) A (505 9).

v=0

If 3¢ ) Ak (s) is the Eg-transform of the series (3.1), then as before

n n—up
q n\ « o
(3.4) @@zgﬁ@mﬂﬂ <JAMWW)
But el
So T W
Aut1(5058) = Au(so; 3)m»
ANL(5055) = Au(5035) — Aug1(5058) = Au(s0;59)(s0, 5)%,

(s —s0)(s—sp+1)
(s+p+1)(s+p+2)’

AQ/\u(so; 5) = AXu(s055) — AXug1(5055) = Au(S039)

(s—so)(s—so+1)...(s—sp+v—1)

AN, (50;8) = A\u(s0;8) (s+p+D(s+p+2)...(s+pu+k)
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If d = s — sg, then

dd+1)...(d+n—p—1)(so+1)(so+2)...(s0+ n)
(s+1)(s+2)...(s+n)

A"HN,(50;8) =

Md+n—pI(so+p+1)I(s+1)
(@I (so+1)I'(s+n+1)

and since

I(s+1 !
A"TEN,(s50;8) = (s+1) / tn=r=l —gp)otrgr 1 =0,1,2,...,n

I'(d)T'(so+1) Jo

it follows that

= _FS);(Z Y ;A‘k‘ (0 (%)H (Z) /01 A Gl

= I'(s+1)
= ZAﬁ(S) ZAk 80 m, [ 807 )7
n=0

I'(s —s0)['(sp+ 1)

where
m—p q T M +7 1
L (5038) = ) (——J ( )/t”“lL%%ﬂ%t
If p is fixed, then

ba(s0:5) = 1L u(s05)

:Z< q > <M+T>/ td+771(1_t)so+udt
—\g+1 I 0

1 pt1
+1
:/‘ﬂla—n%ﬂ‘—iL——@q dt.
0 g+1—gqt

For S (s) it holds that

m—1

Sﬁl(s) = Z Sﬁ(so)hm,u(so; s) + S,]fl(so)lm,m(so; s),

=0
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where
R (5038) = Umu(5038) = lmpr1(8058), p=0,1,2,...,m — 1.
It is easily seen that

77li_I}noo Sﬁl(so)lm,m(so; s)=0

as well as that

hyu(s0;8) = Hm hi,pu(s0;8) = Lu(s03 8) = Lura (03 5)

1 +1
= / =1 (1 — gm0 (&)H L
0 qg+1—qt qg+1—qt

Further, it holds the representation

1
t
bns0i) = [ L= R (O e, (= 0t
0 qg+1
where
m—p A
Prp(@) =) U, u=0,1,2,...,m.
v=0 H
But
m + 1 Cm—l—l—zz
Pm,M(C):_Z< )7__’_1
v=1 v (1 - C)“ v
and since

1
hunu (803 8) :/0 L = ) Pru(€) = (1= ) Parur1 ()}

it follows that

Cerlfu

B (505 8) = ——— ltd—1(1—t)#+sozu: mAl)_ T
09 = =T, 2\ Jagr

m+1 1 d—1 Cm_ﬂ
+ tmh 1 — gt g 1=0,1,2,...,m— 1.
<u+1>/o ( ) 1-¢ . "
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Then, in a way analogous to that already used by treating Dirichlet’s series,
one can prove that

m—1
Z |, (s058)] = O(1), m — oo,
n=0

for each s such that Rs > Rsy and thus it is established that the sequence
{8k (5)}2°_, tends to the right-side of the equality (3.2) under the same condition
on s.

Since

0<t<l,

N ((L=t)(g+ D\ g+1-gt
I e e

= qg+1—qt t ’

it follows that
o0 1 +1
S shten) [ e (LY
= a 0 g+1—qt g+1—qt

= Fk(so; s) + Gk(so; s),

where .
+1
F¥(sp;8) = S* / VA § R L a7}
(s0i8) = 5*(s0) [ £ -y
(o)
S*(s0) = Y A% (s0),
n=0
0 1 p+1
+1 dt
GFspis) =) £F(s / 5750 (1 — ¢)Htso (7(] ) DT E—
i) =3 k) oo (CED) T

en(s0) = Sk(s0) — S*(s0)-

It is clear that whatever 6 > 0 may be, the integral defining F k(503 8)
is absolutely uniformly convergent on the closed half-plane Hs(sp;s) = {s :
R(s —s0) > 9,5 ¢ Z™}, i.e., it defines a function holomorphic in the half-plane
H(sp;s) ={s: R(s —sg) > 0}.

Further, if € > 0, then there exists N = N(g) € N such that \sﬁ(so)| <epu>
N and the inequality

+1
fiﬁ@@/ﬁs%u_www<_£tLJ“ _;§_+
u:N“ 0 g+1—qt g+1—gqt
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q+1

R :%7 :% 9
qg+1—qt 5 90 50

1
< E/ 77901 — t)°°
0
yields that the series defining G*(sg,s) is uniformly convergent in each of the
half-planes Hs(so;s),d > 0, hence, it also defines a function holomorphic in the
H(sp;s). Therefore, since Rsg > 0, the function f defined by the equality (3.2)
is holomorphic in this half-plane.
Let now Rsp < 0, then the series (3.1) can be written as follows

p—1

Z(s—i—l)...(s—l—y)

v=0

80+1 (So—l-p)'(80+p+1)...(80+p+1/)
+Zb %) +1)...(s+p) (s+p+1)...(s+p+v)

9

where p is a positive integer greater than —Rsg. If by1,(s) = cu(s),s0 +p =
ug, S + p = u, then the latter series takes the form

p—1
;}(s—i—l)...(s—l—y)
(80+1)...(80+p)oo (UO+1)...(UQ+V)
(s+1)...(s+p) VZO v(0) (u+1)...(u+v)
The series
(3'5) i u0+1) (uo—l—u)

(u+1)...(u+v)

is Ej-summable for u = ug and if

Ay p(s0) = (gt Dn+t Z < ) s0) ZA n.p(50);

then by the first part of the theorem the series (3.5) is Eg-summable for each u
such that Ru > Rug with sum

1
r u+1 Zsk /1 U= uo( t)l”ruo g+1 w dt .
T'(u —up)T(up + 1) Hp qg+1—qt qg+1—qt
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Since
(sot+1)...(so+p) T(so+p+1) T(s+1)

(s+1)...(s+p)  I(so+1) TI(s+p+1)

it follows that the series (3.1) is Ej-summable for each s such that Rs > Rsg
with the sum

L a I(s+1)
s) = z + ;
1) EJ(SH)...(HV) T(s — s0)0(s0 + 1) Z pTup(s0:8

1 pt1
1 dt
Tp(s0;8) = / 57501 — g)kFsotp < g+ > .
0 q+1—qt q+t—qt

A consequence of the theorem just proved is that there exists a number fg
with the property that the series (3.1) is E*-summable if Rs > f; and it is not
E*-summable when Rs < fi,. This number is called abscissa of Ej-summability
for the series (3.1). Let A = A¥(0),n = 0,1,2,..., then it holds the following
theorem:

Theorem 17. If fi, > 0, then

. log |AF + A} + .- + AF|
3.6 =1 L
(3.6) Ji lgsogp log(n+1)

Let « be the right-hand side of (3.6) and let suppose that a € [0,00). If
€ > 0, then

|AE + Ab 4 4 AR = 0((n + 1)°7), n— oo,
i.e., there exists K = K(g) > 0 such that
[Ag+ AF 4 AR < K(n+1)°"°, n=0,1,2,....

Let further

V!
Ay = s :0,1,2,...,
Sl s s P S

then it holds a representation similar to (3.5), namely

Ab(s) = 3 4 () (ﬁ)”mﬂw

=0 H
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and moreover,

1
AN (s) = 5 / £ (L — g dt,
0

provided that Rs > 0. If Sk = > o AF | then

=3 Ak(s) ZA’“mM —SZShmM ) + 58k lmm(s),
n=0

hnu(8) = lmpu(s) = g1 (s), ©=0,1,2,...,m—1,

where

1 m—p gt
lm,u(S) = / t871(1 — ) Z ¢rdt, (= q—i-—l
v=0

0

Since Sk = O(m**9),
1
S Lnm (5) :o<ma+f / 71— )™ dt>
0

_ ate LM AN O e sy
—O(erm)—O(erm ) =o0(1), m — oo.

