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SINGULAR INFINITE HORIZON LINEAR-QUADRATIC
OPTIMAL CONTROL PROBLEM FOR SYSTEMS
WITH KNOWN DISTURBANCES:

A REGULARIZATION APPROACH

Valery Y. Glizer, Oleg Kelis

We consider an infinite horizon linear-quadratic optimal control problem for
a system with known additive disturbance. A weight matrix of the control
cost in the cost functional of this problem is singular, meaning that the
problem itself is singular. Using a regularization method, we obtain the
infimum of the cost functional and a minimizing sequence of state-feedback
controls in this problem.

1. Introduction

In this paper, an optimal control of a linear differential equation with constant
coefficients and with a known additive disturbance is considered. The control
process is evaluated by an infinite horizon quadratic cost functional to be mini-
mized by a proper choice of the control. A weight matrix of the control cost in
this functional is singular. Due to this singularity, the considered problem can
be solved neither by application of the Pontriagin’s Maximum Principle [13], nor
using the Hamilton-Jacobi-Bellman equation approach (Dynamic Programming
approach) [2], i.e. this control problem is singular. To the best of our knowl-
edge, five main methods of solution of singular optimal control problems can be
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distinguished. The first method uses higher order optimality conditions (see e.g.
[3, 12] and references therein). The second method propose to derive a singular
optimal control as a minimizing sequence of open-loop controls, i.e., a sequence
of regular control functions of time, along which the cost functional tends to its
infimum (see e.g. [10] and references therein). The third method is based on a
decomposition of the state space into “regular” and “singular” subspaces, and a
design of an optimal open loop control as a sum of impulsive and regular functions
(see e.g. [4, 16] and references therein). The fourth method proposes to seek a
solution of a singular control problem in a properly defined class of generalized
functions (see e.g. [17]). The fifth method is based on a regularization of the
original singular problem by a “small” correction of its “singular” cost functional
(see e.g. [b, 6] and references therein). Such a regularization is a kind of the
Tikhonov’s regularization of ill-posed problems [15].

In this paper, the singular control problem is treated by its regularization,
yielding an auxiliary partial cheap control problem. An asymptotic analyzes of
this auxiliary problem is carried out. Based on this analysis, the expression for
the infimum of the cost functional in the singular control problem is derived, and
the minimizing sequence of state-feedback controls is designed.

2. Problem Statement

2.1. Initial control problem

Consider the following controlled differential equation:
(1) dZ(t)/dt = AZ(t)+BU(t)+ F(t), t>0, Z(0)=2y, Z(t)eE",

where U(t) € E", (r < n) is the control; A and B are given constant matrices
of corresponding dimensions; B has full column rank r; F(t), t > 0 is a given
vector-valued function, satisfying the inequality [|F(t)|| < aiexp(—~t), t > 0,
a1 > 0 and v > 0 are some constants; Zy € E™ is a given vector; for any integer
m > 0, E™ denotes the real Euclidean space of the dimension m.
The cost functional, to be minimized by the control U(t), is

+o0
(2) j(U)é./iVﬂKﬂDZ@)+LﬂKﬂGU@ﬂdL

0
where D is a given constant symmetric positive definite matrix of corresponding
dimension, D > 0; the given constant r X r-matrix G has the form

G =diag(g1,...,9,0,...,0), 0<qg<r, g >0, k=1,...,q, G>0,
N——

r—q
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the superscript “I” denotes the transposition. Since the matrix G is singular,
the optimal control problem (1)-(2) is singular. We solve this problem in the
class My of admissible controls U(Z,t), (Z,t) € E™ x [0,+00), satisfying the
conditions: (a) U(Z,t) is measurable w.r.t. ¢ > 0 for any fixed Z € E™ and
satisfies the local Lipschitz condition w.r.t. Z € E™ uniformly in ¢t > 0; (b)
the initial-value problem (1) for U(t) = U(Z,t) has the unique locally absolutely
continuous solution Z(t) on the entire interval [0, +00); (c) Z(t) € L? [0, +o0; E™];
(d) U(Z(t),t) € L? [0, +o0; E"].

Let J* 2 infy ety 7 (U(Z,1)). Since D > 0 and G > 0, then the infimum
J* is nonnegative. Moreover, if My # (), this infimum is finite.

Definition 1. The control sequence {Uk(Z,t)}, Up(Z,t) € My, (kK =1,
2,...), is called minimizing in the problem (1)—(2) ifkliI—II—l JUk(Z,t) =T". If
—+o0

there exists U*(Z,t) € My, for which J(U*(Z,t)) = J*, this control is called
optimal in the problem (1)—(2). In this case there exists a minimizing control
sequence, point-wise convergent to U*(Z,t) for a. a. (Z,t) € E™ x [0, +00).

