
Addendum

REGIONS OF CONVERGENCE OF DIRICHLET’S, NEWTON’S

AND FACTORIAL SERIES

Peter Rusev

The region of convergence of each of the series studied by Obrechkoff is of
the kind {s ∈ C : ℜs > τ, −∞ ≤ τ < ∞}, i.e., it is either the whole complex
plane or a “right” half-plane with respect to a line orthogonal to the real axes.
This is, in fact, a consequence of the validity of Abel’s type assertions for each
of the series in question. The proofs of the last ones are based on a simple “key”
lemma which is nothing but a version of a criterion for convergence of series due
also to Abel, namely:

Lemma∗. If the series
∞∑

n=0

un, un ∈ C, n = 0, 1, 2, . . . ,

is convergent and {λn}
∞

n=0 is a bounded sequence of complex numbers such that

∞∑

n=0

|λn − λn+1| < ∞,

then so does the series
∞∑

n=0

λnun.

P r o o f. Let

sν =

ν∑

k=0

uk, ν = 0, 1, 2, . . . ,

and suppose first that:

I. s =
∑

∞

ν=0
uν = 0. Then, the assertion is an immediate consequence of the

equality
n+p∑

ν=n+1

λνuν =

n+p∑

ν=n+1

λν(sν − sν−1)

= λn+psn+p − λn+1sn +

n+p−1∑

ν=n+1

(λν − λν+1)sν .
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II. If s 6= 0, then the series
∞∑

n=0

ũn, ũn = un −
s

2n+1
, n = 0, 1, 2, . . . ,

is convergent with sum s̃ = 0. Hence, the series
∞∑

n=0

λnũ =
∞∑

n=0

(
λnun −

λns

2n+1

)

is convergent and so does the series
∞∑

n=0

λnun =
∞∑

n=0

λnũn +
∞∑

n=0

λns

2n+1
.

Theorem 1∗. If the series
∞∑

n=0

an

(n+ 1)s
, an ∈ C, n = 0, 1, 2, . . . ,

is convergent for s = s0 ∈ C, then it is convergent for each s ∈ C such that

ℜs > ℜs0.

P r o o f. Let now

ξn(s, s0) =
1

(n+ 1)s − s0
, n = 0, 1, 2, . . . ,

then
an

(n+ 1)s
= ξn(s, s0)

an

(n + 1)s0
, n = 0, 1, 2, . . . .

Further,

ξn(s, s0)− ξn+1(s, s0) =
1

(n+ 1)s− s0

{
1−

(
1−

1

n+ 2

)s− s0
}

=
1

(n+ 1)s− s0

{
s− so

n+ 2
+O

(
1

n2

)}
, n → ∞,

hence

|ξn(s, s0)− ξn+1(s, s0)| = O

(
1

nσ − σ0 + 1

)
, n → ∞,

where σ = ℜs, σ0 = ℜs0.

After replacing s by −s in the series
∞∑

n=0

ans(s− 1)(s− 2) . . . (s− n),
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it becomes
∞∑

n=0

(−1)n+1ans(s+ 1)(s + 2) . . . (s+ n)

and hence, the validity of a statement like Theorem 1∗ for the Newton series is
equivalent to the following one:

Theorem 2∗. If the series
∞∑

n=0

ans(s+ 1)(s + 2) . . . (s+ n)

is convergent for s = s0 ∈ G = C \ {0,−1,−2, . . . }, then it is convergent for each

s ∈ G such that ℜs < ℜs0.

P r o o f. If

An(s) = an

n∏

ν=0

(s+ ν), n = 0, 1, 2, . . . ,

then

An(s) = An(s0)ηn(s, s0), n = 0, 1, 2, . . . ,

where

ηn(s, s0) =
n∏

ν=0

s+ ν

s0 + ν
, n = 0, 1, 2, . . . .