If p is fixed, then

i a9 =) = [ oo () a

m—00 qg+1—qt

and hence

1 ptl
g+1 dt
ml—r>r<l>oh ”() hM(S) /0 A 2 <q—|—1—qt> ¢+ 1—qt

The series > 7 hy(s) is convergent for each s > a + . Indeed, if p > 1,

then

! s—1 pn—1 dt
hu(s) = . (1 —1) Ru(t)m,

where

q+1 ptt
t)=t(l—-1t) | —— <t<1.
R =t1-0 ()T o<
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An elementary calculation gives that the rational function R, has its maxi-
mum in the interval (0,1) at a point ¢, = O(u~'). Moreover, R, (t,) ~ Kp~!, K =
Const. and hence,

hu(s) =0 <u‘1 /01 57 — et dt>

B D)D)\ -
=0 (1 p) = 00 o,

whence it immediately follows that the series

Z Sﬁh“(s)
n=0

is absolutely convergent for each s > a+¢, since it is majorized by the convergent

series
(e e}

D (1) Ry ()],

n=0

Then, in order to establish the Ej-summability of the series (3.1) for s > a+e,
one has to prove that

m—1 00
i > St hmu(s) =Y SEhu(s).
u=0 p=0

To that end it is sufficient to show that

m—1
Tls) = 3 (14 1) |y u(s)] = O(1), m = 0.
n=0
But i
1 1 Cm—l/—i—l
e — S(1 — )M e ——
hm#(s) q+ 1 0 t ( t) VZO (1 _ C)u—ll-l—l dt
m+1 ! 1 mee
M1 — )P gt = A, By,
and hence
m—1 m—1

To(s) < D (n+ D)V Apu(8)] + D (1 + 1) By pu(s)]
u=0 p=0
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Further,

1 m—1 m—pu
Bm(s) < (m + 1)a+6/ tsfl Z <7IZ + 1) (1 _ t)lHrlZ_ dt

0 =0 1—2z
1
< (m+ 1) (g +1) / 5T —t 4 2)™ T at
0

= (m+1)*t( +1)/1t51 -t " dt
N e 0 q+1 '

The change of the variable t by _t yields that
m+1

m—+1 m+1
o)< 70 [0 (- )

m+1
< (m+ 1)a+6—3(q + 1)/ ts—le—t/(fH—l) dt,
0

ie.,

Bun(s) < (m+ 1)°7(q + 1)/ e /@) g = o(1), m — oo,
0

since s > a + €.
For A,,(s) one gets that

1 Smfl e M m4+1 Cm-l—l—zz

v=0
m+1 00
5 Cm—l—l Vv e 1 t 12
L) S (20

1_q

1
< Kg/ ts—a—a—l(q+ 1 _qt)a-I—e-I—l
0

1 ts dt
<K
>~ 1/0 < 1_t>a+5+1 (1—2’)2

(1-¢)?
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1
< Kg(q-l- 1)a+€+1/ ts—a—e—l dt
0
(q + 1)+t
s—a—e¢,
and thus it is established that the sequence {A;,(s)}5°_; is bounded.
Let now the series (3.1) be Ej-summable for s = a > 0, i.e., the series
> o AF(a) is convergent. If

= K3 K; =Const., j=1,2,3,

a, MNa+ Dayu

v — g 5 :0, 1,2,...,
W)= i DerY . et Twtatl) ”
1 2)... T 1
b,,(a):(a+ J(o+2) (a+y): vtatl) , v=0,1,2,...,
! MNa+1I'(r+1)
then the series
o au
>k
v=0
can be written in the form -
Za,,(a)by(a),
v=0

which leads to the representation

Ak = ;:Aﬁ(a) <Z> (q%)n_“ A1, (o).

Further,
A”_“b“(a)
— %(—a)(—a—i-l)...(—a—kn—,u—1)(a+1)(a+2)...(a+u)

N—a+n—pl(a+p+1)
MN—a)l(a+1)I'(n+1)

and if g4 < n — «, then

1 1
t—a-l—n—,u—l 1—¢ pta dt.
MN(—a)l(a+1) /0 ( )

Let p be a integer such that < p < a+ 1, then

A", (a) =

AR = K, (@) + Ly(a),

n
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where
_n < k " L e n
m(@-%%(@(ﬂ) (-45)"" s
and i N
o) = k(o n _4 g o
Ly(a) ) anHA“( )(/) <q+1> ()
If i
K (a) = ZKn(a),
n=p
then
D(—a)T(a + 1) My ()
m—p m n q n—up 1 ot X
- /;]Aﬁ(a) n%;p (M) <qﬁ> /0 graT I — Rt gy
and hence, 1
Km(a) = NENNCES) F (@)l (@)
where
S v 1 o o v t
by () = ; (Hu >/0 o1 — petecy dt, g:qqﬁ,
Since

()
v=p
e
” v —
v=0
it follows that I, (o) = l%) (o) — l(2) u(a), where
1) (@) = — Zu: (m:r 1> /01 (1 — t)#+a$ dt,

v=0

7 1 +r—1
M+ —a— a_ ¢
o =2 (")7) [ oo g

v=0
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Then,

Km(a) = (o a+1 (Z Ak 1(1 ZAk 1(2 )
K

m—p—1
K@) = r a+1<§js I ( >+%p<W%pm0,

Bu() = 10,(0) = 1)1 (@), j=12, p=0,1.2,...,m—p-2.

m,pu+1
Further,

Sk (@) (@) + SE (@) = S5 () lnm—p(@)

m,m m,m—p ~

— 55 (a) <7;‘> <qj+1>p /01 pmoml(] — gyt gy

1
:cxnﬂ)/'ﬁ—wJU.-wmﬂ*am
0

:OQMF@—wﬂm—p+a—U>:Omﬂ)

Fim+1
Since
1 - (m+1 gmriy
hom = —— e (N ) Lo S R
7H(O‘) q+ 1 ~ < v > / ( ) (1 _ C)u+27u dt

m—|—1 1 a1 Cm—‘u,
el — e gy —
+</~t + 1> /0 =0 c U Un,u(@) + Vinu(@),

it follows that

7
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where

Then,

5 m+1 ' —a—1 vta m+l—v
V()| < Ky Z , /0 t (1 —t)yrto¢ dt
v=1

m—p 1
< Klmerl Z <m B p) / tfafl(l _ t)I/JraCmfpfuCerl dt
v=0 0

1%

1
< szp“/ PTCHT =P - )Y dt
0

< Kng“/ = <1 —~ —> dt
0 g+1
mp+1 m—p t m—p
= Ks—/ e <1 - —> dt
(m —p)t=e Jo (g +1)(m —p)

=0 <m0£/ tp*aeft/(qul) dt) — O(ma)
0

m—p—1

1 Iz
a)ISK/O £ ) 3

pn=0 v=0

/z<> <H>

v=0

Further,

dt

<m+1> (1 —tyrgm+i-v

C)“JFQ v

~K(g+1) /01 Feml(1 — ) <mV+ 1) (1 - gy

m—=p—=1\ mp1 v
< y >C PEITV(L —t)Y dt

m—p—
v=0 11— C
m—p—1

1
<Klmp+1/ t—a—lcp+2(1_t)a Z

0 v=0
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q p+2 1
:Ki(——> mmf/tmkﬂu—w%§+1—wmw*dt
g+1 0

1
— +a _ a
=0 <mp mp+2—a> = O(m®),
and hence, Kk () = O(m*®).

It remains K () to be estimated when m — oco. To this end one needs the
function

" CHtp—v

Gpu(C) = W :

v=0

It has the representation

p+p _ ptp _
p+p\  HPTY p+p\  ¢HPTY
an0=3 (")) g 2 () at e

v=0 v=p+1

1 — :U’+p p—1—v v
L )

v=0

whence for the function

g+1

Fp,u(o = Gp,,u(o - (1 - t)Gp,,u—i—l(Oa t q ¢,
it follows that ¢
Fpu(Q) = W
p—1
“1-v v p+p p+l+p q+1
-2.¢ (1_C)<<p—1—V>_<p—1—V>(1__EHQ>'

v=0

Further, it holds the representation

Fp,u(o = ‘I)p,u(o + ‘I’p,u(g)a
where

BplQ) =0 (04 1P g )+ €)= O+ 17 1¢7)

Then, since

1
h(a) = /O o1 = D, (o) dt



80 N. Obrechkoff

1
—i—/o (1 - t)”+a‘l’p,u(a) dt = I u(a) + Jpu(a),

and .
)] < Kt 1t [ et ot
0
-0 'up—lr(p_a)r(,u"i'a"i_l) :O(Mp—l'ua—p) :O(#a—l)
Cp+p+1) ’
as well as
p—1 ! p—a—1 pta dt
[Jpu(@)] < K(p+1) ; t (1-1) A=yt
1 M
_ o +1)(1—1)
<K —i—lpl/tpal((q— dt
< Ky(p ) 0 q+1—qt

= Ki(p+ 17! /lt?’—a—l <1 S )M dt
0 q—l—l—qt

t 2
e [ (1o Y

q+1

I t A\
[(-t)
PP~ Jo q+1

o0
< Kgua_l/ p—a—1=t/(¢+1) gy — O(Ha—l)’
0

= Ky(p+ 177!

it follows that

m m+1
Y (@)l = Y O = O(m®)
pn=0 pn=1
Further,
m p—1 v m
L (a) = Z Lon() = Z <L> Z A, (“) Al () A by ().
n=0 v=0 9+ 1 n=v v
Since
AYb,— ()

= —(—a)(—a+1)...(—a+v—-1D(a+1)(a+2)...(a+p—v),
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one has that

v 3 ) gk a)AY «o
(—a)(—a+1)...(—a+v—1) Z( >AM_V( YA b,y ()

LA (a+D)(a+2)...(a+p—v)
2 Aumvle) (o)l
S A (@b (@) = 3 Ak(a)bu(0)
n=v n=0
_ Sk m—v—1

mev(@bu(@) + Y Sp@)(bu(@) = buri(a)).
n=0

Since by, (o) = O(pu®) and

a+DI'(p+1) Dla+D)IN(p+2)

_ Tpta+) (1_u+a+1) _ oy,

bu() = bpta(a) = F(F(“+a+ 1) T(p+a+2)

MNa+ DI(p+1) n+1
it follows that

m—v
Ly(a) =0m*) + Y 0(u*") = 0(u")
H:
and thus the proof of Theorem 17 is completed.

