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MAXIMUM PRINCIPLE FOR WEAKLY COUPLED LINEAR

NON-COOPERATIVE SYSTEMS

G. Boyadzhiev, N. Kutev

In this article is considered the validity of the maximum principle for non-
cooperative linear parabolic systems. Unlike the cooperative ones, when
cooperativeness is a sufficient condition for maximum principle, simple ex-
amples show that for non-cooperative systems there is no general validity of
the maximum principle. In this work are given some conditions for global
on time variable validity of the maximum principle, as well as some local on
time sufficient conditions for it.

1. Introduction

In the theory of the differential equations the maximum principle takes its place
as convenient tool in studying uniqueness, stability and solvability of elliptic and
parabolic equations and systems. Since 1927, when E.Hopf introduce the idea of
a maximum principle in [12], many authors studied maximum and comparison
principles. The results cover elliptic and parabolic equations, cooperative systems
and some cases of non-cooperative elliptic systems. Nevertheless, the validity of
maximum principle for non-cooperative parabolic systems is still open problem
due to the lack of a proper tools to study maximum principle in this case. For
instance, in the case of cooperative elliptic systems one may use the theory of
positive operators on positive cone and obtain spectral properties of the coop-
erative operator (see [18]) since the inverse operator of the cooperative system
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is positive in a weak sense. Furthermore, a remarkable study on the spectral
properties of a cooperative fully-coupled elliptic system is published in [6], where
existence of a principal eigenvalue with strongly positive principal eigenfunction
is proved for a bounded, open and connected domain, with no requirement of
the regularity of the boundary. This result is fundamental for the proof of the
comparison principle for weak solutions of non-cooperative systems in [3]. Un-
fortunately, considering non-cooperative parabolic systems one can not rely on
such useful spectral properties.

In this paper is studied the validity of the maximum principle for non-
cooperative linear systems of parabolic PDE in a bounded domain.

Let Ω ⊂ Rn be bounded domain with at least C2 smooth boundary ∂Ω. We
denote Q = Ω × (0, T ) and the parabolic boundary of Q by Γ = (∂Ω × [0, T ]) ∪
{Ω× {t = 0}}. We use the standard order in RN , i.e. u < v, u, v ∈ RN if uk < vk

for every k = 1, . . . , .N .
In this article are considered weakly-coupled linear systems of uniformly

parabolic equations in Q

(1) Pu = f

or component-wise

ukt −

n
∑

i,j=1

Dj

(

a
ij
k (x, t)Diu

k
)

+

n
∑

i=1

bik(x, t)Diu
k + ck(x, t)u

k

+
N
∑

k 6=l=1

mlk(x, t)u
l = fk(x, t)

k = 1, . . . , N , with boundary conditions on Γ

(2) uk(x, t) = gk(x, t)

Note that for the sake of simplicity in notations we suppose mkk = 0 for all
k = 1, . . . , N .

System (1) is uniformly parabolic one, i.e. there are constants λ,Λ > 0 such
that

(3) λ |ξ|2 ≤

n
∑

i,j=1

a
ij
k (x, t)ξiξj ≤ Λ |ξ|2

for every k and any ξ = (ξ1, . . . , ξn) ∈ Rn.
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The right-hand side of (1) is supposed bounded function, i.e. |f l(x, t)| ≤ C

in Q for every l = 1, . . . , N , where C > 0 is a constant. Coefficients ck and mlk

in (1) are supposed continuous in Q, aijk (x, t) ∈ C1+α(Q) ∩ C(Q) and bik(x, t) ∈
C1(Q) ∩ C(Q). We presume in addition that for every k = 1, . . . , N

(4)







n
∑

i=1





n
∑

j=1

Dja
ij
k + bik(x)





2

, |ck|







≤ b

holds, where b > 0 is a constant.

For sake of completeness we recall some well-known definitions. In the first
one the terminology follows [11]

Definition 1. System (1) is cooperative one if mlk ≤ 0 for l 6= k.

The second one defines is the classical comparison principle:

Definition 2. Let u and u are sub- and super-solutions of (1), i.e. Pu ≤ f ,
Pu ≥ f . Comparison principle holds for system (1) if u ≤ u on Γ yields u ≤ u

in Q.

Note that in the case of linear systems comparison principle and maximum
principle are equivalent terms. Indeed, let u and u be sub- and super-solutions
of (1) and denote v = u − u. Suppose maximum principle hold for system (1).
Then v = u − u ≥ 0 on Γ and by maximum principle v = u − u ≥ 0 in Q, i.e.
comparison principle holds for P as well. If comparison principle holds for P , one
can consider u ≡ 0 and therefore maximum principle holds as well.