Further,

ηn(s, s0) =
Γn(s, s0)

(n+ 1)s0−s
,

where

Γn(s, s0) =
s

s0

exp(−γns)

exp(−γns0)

n∏

ν=1

(
1 +

s

ν

)
exp

(
−
s

ν

)

(
1 +

s0

ν

)
exp

(
−
s0

ν

) ,

γn = log(n + 1)−
n∑

ν=1

1

ν
,

and, moreover,

lim
n→∞

Γn(s, s0) =
Γ(s0)

Γ(s)
.

Then,

ηn(s, s0)− ηn+1(s, s0)
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=
Γn(s, s0)

(n+ 1)s− s0

{
1−

(
n+ 2

n+ 1

)s− s0
En(s, s0)

}
,

where

En(s, s0) = exp {−(γn+1 − γn)(s− s0)}

(
1 +

s

n+ 1

)
exp

(
−

s

n+ 1

)

(
1 +

s0

n+ 1

)
exp

(
−

s0

n+ 1

) ·

Further,
(
n+ 2

n+ 1

)s− s0
=

(
1 +

1

n+ 1

)s− s0
= 1 +O

(
1

n

)
, n → ∞,

exp {−(γn+1 − γn)(s− s0)}

= exp

{
−

[
log

(
1 +

1

n

)
+

1

n+ 1

]
(s− s0)

}
= 1 +

(
1

n

)
, n → ∞

and (
1 +

s

s0

)
exp

(
−

s

n+ 1

)

(
1 +

s0

n+ 1

)
exp

(
−

s0

n+ 1

) = 1 +

(
1

n

)
, n → ∞.

Hence,

En(s, s0) = 1 +

(
1

n

)
, n → ∞,

i.e.,

ηn(s, s0)− ηn+1(s, s0) = O

(
1

nσ0 − σ + 1

)
, n → ∞,

where σ0 = ℜs0, σ = ℜs and the validity of Theorem 2∗ is a consequence of
the “key” Lemma∗.

After the translation s 7→ s− 1 the factorial series
∞∑

n=1

an

(s+ 1)(s + 2)(s + 3) . . . (s+ n)

becomes
∞∑

n=0

an+1

s(s+ 1)(s + 2) . . . (s+ n)
,

i.e., it has to be proved the following theorem.
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Theorem 3∗. If the series
∞∑

n=0

bn

s(s+ 1)(s + 2) . . . (s+ n)

is convergent for s = s0 ∈ G, then the same is true for each s ∈ G such that

ℜs > ℜs0.

P r o o f. But if

Bn(s) =
bn

s(s+ 1)(s + 2) . . . (s+ n)
,

then

Bn(s) = Bn(s0)ζ(s, s0),

where

ζ(s, s0) =

n∏

ν=0

s0 + ν

s+ ν
= η(s0, s)

and the assertion is again a consequence of the “key” Lemma∗.

Let the set D of x ∈ R, such that the Dirichlet series is convergent for s = x,
be non-empty and let τ ∈ [−∞,∞) be defined as infD. If τ ∈ R, then it is easy
to prove that this series is convergent in the half-plane Hτ = {s ∈ C : ℜs > τ}
and diverges in the half-plane C \ Hτ . Indeed, if s0 ∈ Hτ , then there exists
x0 ∈ (τ,ℜs0) such that the Dirichlet series is convergent for s = x0 and hence by
Theorem 1∗, it is convergent for s = s0. On the contrary, the assumption that
there is a point s0 outside Hτ such that this series is convergent at this point
contradicts to the definition of τ .

Further, it holds the equality

τ = lim sup
n→∞

log |a0 + a1 + · · ·+ an|

log(n+ 1)

which may be called formula of Cauchy-Hadamard for the Dirichlet series. More-
over, it holds also for the series of Newton as well as for the factorial series.
This formula can be established as Obrechkoff has done this for the regions of
Euler-Knopp summation of the series already mentioned. It may be “guessed” by
taking into consideration that the usual convergence of a series is its Euler-Knopp
summation when the parameter k = 0.