Theorem 18. If fi, <0, then

) log |An + Apt1 + ..
= limsu
Jr = msup e e 1)

Let
A, + Aps1 + .. | < K(n+ 1),
where « < 0 and n > N = N(a) € N.

For the terms {AX (s)}22, of the Ej-transform of the series (3.1) for s > « it
holds the representation

n

A =X A (L) bl

ey qg+1
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where I DT D
- —1_ 15+ n+ __9
enls) = (ule) ™ = Sr I 9=
Then - -
Si(s) =D AN(s) =D Tonu(s),
n=0 pn=0
where

L) = 3 (o) e

v=0 q+1

The validity of equality

i = s) = 3 c s) [ —L- ' 5 —
i Ty(s) = Ton(s) VZOWH(QH) bus — 1)

for p =0,1,2,... is a consequence of that fact that the series on its right-hand
side is convergent for each fixed pu.
If
Ry=Af+ A%, +...,
then .
S,]fl(s) = Z(Ru = Ry 1) T u(s)
n=0
m
=Y Ro(Tinu() = Trnyu1(5)) + RoTin0() = Runt1 Tonm(5),
pn=1
where

= Y Cy(S L ’ S — S) = CnlS
o) =3 ls) () 0l =10 Toune) = s

Since Ry,+1 = O(m®), ¢pm(s) = O(m™*%) when m — 0o and moreover a — s <
0, it follows that limy,—oc Rymt1Tm,m(s) = 0.
Further,
Trnu(8) = Trnu—1(s)

_ 2<cu+y(s) — Cpr1()) (L) by(s — 1)

q+1

~ g\, D= 7O () 7@
Cm(S) qg+1 mfqul(S ) - m,,u(s) m,,u(s)7
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whence .
In(s) = Ry(Tonu(8) — Tin p—1(5))
pn—1
m—1
= > R.T( Z Ry T, (s
pn=1
-2
Further,
[m/2] m—1
s)| < Z |R,|IT, > IRATR(5)s
u=[m/2]+1
lRuHTl )| < Kim ( ) )
= qg+1
and since 4 < 1, it follows that
g+1

[m/2] [m/2] q m—p+1
> RATH < Kime S () T bwea(s = 1)

= = qg+1
q m+1—[m/2] m—1 q m—pu+1
< s |/ (Vo) mpeals =Dl =0l
qg+1 = qg+1
as well as
m—1 m am_l 1
> RN < K= (5)" 3 s = o),
p=[m/2)+1 =1 H
ie., Lgf)(s) =o(1), m — oo.
Further,
(3.7) Jim J5S) Z R(TS1,(s) = T2),(5)).
Indeed,
s
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whence
‘ ()(8)‘<—}< E 1 V‘V( )|
jm,u, 4 ( Z/)S+1 by (s 1

If s+ 1 >0, then

m—p q v
(T ()| < Bap=="1 30 <q+—1) bu(s = 1) < Kop™ .
v=0

Let s +1 <0, then since u+ v < u(v + 1), it follows that

m—p v
(1) —s—1 —s—1 q _ —s—1
1< Ko 3041 () e 1< K

and hence,
T, (5) = O (#) = oo,
In the same way one gets that the series
o0
PRRAEAC)
pn=1

is majorized by an absolutely convergent series and thus the equality (3.7) is
established.
Let now the series (3.1) be Ej-summable for s = a < 0. Then,

a=3 (Mt (-45) " A

n n—up
= c(a) " Al(a) (q%) bnu(—a — D)bu(a), c(a) = r(_a)rl(a Iy

and hence,

I, N ()
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N N n—p
te(@) Y 3 Ak(a) <L> bo_p(— — )b, (a)

= JTSJ:,)N(O{) + J(Q)N(a)~

m,

Evidently,

S gk e N
a>§AM<a>bM<a>;(q+l) b= 1)

Further, it is easily seen that the series

(e}
> A(@)bu(a)
n=0
is convergent. Indeed,
N
> Au(a)bu(a)
pu=m
N
= 3 Ru@)(Bu(@) — b1 (@) — Ry1by(@) + Ryn(@)bn (@),
p=m-+1
where
Ro(a) = Aj(@) + Af (@) + ..
whence
N N
Z Aﬁ(a)b ()| <K Z +m* | <e
u=m p=m+1

provided that m > M = M (e) € N. Then, by letting n — oo, one gets that

> 1

a)| = Z — | =0(m*), m — oc.

P/ Nl a4 o

As before one makes sure that there exists

o n—pu
k —_— —_
) == 5 a5 ()b

n=p
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qg+1 et

Further,

o'} q n—u

2 (1) tstem

n=m

m—u 00 n—u m—pu
(Vi) () weiemnss (i)
qg+1 = g+1 g+1
hence

@<y (f5) T bl

q+1

n=0
Further, since 4 < 1, it follows that
qg+1
[m/2] q m—pu q —[m/2] Im/2]
< S <K
Z ( q+1> |b”(a)|< q+1> Z o
n=0
as well as
m q m—pu m q m—pu
> (5) meisr > (5) e
u=[m/2]+1 p=[m/2]+1
m m—u
< K3([m/2] +1a2<1/ > < Kym®,

n=0

so that it is established that J) () = O(m®),m — oo, and thus Theorem 18 is
proved.

Theorem 19. If the series (3.1) is |Eg|-summable for s = so, then it is
| Ex|-summable for each s such that Rs > Rsy.

It has to be proved that the absolute convergence of the series > oo o A (so)
implies the same for the series 20 ; A% (s) provided that Rs > Rs.
From (3.5) it follows that

4k (s)] < g Aol (M) () 1 s
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If Rs > Rsg, then
|A" X (503 9)]

1)
= ‘F(S—sj+so+1 ‘/ R O M2

o =RNs, og = Nsp.

If
Ub() = [45()] + 145+ - + 4k (5],
then
Uh6) < |t '2:0|A,’3<50>\Lm,u<s>,
where
I _miu qa \' (v+p ! o—ootv—1 ootp
o E G () e
But

) q v v+op 1 B .
st E(eh) ()
' ;] q+1 I 0

1 pt1
0

qg+1—qt
hence
q
< L3 K so)llu(s)
pn=0
q m—1
- q‘|‘1 Z U,L]f(so)(L,u(s)_Lu—l—l)‘i‘?Uk (80) ( )
pn=0
Since

LH(S) - L;L-l—l(s)

1 T
:/ ta—ao(l _t)ao—f—p < q+ 1 >” dt <0
0 g+1—qt g+1—q 7

p=0,1,2....,m—1,

87
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and Ufi(so) < Up < o0, p=0,1,2,..., it follows that

m—1
k qUo 9o
Uk (s) < o l;)(LM(S)_LM-I—I(S))"i_ q+1L0(3)
_ 49U /lta—ao—l(l_t)ffoﬂdt< U /lt”—ao—l(l—t)"odt
P g+1—q " =T
I'(oc —0p)'(0p+ 1)
= qU. =0,1,2,....
=0 I'(oc+1) P TR

If Rs < 0, then it has to be taken into attention that by an author’s theorem
the subscripts of the terms of |Ej|-summable series can be both increased and
decreased without changing its summability.

Theorem 20. It holds the inequality fi — fr < 1.

Indeed, since |A%(sq)] < A(sg) < co,n =0,1,2,..., it follows that
Aol e Y (1) (L) A
= W/ \a+ 1

and if Rs > Rsy > 0, then

gA(s0) o= [ Y . -
ko) < 25 () (QH) [t ey

pu=0

A 1 t n
-t e (g
0

1
< —C"A(SO)/ go=o0=1 (1——) dt.

Substituting ¢ for ¢/n, one gets that

o1 B o [ (1Y
q+1 0 (¢+1)n

< 9A(50)  —(o-00) /OO =001 ,—t/(a+1) gy
q+1 0
If o0 — 0 > 1, then the series Y °° j A%(s) is absolutely convergent and thus
Theorem 20 is proved since the case Jsy < 0 can immediately be reduced to the
previous one.
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Theorem 21. If f;, <0, then

= log(|A%| + ARl +--)
. =1
(3:8) T lgsogp log(n +1)

The proof proceeds as that of Theorem 12. Let
AR +1AE |+ < K(n+1)% a<0,n>N=N(@)eN

and s € («,0). Then

)< L OO0 T Z|cu+u (45) vt

Since p+v+1<(u+1)(r+1), it follows that

T < K v+ () e

v=0

<Ku+1)Y (r+1)7" (HLJ <(u+1)°°

v=0
hence
m
Uu(s) S K1 > |ApuF|(u+1)7°
n=0

If, as before,
[ee]

Ry = Z ‘Am>

p=n

then

m
DolAl(u+ 1)
n=0

m—1
=Y Ru((p+1)"° = p*)+ Ry — Rpga(m +1)°
pn=1

m—1

<Ky > p((n+1)7° = p~*) + R

mu=1



90 N. Obrechkoff

<K3Z/“L peon 1+R0<K3Z s— a+1+RO’
pn=1 ulu

Let now the series (3.1) be |Eg|-summable for s = a < 0. Then in a way
already used one obtains that