Definition 3. Solution of (1), (2) (sub- or super-solution) in a weak sense

is a vector-function u(x, t) ∈
(

C2(Q) ∩ C(Q)
)N

, such that for every non-negative

test function η ∈
(

W
1,1
c (Q) ∩ C(Q))

)N

equality (inequalities )

∫

Ω
uk(x, t).ηk(x, t)dx+

∫

Qt



−ukηkt +

n
∑

i,j=1

a
ij
k (x, t)Diu

kηkxj



 dxdt+

+

∫

Qt

(

n
∑

i=1

bik(x, t)Diu
kηk + ck(x, t)u

kηk

)

dxdt+
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+

∫

Qt

(

N
∑

l=1

mlk(x, t)u
lηk − fkηk

)

dxdt = 0 (≤ 0,≥ 0)

holds for every k = 1, . . . , N , and every 0 ≤ t ≤ T,Qt = Ω× (0, t).

Most results for positiveness of the classical solutions, or validity of the com-
parison principle on classical sense, are obtained for cooperative systems (see
[1, 2, 7, 8, 9, M, 17, 19] for optimal control problems, [10] for diffraction-diffusion
systems arising in medicine, [13] for stabilized non-linear system type “heat trans-
fer”, in [4] for general quasi-linear cooperative reaction-diffusion systems and
many others). One can summarize all this results as “cooperativeness is suffi-
cient condition for the validity of the comparison principle for parabolic systems”
(see for instance [4]). On the other hand, the following simple example shows
that comparison principle is not a feature of every parabolic system.

Example 1. Let Q = (0, π) × (0, T ). Consider the problem

∣

∣

∣

∣

u1t − u1xx − u1 + u2 = 0
u2t − u2xx = 0

in Q

with initial and boundary conditions u1(0, t) = u2(0, t) = u1(π, t) = u2(π, t) = 0
for t ∈ [0, T ], u1(x, 0) = u2(x, 0) = 0 for x ∈ [0, π].

This system is non-cooperative, since m12(x, t) = 1 > 0. One solution of
this system is the trivial one v1 = v2 = 0, which is a sub-solution as well. One
super-solution is w1 = −t. sinx, w2 = sinx. Since −t. sinx = w1 < v1 = 0 in Q

there is no the comparison principle for the above system.

So the very reasonable question arise: is there comparison principle for some
non-cooperative system of parabolic equations? In fact,one of the main results in
this paper – Theorem 1 shows the strong correlation between the global on time
comparison principle for linear non-cooperative parabolic systems and the exis-
tence of positive solution of the L2-adjoint operator of the system. Furthermore,
comparison principle holds as well if the first eigenvalue and the corresponding
first eigenfunction are positive. Note that unlike cooperative elliptic systems,
which first eigenfunction is positive, in the parabolic case this is not always true.
For instance, Theorem 3 gives some conditions such that comparison principle
does not hold for system (1), and therefore its first eigenfunction is not positive
one.

In the last chapter of this article is applied another approach to the problem of
validity of the comparison principle. In Theorem 2 are given some conditions on
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the coefficients of the system such that in a small neighbourhood of some point
t0 comparison principle holds. The result is useful to investigate the maximal
interval (o, tm) in which the comparison principle holds for system (1). The
result is based on the validity of the comparison principle for the elliptic system
Pu(t0, x) = f .

Some of the results in this paper are published in [5].

2. Comparison principle for non-cooperative systems and the

first eigenvalue

The strong connection between the validity of the comparison principle and the
first eigenvalue of the operator is well-known feature of elliptic equations and
systems. The main result obtained in this section is the validity of global on t

comparison principle for parabolic systems.

Theorem 1. Let P ∗ be L2-adjoint operator of P . Comparison principle holds
for system (1), (2) if

(i) there is a positive solution of P ∗v = F (x, t) for some F (x, t) > 0
or

(ii) if the first eigenvalue λ of P ∗ is positive one and the corresponding eigen-
function u∗ is positive one as well.

Note that for parabolic systems the first eigenfunction may not be positive
one, unlike the case of elliptic operators.

P r o o f. Let u and u be sub- and super-solutions of (1). Denote w = u− u.

1. Let F (x, t) > 0 and there is a positive solution of P ∗v = F (x, t). If we
suppose that there is no comparison principle for P , then w− = min(w, 0) 6= 0.
Let Q− = supp{w− ≤ 0}. Then 0 ≤ (Pw−, v) = (w−, P ∗v) = (w−, F ) ≤ 0.
Therefore w− ≡ 0 and w = u− u > 0.

2. Let the first eigenvalue λ of P ∗ is positive one and the corresponding
eigenfunction u∗ is positive one as well. Suppose w− ≤ 0. Then u∗ is suitable
test-function and 0 ≤ (Pw−, u∗) = (w−, P ∗u∗) = (w−, λu∗) ≤ 0. Therefore
w− ≡ 0 and w = u− u > 0. �

3. Another approach the comparison principle for non-cooperative

systems

In this section we use the conditions for validity of the comparison principle for
non-cooperative elliptic systems, obtained in [3]. The idea of transferring that
results to the case of parabolic equations is very simple – if we fix t variable we
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reduce the parabolic system to the elliptic one and we can apply the conditions
for the validity of comparison principle for elliptic systems.