> AR < I (@) + IR (@),

where
o n—u
1) k
T |Z|A Z<q+1> by (= 1)
: n=m
and -
k o —
3 @I () e
Further, if
Ru(a) =Y |A5(a)],
then

< Kym* Z (Ru(a) = Ryp1(a)) = Kim® Ry (o) = O(m®), m — oo.
The same estimate holds also for J3 )(a) and, hence,

o0

> |Ar] = 0(m®), m — oo.

n=m

It is at hand now a second prof of Theorem 16 which gives an unified rep-
resentation of the function f(s) in the region {s: Rs < Rsp} provided that the
series (3.1) is E*-summable for s = so. More precisely:

Theorem 22. If the series (3.1) is Ex-summable for s = sg, then it is Ej-
summable for each s such that Rs > Rsg with sum

f(s):r(sﬂ)i/xkb (so)i Dltvdl) vy o so—1), g=—L_.
= T e (v s +1)7 ’ g+1
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If Rs > Rsg, then it holds the representation

= Z AZ (Z) g TEA"HE N (505 8),
n=0

where

I'(s—so+n—uwIl(so+p+1)I'(s+1)
I'(n—p+1)I(s—so)l(uw+ 1D (so+ DI(s +n+1)

= n(8)bn—u(s — so — 1)bu(so)

AN, (s0;8) =

and hence
ZA "THby—u(s — so — 1)bu(s0).
Then,
. s) Z Aﬁ(s) = Z Aﬁbu(SO)Vm,u(So; s)
n=0 n=0
and
m—p
Vinu(s0:8) = Z Cutv(8)g"by(s — 59 — 1).
v=0
If p is fixed, then
W}gn Vinu(s0:8) = Viu(so; s Zgb (s —s0—1),

since, as it is easily seen, the series in the right-hand side of the last equality is
convergent, which follows from the estimate c¢,(s) = O(n7?),n — oco,0 = RNs.
Then,

Zsk )Vinu (503 8) =Byt 1 (50) Vi, it 1 (503 8))+Sp3,0m (50) Vimn (505 5),

Sﬁlbm(so)vm,m(so :8) =0(m%cp(s)) = 0(m77°) =o(1), m — oo
and
b1u(50) Vi, (505 ) = byu1(50) Vi i1 (805 )

m—pu—1

= > (Bu(50)eutw(8) = bt (50)curvt1(5))g"bu(s — 5o = 1).
v=0
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Further, the behaviour of the sum

m—1

Cn(5) = lem($)] S 9" lbnp(s — 50— 1)

=0

has to be studied when m — oco.
If o9 > 1, then

m
Con(8) < km™" > " by pu(o — 00)byu(00)
n=0
= Km %by(c) =0(1), meN.
If 09 < —1 and p > —o is a positive integer, then

p—1
Cim(s) = |em(s)] ngf“lbm—u(s — S0 — 1)bu(30)|
n=0

m—1
Hem($)] S g by (s — 50— Dbu(s0)] = CD () + C2)(s).
u=p

Since g < 1, it is quite evident that

¢V (s) = O(m™7gmm=o"1) = o(1), m — .

m

If > p, then b, (o) has the sign of (—1)” and therefore

) (s) < Km S (=17 g™ ", (o — o0 — Dby(or):
n=0

Further, if © > (¢ — 00)/(1 —g) and 5 € ((¢ — 00)/(1 — g), p] is a positive
integer, then

S (1P b (0 — 00 — Dbul(00) < (—17bu(00) S bl — 79 — 1)
p=j w=j

m

< (=1)Pbn(00) Y b0 = 30 = 1) = (=1)"byu(0 = G)bm(0)
u=j
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and hence

P < Km™ <bm(0 — 00)bm(00) + Z(—l)pgm_”bm—u(a — 09— 1)bu(00)>
p=p

— O(mfama'omafa'o) + O(memO'*UO*lgm) — 0(1)

If —og is a positive integer, then b,,(c9) = 0 when m > —og. But o # —m
so that by, (o) = O(m?°). If one takes o9 +n,n > 0, instead of op, then b,,(09) =
O(m°0t1) provided that 7 is sufficiently small.

It remains to show that the sequence

m—1
Tn(s) = Z \b“(s)Vm,mu(s) - bu+1(3)vm,u+1(3)|
n=0

is bounded.
Since

bu(00)Crutv(8) — but1(00)cpsv+1(s)

Bu(s0)epso () (= e
=b,(s0)c s - )
AP0/ Bty p+rv+s+1 p+lp+v+s+1

(bu(80)Cutv(8) = but1(s0)Cutv+1(5))g"bu(s — s0 — 1)
= O(bu(s0) i () + 1)) = O((n+1)~7770 " (v +1)770g"),
it follows that

3

=

]
i
=

(bu(50)Cu(5) = but1(s0) ™ (s))g b (s — 50— 1)

< o—oo—1 v\ __ 1
e N e

and hence,
m

T(s) =3 0 (Mﬁ) — o).

n=0

If u,v > 0 and X € (0, 1], then it holds the inequality

(3.9) (u4v)* <u* + 0t
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Indeed, it is equivalent to the inequality (1 +t)* < 1+ t* ¢ > 0. If w(t) =
(14+8)A=1—t}, then o/ (t) = A((1+2) M=) < 0,1 > 0, i.e., w(t) < w(0) = 0.
Let now 0 < ¢ < 1, then
(54 v) <+

Hence

(bu(80)Cutv(8) = but1(s0)Cutv+1(5))g"bu(s — s0 — 1)

= O((p+ 1)+ )70 g + O (p+ )7 w + )7

m—

p—1
Z O M+1 afaofl(y_’_l)afaoflgu)

v=0
m—p—1
+ Z O ,U'+100 1(V—|—1) 00— 191/)
v=0
K m—pu—1
< Z (V+1)a—ao—lgu
- —oo+1
(n+ 1)7mooth =
Kl m—pu1

= Y 1)
—oo+1
(p+1)-o0tt o~

and since og < o < 0, it follows that

m—1
s) = Z | Ju(s)
pn=0

-3 0 (e + 5.0 (grewe) =000

u=0 n=0

It remains the case a < —1 to be considered. Let for the sake of convenience
denote o« = —0, 8 = —o0y, i.e., o, > 1 and o < 5. Then,

m—pu—1

(I < K(p+1)7770 Y () v+ 1) g
v=0
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and

where

(p+v)*
how = Y
YT & e

Since a < 8 + 1, each of the functions

(t+v)*

W, 0<t<OO, V:0,1,2...,

is decreasing and, hence,

m—1 'ua e 1
h 0= < s
" ;) (4 1) ;) R

i.e., hymo = O(1). It remains to estimate the sum

H, = Z B (v 4 1)P70"1gv,

First,

m—v—1 (t—l—l/)a
hm,u</0 Wdt, n:1,2,...,m—1.

Further, since o > 1,(t +v)® = v + at(v + 0t)* 1,0 < § < 1, whence
(t+v)* <v*+4t(v+t) and, hence,

m—v—1 a—1 m—v—1
t(t dt
hm,u</ &dt_i_ya/ (
0 0

(t+1)s+1 t+1)8+1
</m—u—lwdt+ya/w¢dt
0 (t+1) o (t+1)F*H

B N m—v—1 (t 4 Z/)ozfl
=O0(v )+/0 Wdt.
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Ifa=p+mn peN,0<n<1, then in the same way one gets that

mev=l (¢ )
(0%
by < Kv +/0 W‘it,
and if n = 0, then h,,, = O(v?).
If 0 < n < 1, then the inequality (v + ¢)7 < v" + t" yields hat

m—v—1
t+ v
o by
hmuSKll/ +/0 (t—i—l)ﬂ_p—"l

< Ky 4 o dt gt > dt o
= Rys 4y o (t+1)8-»ptl + 0 (t_|_1)/5*a+1< 2V

and, hence,
m—1
Hp < K3 ) (v+ 177wy
v=1

[ee]
< K3 Z(V + 1) lyegr = 0(1).
v=1
The case when oy is negative can be treated as before after slight variation
of aggo.
An interesting consequence of Theorem 22 is the following statement:

Theorem 23. Let the series (3.1) be E-summable for s = so. Then it holds
the representation

— ! _ 4\s—1 dt
(310) £ = [ 0=t ol s
where
(3.11) @(t):iAﬁb“(so)t“, 0<t<l,
pn=0

provided s > 0 and Rs > Rsg.

The formal change of order of summation and integration really leads to
representation (3.10). Indeed,

00 o] 1
f(s) =5 Agbu(so)> / (1 — 1) by (s — s0 — 1)g” dt
n=0 v=0"0
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Ky R A
w0

1
dt
= 11— o(t) ———.
SA( s
If it is assumed that S¥; = 0,Rsq > 0 and 0 < ¢ < 1, then

[e.o]

p(t) = (SE— Sk Dbu(so)th = Z SF(byu(s0) — byt (s0))tH
n=0
tlHrl
(1—1) ZS bu(so)t —SOZS (50 —bﬂ+1(80))u+1 = p1(t) — @a(t).
But |Sjj\ <K, u=0, 1,2... and hence
> K
le1(D)] < K(1=1) Y bu(oo)t = ———
(1 —t)o
n=0
K|s
\m(|<M%Q: +1_MWQ:b00 'g

1
and since 1 — gt > pay 0 <t <1, it follows that
q

! _ 4)s—1 dt ! _ 4\o—oo—1
L=t el = < 1 [ =

i.e., the integral in (3.10) is absolutely convergent. The same holds if og < 0,
since then |¢(t)] < M < 00,0 <t < 1.

If the real variable ¢ in (3.11) is replaced by z € C, then ¢(z) becomes a
holomorphic function in the unit disk. Moreover, there exists a constant K such

that
K

lp(2)] < W’

i.e., the function ¢ is of a finite order in the unit disk in a sense of Hadamard.
For the integral representation (3.10) it can be given a form not involving s.
To that end another kind of the factorial series is used, namely:

2| < 1,

o0

vlb,
(3.12) ZZO(S—I—l)(s—I—Z..(s—i—V)’ s7-1-2
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Let >.°° o BF(sq) be the Ej-transform of the series (3.12) for s = s, i.e.,

k — ; - Y\ n—v vl b,/
Bn(so) = (q+1)n+1 l/Z()(y)q (30—1—1)(804-2)...(80—1—1/).

Since

b (50) <n> vIl'(so+1)  T(so+n+1) n! vIT(sp+ 1)

v)T(so+v+1)  nll(sog+1) vi(n—v)T(so+v+1)

T
- (so +n+1) L v=0,1,2,...,
F'n—v+1DI'(so+v+1)

it follows that

o
t) = BF(s0)bn(s0)t"
n=0

i i tn T(so+n+1)
~ 80+v+1)nzy(q+1)”“q”‘”F(n—V+1)
o0 o

Z Z ty+n VF(V"‘H"‘SO"‘].)
50+n+1) (g + 1yrnrtd T(v+1)

n=0
oo
bpt™
Z t+1”+1zb so +v)(gt)”

o0

1 b, t”
= gt MO = 2 T

The change of order of summations in the two-multiple series defining the
function ¢ is of legal ground, if it is absolutely convergent and it follows now the
proof that this is really the fact. Let

vlb,
(80 + 1)(80+2)... (80+V)

a,(so) = , v=0,1,2,...,

then it is supposed that the series Y °° ; A%(sg) is Eg-summable, i.e., if

Afz(s()) +1n+lz< > 80) n=0,12...,
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then the series Y20 ; A% (s¢) is convergent. Therefore, the sequence { A (s0)}2°

is bounded, i.e., |A¥(s9)| < A, n =0,1,2,.... Since

aaton) = @+ 00" S (1) (L51) At

v=0

it follows that
1
lan(s0)| < Alq + g Z ( ) (“ )

=A(g+1)(2¢g+1)", n=0,1

Hence, if [t| < then the two-multiple series

29+ 1’

yﬁb o q+1”+1zqn <> )
n

is absolutely convergent. Moreover, it is also established that h(t) = (1 —
gt)*p(t), 0 <t < 1. But ¢(z) is holomorphic when |z| < 1 and since 0 < g < 1,
the function h(z) is also holomorphic when |z| < 1. Then, the representation
(3.10) becomes

fo)=s [ 1ty ng 2
s)=s — —_—.
0 (1 —gt)®
Let SR ,ie., z= M, and
+1—gz 14+ qw

w) = anw", w = u+ v,
then X
£ = [ (= w ot du

g+1
2¢+1

q
— <
v 2q+1‘

If (g+1)|w| < |14 qu|, ie.,

, then the function ¥ (w) is

1
5 q+1 and radius 2qq—:_ T

Moreover, this function is also of a finite order in a sense of Hadamard in U(q)
so that it is proved the following interesting theorem:

holomorphic in the disk U(gq) with center at he point
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Theorem 24. Let the series (3.1) have a finite abscissa fy of E-summability.
Then, for each s, such that Rs > 0 and Rs > fi, it hods the representation

1
(3.13) F(s) = s /O (1 = w14 u) du,

where the function
o0
b
n=0

is holomorphic in the disk U(q) and moreover, it is of finite Hadamard’s order in

this disk.

The inverse of the latter theorem is also true. More precisely, let the function
f(s) be defined by the equality (3.13), where

[ee]
= g bw™
n=0

is holomorphic in the disk U(q) and of finite Hadamard’s order there. Then the
factorial series (3.1) has finite abscissa fj of Ex-summability, i.e., fr < co.
t
Let u = ——— then
qg+1—qt

1
£ = [ =0t

where
[ee]

B( 1 — gt Z (50; 8)¢7,

and

n
B (s0;s) = Z Akb, (50)bn_y(s — 50 — 1)g”

v=0

The function h(z) is of finite Hadamard’s order ¢ in the disk U(q) and if
Rs =0 > 9 and o > 0, then by a well-known theorem the series

L 7L~ 2 I'(s T+l >
L=y Bu(sors)tmdt =y =T E An(s
A ( t) n(SO,S)t dt ~ F(n—i—s—l—l SOa

n=0

is convergent which means that the series (3.1) is Ej-summable.
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4. Summation of Newton’s series by Euler’s transform

The series of Newton are

[ee]
(4.1) a+ Y ay(s—1)(s—2)...(s—v).
v=1
It is evident that they are convergent for s = 1,2,3,... so that these values

of s can be avoided. A basic theorem for the Euler summation of these series is:

Theorem 25. If the series (4.1) is Ex-summable for s = sg, then it is Ej-
summable for each s with Rs > Rsg. Moreover, for the holomorphic function
f(s), defined by its Ey-sum for Rs > Rsg, it holds the representation

(4.2) f(s)

I(1— Lgsso(1 —g)p—s 1\
_ s0) Zs o) [ T (L dt,
F(s—so (1—5) 0 qg+1—qt qg+1—qt

where

Sk 80 ZAk 80

M) = i 22 (1) mtoo =100

provided that Rs > 0, and Rs > RNsg, and

p
(4.3) f&)=> a(s—1)(s—2)...(s—v)
v=0

1 4s—s +p—s p+1
{5780 (1 — )HtP g+1
S dt
+F(S—80 1—82 “pso/o qg+1—qt (q—i—l—qt) ’

where

m
= Z Aﬁ,p(SO%
n=0

1 - n n—v
Aﬁ,p(SO) = W I,Z:o <V>q ayip(so—1)...(so—v)

when Rs > 0, where p is an integer, greater than Rs.
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Indeed, if ag(so) = 1,a,(s0) = av(so —1)(so —2)...(so —v), v =1,2,3,...,

then the series (4.1) becomes

(s=1)(s—2)...(s—v)
Z““ %) o= D50 —2) (59— 1)

Let, as before,

Ao(so;s) =1, A(sg;s) = (s=1=2).. (s-v) v=1,2,3,...,

(so—1)(so—2)...(so—v)’

then

A05) = g ZO (2) o autsoutons )
eSS (2)ats0i) i(—l)ﬂq%—l)"(”) (L) st

v=0 %) H

=(a+ 1) ZAk oo (1) oot (1) ()

v=0 ®

g (52 () ()

3 A(so) %) () Sy (" Pt

H’ZO v=0

_ZAk S0 < >A" DWED)

Further, by induction one easily obtains that
AN, (505 8)

sop—s(sop—s—1)...(sop—s—v+1)
(so—pu—1)(s0—p—2)...(s50 —p—v)
and if s — sg = d, then

= A\u(505 ) , v=0,1,2,...

A"TEN, (505 5)
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:d(d-l—l)...(d—l—n—/,t)(l—8)(2—8)...@—5)

, w=0,1,2,...
(1 —s0)(2—s0)...(n—sp)
Since s is not a positive integer, it follows that
I'(d — ) — nr{ -

Nd)T(n—so+ 1I'(1 —s) ’
and if s < 0, then

1
AT (505 8) = e{s0: ) / pl= =i e g = 0,1,2,
0

where
F(l - 80)
['(s—s0)l'(1—s)

In this way one comes to the representation

c(s0;8) =

m

(4.4) ZAk c(50;8) Y Ali(50)lm,u (503 5),

n=0
where

m q n—up n 1
Iu(50i8) = ) <—+ 1) ( ) / AR O R L
— q "/ Jo

n

[ R () )

If p is fixed, then

m!gnoo I M(S()a ) = lm(50§ 8)

_ /Oltdl(l > (”jy) (ﬂ—ﬁ)

v=0

+1
:/ltd—l(l_t)u—s a1 dt.
0 q—l—l—qt

If

hm,,u,(s(]; 8) = lm,u(so; 5) - lm,u+1(50; 8)7 M= 07 ]-7 27 cee, T — 17

103
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then (4.4) yields that

m—1

S (s) = c(s0; ) Z Sﬁ(so)hm,u(so; s) + ¢(50; ) (50)lm.m (50; 8).-
n=0

Moreover,

lim Ay, (805 9)

m—r0o0
1 p+1
1 dt
= hy(s0;5) = / 11—ty (—“ ) =
0 qg+1—qt qg+1—qt

Since
I(d)I'(m—-s+1)
Fd+m—-s+1)’

1
o (50; 5) = / P11 = ymes gy —
0

and Rd = Rs — Rsg > 0, it follows that limy, o0 lm(s0;$) = 0 and, hence,
limy,—seo Sﬁl(so)lm,m(so; s)=0.
It remains to study the behaviour of the expression

m—1

Sm(s0;8) = Z Sﬁ(so)hm#(so;s)