Let denote by LMu the operator
(5)

LMu = −

n
∑

i,j=1

Dj

(

a
ij
k (x, t)Diu

k
)

+

n
∑

i=1

bik(x, t)Diu
k+ck(x, t)u

k+

N
∑

k 6=l=1

mlk(x, t)u
l,

where k = 1, . . . , N . Let denote by LM−u the cooperative part of (5), i.e. the
operator

−

n
∑

i,j=1

Dj

(

a
ij
k (x, t)Diu

k
)

+

n
∑

i=1

bik(x, t)Diu
k + ck(x, t)u

k +

N
∑

l=1

m−
lk(x, t)u

l,

where k = 1, . . . , N and m−
lk(x, t) = min{mlk(x, t), 0}. Let L

∗
M−

be the L2-adjoint
operator of LM− .

Theorem 2. Let (1) be a weakly coupled, uniformly parabolic system and the
cooperative part of L∗

M−
is fully coupled. Then the comparison principle holds for

of system (1) if for every t ∈ [0, T ] there is x0(t) ∈ Ω such that

(6)

(

λ(t) +

N
∑

k=1

m+
kj(x0, t)

)

> 0 for j = 1, . . . , N

where λ(t) is the principal eigenvalue of the operator LM−(t) in Ω.

Theorem 2 is formulated for fully-coupled cooperative part of the system (1)
and the result is based on Theorem (3) in [3]. If the system is competitive one,
we can employ Theorem (4) in the same paper. One can formulate a weaker
statement instead of Theorem (1) – substitute the principal eigenvalue of the
operator LM− in Ω λ one with λk – the principal eigenvalue of the operator

−
n
∑

i,j=1

Dj

(

a
ij
k (x, t)Diu

k
)

+
n
∑

i=1

bik(x, t)Diu
k + ck(x, t)u

k.

P r o o f. Let u and u be sub- and super-solutions of (1). Then w = u− u is a
super-solition of (1) and Pw ≥ 0. In other words in Q we have

(7) LMw ≥ −wt
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Suppose there is no comparison principle for P , i.e. min{w(x, t)} = w(x0, t0) <
0. If the point (x0, t0) ∈ Q, i.e. (x0, t0) is internal point for the domain, then
wt(x0, t0) = 0. If (x0, t0) ∈ Ω × |T |, i.e. (x0, t0) belongs to the upper lid of the
parabolic cylinder, then wt(x0, t0) ≤ 0. Therefore wt(x0, t0) ≤ 0.

On the other hand, following the proof of Theorem (3) in [3], one can prove
that 0 > LMw(x0, t0). Actually, in the proof of Theorem (3) in [3], which concerns
elliptic systems, we need one additional condition

(8) λ(t) + c+k (x, t) ≥ 0

for every x ∈ Ω and k=1. . . ,N. But in the case of parabolic systems, one can
substitute in system (1)

uk = vk.e(λ0+b)t,

where λ0 = sup |λ(t)| and b is defined in (4) and we obtain that (8) is fulfilled.

Subtitution of wt(x0, t0) ≤ 0 and 0 > LMw(x0, t0) in (7) yields the contra-
diction

0 > LMw(x0, t0) ≥ −wt(x0, t0) ≥ 0

and therefore comparison principle holds for system (1). �

Example 2. Let the coefficients of system (1) depend only on x, i.e. consider
systems of the type

ukt −
n
∑

i,j=1

Dj

(

a
ij
k (x)Diu

k
)

+
n
∑

i=1

bik(x)Diu
k + ck(x)u

k +
N
∑

l=1

mlk(x)u
k = f l(x)

l = 1, . . . , N , with boundary conditions on Γ

uk(x, t) = gk(x).

Let
(

λ+
N
∑

k=1

m+
kj(x0)

)

> 0 for j = 1, . . . , N

and

λ+m+
jj(x) ≥ 0 for every x ∈ Ω and j = 1, . . . , N
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where λ is the principal eigenvalue of the operator LM− in Ω. Then comparison
principle holds for system (1), (2).

If f l(x) = gk(x) ≡ 0 we can write explicitly the solution in the form

u(x, t) = exp−λt v(x)

where v is the principal eigenfunction of

−

n
∑

i,j=1

Dj

(

a
ij
k (x)Div

k
)

+

n
∑

i=1

bik(x)Div
k + ck(x)v

k +

N
∑

l=1

mlk(x)v
k = λv(x).

If the system is cooperative, then v(x) > 0.

The following theorem gives some conditions when comparison principle fails.
It is based on Theorem 7 in [3]. The idea is that if we fix t0 and there is no com-
parison principle for the elliptic system Pu(t0, x) = f then there is no comparison
principle for system (1), (2).

Theorem 3. Let (1) be a weakly coupled, uniformly parabolic system with
fully coupled cooperative part of L∗

M−
. Suppose there is t0 and index j ∈ {1, . . . , N}

such that
(

λ+m+
jj(x, t0)

)

< 0 for some point x ∈ Ω, where λ is the principal

eigenvalue of LM−, and m+
jl(x, t0) = 0 for l 6= j, l = 1, . . . , N . Then the compar-

ison principle does not hold for system (1).
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