=0

when m — oo.
In order to justify the application of the Toeplitz—Schur theorem, one has to
prove that the sequence

m—1
Ton(s) = > [hmpu(sois)l, m=1,2,3,...
n=0

is bounded for each s such that s < 0 and Rs > Rsy.
For the polynomial

m—pu [ +u
Paste) =3 (M 1)
v=0 H

it was obtained that
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which gives that

1
—so— - t
lmvﬂ(so; S) = A tS 50 1(1 — t)lu SPm,p,(Z) dt, z = #

By means of the substitution 1—¢ = exp(—u) the last representation becomes
similar to that used by studying the Fj-summation of the Dirichlet series so that
it may be followed the way already known, but there is also a direct approach.
Namely, for Ay, ,(s0;s) it holds that

hm,u(So; 5) = /tssol(l — t)“ispm#(z) dt
0

1
- / B0 = B, L () d

550 M m41 Zm-l-l—l/
1—t“8 —dt
- ] ey (M E

v=0

<mj:11> ts—so—l(l o t)u-l—l—s ’imjy dt
o -z

= A u(50:8) + B u(503 5)-
If o = Rs and § = Rs — Rsg, then

m—1 m—1 m—1
Z |hom, (S0 8)| < Z | Am, (03 )| + Z | B, (503 8)
u=0 u=0 u=0

= A (505 8) + Bin(s0; 5).

Further, since

qt 1 t
l-2=1-—"-2>—-—-1—-t4+2=1—-—-<1, 0<t<1,
qg+1 = g+ 1 qg+1
it follows that
m—1 1 _
1 mTH
80, (m-i— >/ té—l(l_t),u—i—l—az_ dt
uO w41 1-2

m—+1

1 1 m+1—p
< <m+ >/ 911 — pypoZ dt
2 0 -z

n=0
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s dt
[ eta-na ey o),
0 1—2
as well as
H 1—v
m+1 2t
m(8058) < —— t5 dt
Antsuis) < — | z v (" o
m—1m—1 m—1—v T
(1—tr° 1t
m+11/ dt
- [T e LS (1)
v=0 pu=v 7=0
m—1 m—1—v T
1 5 m+1 1, I=tw -0 1—t
—_— t m v - dt
S ;( v >Z (1-2)2 ; 1—2

1 m—1 _
< / | Z <m+ 1>zm+lu(1 —1)"° i
0 =0 14 1-— z

1
<(q+ 1)/O P -t —t+ 2" dt = 0(1).

Then, the Toeplitz theorem yields that there exists lim,, ;o S¥ (s) provided
that Rs < 0 and Rs > Rsg. Moreover, the Ep-sum f(s) of the series (4.1) is

the holomorphic function defined by the equality (4.2) in the region {s :
0,Rs > %80}.

It remains to study the case Rs > 0,Rs > Rsp and let p > s be an integer.
The FEuler summation has the property that if a series is Eg-summable, then the
same is true for the series obtained from it after increasing or decreasing the
subscripts of its terms with one and the same number. In particular, if the series

(4.1) is Ex-summable for s = sg, then the same holds for the series

0o (s=1)(s—2)...(s—v)
D [ T )

This series can be written as follows

(s—=1)(s—2). —p—1)(s—p—2)...(s—v)
(80—1)(80—2 (so—p Zb (so—p—1)(so—p—2)...(s0—v)’

and if
ay(so;s) = (s=1(s—2)...(s—p)
P ! (80_1)(80_2)...(30_29)7
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then it takes the form

Ny (== =p=2).. (s=p-1)
(4.5) ap(5055) D> byl 0)(50_ —)(so—p—2)...(s0—p—v)

If S¥(s) is the Eg-sum of the series (4.1) and S;f(s) that of (4.5), then
p—1
= ay(s—1)(s—2)...(s—v)+ Sh(s).
v=0

Since ts — p = R(s — p) < 0, the case under consideration reduces to the
previous one. That means the Ej-sum of the series (4.5) in the region {s;Rs >
0,Rs > RNsp} is

1 J—
Gp(So;s)/O R Z ( FEaE t))u di

q+1—qt2 qg+1—gqt
where
I'(1 — so + p)ay(so; s)
G 18) = .
P08 = B 50T — 50 + )
But since
I'p—s+1)I(1—s
ap(s0; ) = gl 2L DRE =)

T(1—s0)T(p—s0+1)°

(
it follows that, in fact, the series (4.5) is Ex-summable for each s such that Rs > 0
and Rs > Rsp with sum given by (4.4).

From Theorem 21, it follows that there exists a number ng such that the
series (4.1) is Ej-summable for each s such that s > ny and loses this property
when $s < ng. This ngp may be also —oo as well as oo; it is called abscissa of
Ej-summability of the series (4.1).

Theorem 26. If nj € [0,00), then

log |AF + Ak + ... 4+ AF
ny = lim sup oglAg+ A+ + m‘,

m—00 lOg m

where

1 n
k _
Al = oy ) e n=0.12,
v=0
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If
Ak(s) = qﬂnHZ(”)q o5 —1)(s—2).. (s~ ),
then
— k(_9 T RN (s
—;Au <q+1> (H)A Aule)
where (=1~
Au(s) = w(s—=1)(s—2)...(s—u)
Since
7\ oo - Ln+1)  Dtn—mlp-—s+1)

= ldn—uls ~ D8u(5)l5) = Ty

it follows that

ZA b~ 1)b(~)

q
ZAn p9"bu(s = Dbny(=s), 9= =7
whence
ZZA ug“b - )bn—,u(_s)
n=0 pu=0
= ()3 9"buls = 1) 3 An-iukbn—p (=)
p=0 neH
= e(5) 32 bl — D),
pn=0
where

m—p
Um—,u(s) = Z Alkjbl’(_s)'
v=0
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The series
o0
(4.6) D Alby(—s
v=0

is convergent. Indeed, if m > n, then

ZA’lfby( ZSk —5) = byy1(=s))

—i—anbm(—S) — Sﬁ_lbn(_s) - An,m(s) + Bn,m(s)'

If e > 0 and s is real and greater than o + ¢, then
Bin(s) = O(m*™m™") + O(n*"*n™") = o(1), m,n — oco.

Since 1
V—s
by+1(_8) = by(—s)yi—i_l

it follows that if v < s — 1, then b,(—s) and b,4+1(—s) have one and the same
sign and |b,41(—s)| < |b,(—s)|. Let n > s, then since |S¥| < Kv°*¢ when v is
sufficiently large, it follows that

9

m—1
A (s)] < K D v ([ (=s)] = [bya1(—9)])

<K a+a|b |—|—K Z |b a-l—a_(V_1)a+5)+K(m_1)a+a|bm71(_5)‘
v=n-+1
:O( atey, fs Z O ate— 1) 75)—1—0( fs)
v=n+1

= O(n®*e7%) Z O~ t=a==t)) = (1), m,n — .
v=n+1

Hence, the series (4.6) is convergent and if A(s) is its sum, then

lim wu,(s) = lim ZAlkj(s) = A(s).
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It is easily seen now that

lim S* (s) =c(s)A(s)(1 —g)~°

m— 00

If € > 0, then there exists N = N(g) € N such that

oo

Z g'bu(s —1) <e

u=N+1
Then, by fixed N it follows that

N
o _ o _
nlgnooZgb s — D)tm—p( Zgb s—1).

Further, if m > N, then

m
<K ) g'bu(s—1)<Ke,
u=N+1

Z g"bu(s — D)tm—p(s)

u=N+1

and hence,

lim sup
m—0o0

Shi(s) = c(s)A(s) D> g"bu(s — 1)‘ < 2K|c(s)le.

pu=0

That means the series (4.1) is Ex-summable for each s > « + ¢, hence, for
each s such that Rs > a.
Conversely, let the series (4.1) be Ei-summable for s = o > 0, i.e., the series

> An(s)
n=0

is convergent. Then, since

(—at+n—p)

bn—#(_a - 1) = F(—Oé)

it follows that

N~ (n woppl0)(—at ) (catn—p—1)
Ak_z< >Ak(0é)9 g 1-a)2-a)...(n—a) ’
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a) Z Aﬁ(a)gnﬂ‘bn,“(—a —1) =cpla Z Ak —a—1),
n=0

where
n!
) = T oe e o)
Then,
:ZAk chn A Mb( a—1)
n=0 n=0 pu=0
Z gﬂb - = 1 ,#(Oé),
where
m m—u
@) Y en(@)Ay_y(@) = Y curn(@) A
n=up v=0
If .
h(a@) =) Af(a)
v=0
then
m—pu—1
Lingu(@) = Y SE(@)(cutn(@) = Cuui1) + em(@) S ().
v=0
Since 41
n
en1(@) = en (@) ==,
all the ¢, (a) have one and the same sign when n > « and, moreover, |c,41 ()| >
e (a)].
Further,

~TPn+1I(1 - )
«l®) = e arD

and S¥ (a) = O(1), m — oo, give that

=0(n%), n— oo,

Z Sk ) (v (@) = v (@)

+ Z Sy (@) (e (@) = Cursa(a)) + O(m®)
v=[a]+1
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[a] m—p—1
—3 0w+ Y O] = v (@)]) + O(m)
v=0 v=[a]+1

= O(p%) + O(m®) + O(m?).
But since g < 1, it follows that

[Spl < Km® Y~ g |bu(—a = 1)] = O(m®), m = oo
n=0

and thus Theorem 22 is proved.
Theorem 27. If —oco < ny < 0, then

log |Apy + AX L+ ...
ng = lim sup 8 [Ank ntl | .
n—00 10g n

Let a < 0 be the right-hand side of the last equality, then
|Rk\ = |Ak + Am_1 < Knote,

where £ > 0 and n > N = N(e) and the series

(4.7) f: Akp,
v=0

is convergent provided that s > a. Indeed, let € > 0 be such that s > o + ¢ and

m >mn > N(g), then
> Auby(
v=n

Rt S B u(8) — by r(8) — B b~
p=n+1

s 1
=0m™** ")+ Y 0 <7sa5+1> + O(mtes),
p=n-+1 H

and the last estimates ensure the convergence of the series (4.7). Then in the
same way already used, it can be proved that lim,,— Sﬁl(s) really exists which
means that the series (4.1) is Ej-summable for each s > a.
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Let now the series (4.1) be Ej-summable for s = a < 0. Then,
a) Z Aﬁfu(a)g“bu(—a - 1), cu(a) =0(n"), n — .

For the sum N
Shov=>Y Af N>m,

it holds the representation

N
N—Zg“b —a—1) ch( )AL ()
N
}jg% —a—1) Y en(@) Al () = SUy (@) + 5Py (a)
n=p
But
n N
en(@) A (@) = > en(a)(Sh_ (@) = Sh_,_1 (@)
=—Cm(06)5517u71(04)+0N( SN H Z )_C;H—l(a))
N-1
=0(m*)+O(N*)+ Y O~

= 0(m®) + O(mla)) + O(m*) = O(m®).
Since g < 1, it follows that

SW (o Zg“|b —a—1)| = O(m®).

m7

Further,

152 (@) \<KZg“|b —a—1)|u®

V™ 3 (VA (o = D] < Ki(/g)™ < Kam®,
pu=m
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and hence,

Sm.n(a) =O0(m®), N >m,
which yields that

|AE, + A1 + ... | = O(m?®)

and thus the proof of Theorem 27 is finished.
Another proof of the basic Theorem 25 leads to the following statement:

Theorem 28. Let the series (4.1) be Ei-summable for s = so and let
> AF(s9) be the Ey-transformed series. Then this series is Ej-summable
for each s such that Rs > Rsg with sum

f(s)
I'(s — s0)['(1 — so)

(4.8)

_ %Aﬁ(so)bﬂ(—s) ;) F(Z(j::: ;r_l)so)guby(_so —1).

This proof is based on the already known representation
- n
Ak(9) = 3 b(on) (1) o s
-0 H
o
as well as on the equality

(Z) AN, (505 8) = en(80; 8)bu(—8)bp—p(s — so — 1),

where

cn(s0;8) = I'(s — 50)T'(1 = s0)

Then,

Sﬁ@(s) = Z Cn(SOS 3) Z Aﬁ(SO)gniubu(_s)bn—u(S — 80 — 1)
n=0 pn=0
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where
m
Um,u(SOS 5) = Z cn (505 S)Qn_ﬂbn—u(s—so -1)
n=p
m—p
Z Cutv(50:5)9" by (s — 59 — 1).
v=0
If p is fixed, then
o¢]
10t (07 8) = (50 5) ZO o (07 8)bu(s — 59— 1),
=
where the series is convergent Then,
Z S (50) (b (=)t (503 8) — by 1 (=)t 1 (505 5))
m—1
+58,(50)bim (=) ttmm (503 8) = > SF(50) U (503 9)
pn=0

+Sk (SO)b ( )Um m(307 )
But if 0 = Rs > 09 = Rsop, then

Sﬁl(so)bm(—s)um,m(so; ) =0(m 7m) =o0(1), m — oo,

and it remains to consider the sum

m—1

Sk (s) = Z Sﬁ(so)Um,u(so; s).

n=0

If p is fixed, then

im Uy, (805 8) = Upn(s0;8) = bu(—3)uu(s0;8) — buy1(—8)uur1(so; s),

m—0o0

and in order to show that there exists lim,, oo S¥ (s) it has to be proved that
the sequence

(50 Z\Umuso, , m=1,2,3,...
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is bounded for Rs > Rsg. The proof is based on the inequality

Z|Umu30a |<Z|U(1 (s s |+Z| (5058

= Ly (505 8) + Tin(s05 8),

—p—
= > (bu(—9)curv(5055) = buy1(—8)cuiui1 (505 5))g" bu(s — s — 1),
and

Uﬁ)u(so; 5) = cm(50;9)g™ Hbm—p(s — so — 1)by(—s).

Let p be an integer greater than —o, then the sign of b,(—o) is (—1)? for each
1 > p and, as before, one gets that

p—1
T (505 5) < lem(5038)1 D g™ |bm—p(s — 50— 1)[[bu(—5)|
n=0
m—1
+|Cm 505 S ‘ gm lu|bm o 8_80 - 1)Hb ( )‘
u=p
— T#Zl)(so; s) + T(Q)(so, ),
where
T\ (s0;8) = O(m*g™m? ") = o(1), T (s0;8) < Km?
Further,

bu(_S)Cquu(SO? s) — bu+1(_5)cu+u+1(50§ s)

p—s+1 p+v+1
=b,(— ; 1-
”( S)CN—HJ(SO’S)( w+1 u+u+1—so>

( s w+v+1 >
C“+V
,u—l—y—l—l—so ,u—i—lu—i—y—i—l—so

=0((p+ 1) Hp+v+1)7™).
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If oy <0, then

m—pu—1
U] < Kt )70 Y (b v+ 176 b0 — 00— 2)
v=0
= K
<K(u+1)"7 1N b (0 —0p— 1) < —————
= (}u—i_ ) Vz:og V(U g0 )— (Iu_i_l)a—cro—l’
whence
m—1 1
L (s0;5) < Ky Z e oot 1
= (1)

Since (p+ v+ 1)7° < (u+1)7° + v when 0 < 0¢ < 1, it follows that

U (505 5)]

m—pu—1
< Ko(p +1)~otoo~1 Z §"b, (0 — oy — 1)
v=0

m—p—1
+Ko(p+ 1)1 Z §"by (0 — o9 —1)
v=0

1 1
<K
=2 ((N‘i‘ 1)o—00—1 + (u+ 1)0+1> ’

and hence,

m—1 m—

1
Lin(s0;s) < K3 Z W Z TES O

It remains the case when o > oy > 1. Then,

Lm(80§ 8)
m—1 m—pu—1 m—1
SKs Y (u+1)70 > (n+v)0g"by(0 — 00— 1) = Kg Y hy(00;0)
u=0 v=0 v=0
where
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and since it was already proved that h,(o¢;s) = O(¥°°),v — oo, it follows that

m—1

L (s0;s) < Ky Z v7°¢%b,(0c —og—1) = O(1).
v=0

Theorem 29. If the series (4.1) is Ex-summable for s = sg, then it is |Ey|-
summable for each s such that s > Rsg.

By assumption, the series

ZA’“so K(s0) = HnHZ()”“a (50— 1)(s0 = 2) .. (50 — 1)

is absolutely convergent.
If Rs < 0, then since

4k (s)] < g Aol (1) (25) 1)

and

1
|A"THN, (5038)] < |c(50;8)|/ t5+”_“_1(1 — )P dt,
0
d=R(s—sp), o =RNs,

it follows that

Un(s0; s) = |e(s0; 8 \Z|Ak ) < le(s0;s |Z\Ak $0)|Lim, (505 8),
n=0

b (e (et N
st = [ Ay () (1)
7M(0 ) 0 ( ) Z [ g+ 1

v=0

where

But

1 12
_ _ -1 prv (gt

1 p+1
1
- / £ 1 — e <7Q+ > dt,
0 q—+ 1-— qt
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and hence,
Unn(s0;8) < le(s038)] D Af(s0)[ Lu(s0; )
n=0
c(so; s ZAk 50)(Lyu(058) = Lyt (503 5))
+|C(80;8)|Am(80) m (505 5),
where
Ali(s0) = |A§(s0)| + [AT (s0)| + -~ + | Afi(s0)].
But

Ab(s0) < Also), n=0,1,2,...,

1 H

) @+ D)A =DV g1
Losos) < [ 11 —p (Y dt
u(50;8) /0 S <q+1—qt g+1—qt

_ _ q+1
< [0 1-t) " ————dt=L(sy;s), p=0,1,2...,
[t = L), s

L,(s058) — Ly+1(s0; 8)

1 p+1
1 dt
:/ R O R <L> — >0, £=0,1,2,...
0

q+1—qt q+1—qt

hence,
m—1

Un(s0;5) < [c(s0; s)|-A(s0) Z 1(8058) = Lyt (s0; )

+|c(s0;58)[A(s0)Lo(s0; $) = |c(so; S)‘A(So)Lo(So; s), m=0,1,2...,

which means that the series -
k
D |AL(s)
n=0

is convergent.

9

119

As in the case of Dirichlet and of factorial series, a consequence of Theorem
29 is the existence of abscissa 7, of | Ej|-summability of the series (4.1) Moreover,

if

1 " /n

k —

Ap = CESIEE E (M) " tay, n=0,1,2,...,
n=0

then statements hold, whose formulation as well as their proofs are completely

analogous to those for the Dirichlet and the factorial series, namely:
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Theorem 30. Ifn; >0, then

plog(lA’él + AR+ ARD

n, = limsu
logn

n—oo
Theorem 31. Ifn, <0, then

o og(JAR] + AR |+ )
nE = lim sup

n—00 logn

In the proofs of some theorems it was used the function

()—/OO *t—1+t—ﬁ+ +(—1)p*1£ o1 gy
aner=1\° 91 (»— 1) ’

where v > 0 and p = [a] + 1. But, in fact, it can be expressed by means of the
Euler Gamma-function. To that end the Taylor formula with reminder term in

an integral form is needed, namely:

fla+h) = f(a)+ f'(a)h + f"(a)2'h* +--- + f(:%)l()a!)hnl

1 " _ n\n—1 r(n) a
+<n_1>!/0(h B L) (a + ) d.

In particular,
2 Pl 1

" ¢
—t_ 4 (=)t = — )Pl
e 1+t Tl + (-1) i _(p—l)!/o(t wP" e " du,

and hence,

_ 1 o —a—1 ¢ —u —le—u "
g(a) = 7@_1)!/0 t dt/o (t —u)P d

1 o0 o0
= o1 / e du/ U (V) L/
-+ Jo u

_ - e P qy, 1 v P(1 — )P L do
(- 1)!/0 a /0 (L —vpd
1 Tlp-—o)l(a—p+ () Tp-a)ll-p+ta)

T (p-1) T(a+1) T(a+1)
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5. Summation of factorial series by Borel’s method

It is at hand now to apply the Borel integral method for summation to factorial
series of the kind

> nla,
(5.1) ;8(84—1)(84—2)...(84—707 s70,-1,-2,....

Let first s > 0, then for the function

(5:2) s() :1;)8(84-1)(5:2)...(84-71)
one gets that
(5.3) B, (x) = Z apl'(s)I'(n+1) 2"

IF'(s+n+1) n!

1 1
t"(1—t)*tat = / (1 —t)* Lo (at) dt,
0

where

. a,x"
vo() :Z le :
n=0 ’

For the series (5.1) is said that it is B-summable, if ®4(z) is an entire function
and, moreover, the integral

/ ¢ [®%(2)] da
0

is convergent. In such a case ¢g is also an entire function. Indeed, from (5.2) it
follows that for each R > 0 there exists a positive integer N = N(R) such that

s+n+1)

ot KR D

and hence,

|z]

n n

n!

provided that n > N, |z| < pR,0< p< 1,0 =Rs.
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Further, the integral representation (5.3) yields that

T T

(5.4) %@0=A$Q—3>&me@=x*Gwm

x
Gu(w) = [ (=1 () at.
0
Let the series (5.1) be B-summable for some s with Rs > 0. If
T
hw) = [ e
0
then lim, o hs(z) exists. If 36 > 0, then (5.4) and the equality
Gursl) = [ @) Ln(t) e
0
yield that
z B I'(s+0)
G, = c(s,6 — )G (t) dt, c(s,8) = 2
o) = e(s.8) [ o =07 GLOd cl0) = 1

Further, ®,(z) = e*h)(z), Gs(x) = 2°P4(z) = x°e”h/(x) and

xr
Gors = cls.) [ = 0P im0 ar
0

1
— o(s,0) / (1 — )14 H (at) dt.
0

We need now to study the integral

Fls,0:7) = / et 5(1) di
0

T 1
:c(s,é)/ e! dt/ (1 — )~ tute™n! (tu) du
0 0
1

= (s, 5)/ (1 —u)’tu® du/ e M=/ (tu) dt.
0 0

But -
/ e M=/ (tu) dt
0
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1 R )
= +

e M= (tu)

T
/ h(tu)e 0" gt
0

—o(1—u) L—u [* —t(1—u)
—e hs(zu) + hs(tu)e dt,
u 0

and hence,
1
F(s,0;2) = c(s, 5)/ w1 —w)0 e W b (2u) du
0

1 T
+c(s,0) / w1 —u)° du/ h(tu)e "0 gt
0 0

=U(s,0;2) + V(s,d;z).
The function hg is bounded, i.e
there is n = n(e) € (0, 1), such that

8(5\/ Y1 —w)i@tdu <,

where o = Rs,d = RJ.
Further,

"
U(s,d;x) = c(s,é)/ w1 = w)? e (zu) du
0

1
—1—0(8,5)/ w1 — ) le W (2u) du.
n
But
1

Un(s,8;)| < Mle(s, )| / -

Y1 —w)@tdu < e,
n

and from the inequality

1
[Ur(s,8;2) < Me(s, 6)]e= (=" / w1 = u)? du,
0

it follows that lim, o Ui(s,d;x) =0, i.e., limy o U(s,0;2) = 0.
The integral

1 [e'e)
w1 —w)d du s(twe(—t(1 —u
/0 (1—w)ld /0 ha(tu)e(—t(1 — u)) dt

123

o hs(x) < M < oo,z €(0,00). If ¢ >0, then
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is absolutely convergent since it is majorized by the convergent integral

1 [e§) 1
/ w1 — u)? du/ e =) gt = / w11 — w)? 1t du.
0 0 0

Hence, there exists

1 o)
lim F(s,d;x) = c(s,é)/ w1 —w)’ ! du/ h(tu)e =% g,
and thus it is established that the series (5.1) is B-summable for each s+ § such
that R > 0.

Let now s < 0,s # 0,—1,—2,..., m be a positive integer such that R(s +
m) > 0, ¥, s(z) be the function defined by the series

oo

B anx" . — anl'(s)['(n+1) z"
Vm,s () _nz;s(s—i-l)...(s—i-n) _nz; I(s+n+1) nl

and let
anpx"
-1
Zm A D). ) T Yme@)
then
o m— | 00
nla
~zg n —x d
/O e ms g G+1). S+n)+/0 € Q/)m,s(w) €T

which means that the B-summability of the series (5.1) is equivalent to the con-

vergence of the integral
[e.e]
/ e ", s() da
0

Further,
U a(z) = 1 i apL'(s+m)'(n—m+1) 2"
s _5(5+1)...(5+m—1)n:m I'(s+n+1) (n—m)!
1 = apa” !
- n (L — )t dt
s(s—l—l)...(s—l—m—l)nzzm(n—m)!/o ( )
xm

1
- s(s+1)...(s+m—1) /0 (1= t)" ™ o, (at) dt,
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where -
B CntmT"
n=0
ie.,
z® v s+m—1 d
WS(I)_z(s+1)...(s+m—1)/0 (@ =)™ om{u) du
x*S
- Gms )
Gl EmonCms@
where

G () = /0 "o = w) L (w) du, Gos(u) = Ga(u).

Then, substituting s + §, Rd > 0 for s, the above equality becomes
Gm.sis(x) = c(s,0) / (2 — u)° LG (u) du.
0
If the series (5.1) is B-summable, then

x
lim H,, s(z) = lim e by s () dt

T—r00 T—r00 0

exists and by following a way completely analogous to that just used, one gets

that there exists N

Hm [ e Yy, o 5(t) di

T—r00 0

1 oo
= c(s,0) / w1 —u)? du/ Hm,s_ng*t(l*“) dt.
0 0

So, it is proved the following theorem:

Theorem 32. Let the series (5.1) be B-summable for s = sg. Then it is B-
summable for each s such that Rs > Rsg and its B-sum f(s) is a meromorphic
function in the half-plane {s : Rs > Rso} with possible simple poles at the points
0,—1,-2,.... Moreover, if Rsg > 0, then

F(S) 1 so—1 o—so oo 41w
Mooy v [ e

and if Rsg < 0, then

f(s) =
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m—1

nla,
S)ZZs(s—l-l)...(s—l—n)

n=0

+L /1 w1 — u)¥ %0 du /OO Hip o (ut)e 079 gt
L(s0)L'(s — s0) Jo 0 ’

where m is a positive integer such that R(so+ m) > 0.

The series (5.1) is absolutely B-summable, shortly |B|-summable, if the inte-

gral
| el
0

is convergent. Let this series be convergent for s with s > 0 and let

w(z) = /OW et @y(xt)| dt, € (0,00).

Then, since
Bs3(0)] < Je(s, e~ [ (o= 0l w)] du,
0

where d = %6 > 0 and 0 = Rs, it follows that

1 T
@0 5(2)] < le(s, 8)|z—— / W (1= u)i= du / et (1) di.
0 0

Further, an integration by parts yields that

xr
/ e, 5(1)] dt < |c(s, 6) |/ 11— w)d L= ()
0

(s, 0) \/ 1 —u) du/ w(tu)eft(lfu) dt
0
1 x
SM\C(S,é)\{ / wr e [t [0 )

whence "
| et
0

< Mlc(s, 0) {?((?71(5)) + /01 w1 —w) du /Ooo e~t1—w) dt} :
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i.e.

[ e tnsto e < 20t DG

and thus the following theorem is established:

, = €(0,00),

Theorem 33. If the series (5.1) is |B|-summable for s = sg, then it is |B|-
summable for each s such that s > Rsg.
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