2.2. Transformation of the problem (1)—(2)
Let us partition the matrix B into blocks as B = (Bl, Bg), where B; and By are

of dimensions n x ¢ and n X (r — ¢). We assume that: (A1) det (B3 DBs) # 0.
By B., we denote a complement matrix to the matrix B, i.e., the matrix of
dimension n x (n — r), and such that the block matrix (B.,B) is nonsingular.
Hence, the block matrix l§c = (B, By) is a complement matrix to Bs. Consider
the matrices H = (BQTDBQ)ABQTDBVC, L = B. — ByH, and partition the matrix H
into blocks H = (H1,Hs), where H; and Hy are of dimensions (r — q) x (n —1r)
and (r — ¢) x q. Now, we transform the state in the control problem (1)—(2) as:

where z(t) € E™ is a new state. The transformation (3) is invertible, [7].
Remark. In what follows, we use the notation Oy, xn, for the zero matrix
of dimension ni X ng, excepting the cases where the dimension of zero matrix is
obvious. In such cases, we use the notation 0 for the zero matrix. By I, we
denote the identity matrix of dimension m.
Based on the results of [8] (Lemma 1), we have the following assertion.

Proposition 1. Let the assumption (A1) hold. Then, transforming the state
variable of the problem (1)—(2) in accordance with (3), and redenoting the control
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as u(t), we obtain the control problem

(4) dz(t)/dt = Az(t) + Bu(t) + f(t), 2(0) =2z, t>0,
+o0

(5) OE / [T (1)D=(t) + u” (1)Gu(t)] dt — min,
0

where A = (E,Bg)_l A(L,Ba), f(t) = (['752)_1]:(75)7 zp = (5732)_1 Zo,
» Om=r)xg  On=r)x(rq)
B=(LB) 'B=| I, Oy (r—a) :
Ho I,

D = (£,B:)" D (L,Bs) = diag(D1,Ds), D1 = LTDL > 0, Dy = BYDBy > 0.
The function f(t) satisfies the inequality || f(t)|| < azexp(—~t), t > 0, ag > 0 is
some constant.

Remark. Since the weight matrix of the control cost in J(u) is singular, the
problem (4)—(5) is singular. Moreover, this problem does not have, in general,
an optimal control among regular functions. The class M, of admissible state-
feedback controls u(z,t) in (4)—(5) is defined similarly to such a class My in
(1)~(2). The infimum J* 2 inf,, yenr, J (u(z, 1)) is nonnegative. I M, # 0, this
infimum is finite. The minimizing control sequence {uy(z,t)} and the optimal
state-feedback control u*(z,t) in this problem are defined similarly to those in
the problem (1)-(2), (see Definition 1). In the sequel of this paper, we deal with
the optimal control problem (4)—(5). We call this problem the Original Optimal
Control Problem (OOCP). Since the transformation (3) is invertible, the OOCP
(4)-(5) is equivalent to the initial optimal control problem (1)-(2). The latter
means that the classes M, and My are either both nonempty or both empty. If
M, and My are nonempty, the infimum values J* and J* of the cost functionals
in these problems are finite and equal to each other.

3. Regularization of the OOCP

3.1. Partial cheap control problem
Consider the optimal control problem with the dynamics (4) and the performance

index
+oo
(6) OE / 27 (6)D=(t) + u” ()(G + E)u(t)] dt — min,
0
where £ = diag(O, ...,0,e%, ... 752>, and € > 0 is a small parameter.
—— ——

q r—q
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Remark. Since the parameter ¢ > 0 is small, the problem (4), (6) is a
partial cheap control problem, i.e., an optimal control problem where a cost of
some control coordinates in the cost functional is much smaller than costs of the
state and the other control coordinates. In what follows, we call this problem the
Partial Cheap Control Problem (PCCP).

3.2. Optimal state-feedback control of the PCCP

We look for such a control in the class M, of the admissible controls, which was
introduced earlier for the OOCP. Consider the algebraic matrix Riccati equation

(7) PA+ATP—PS(e)P+D =0, S()2B(G+&BT.

By virtue of the results of [14], if for a given € > 0 the equation (7) has a
symmetric solution P = P(g) > 0 such that the matrix

®) A(e) £ A= S()P(e)

is a Hurwitz one, then the optimal control of the PCCP exists in M, is unique
and has the form

(9)  wi(z) = —(G+ETBT(P)z + A1), (21) € E" x [0,+00).

In (9), the vector-valued function h(t) is the unique solution of the problem
(10) dh(t)/dt = —AT(e)h(t) — P(e)f(t),  h(+o0) = 0.

The optimal value of the cost functional in the PCCP has the form

(11) J* =28 P(e)z0 + 2hT(0)2 + 5(0),

where the scalar function s(t), t € [0,+00) is the unique solution of the problem
(12) ds(t)/dt = —2hT (t) f(t) + KT (£)S(e)h(t),  s(+00) = 0.

4. Asymptotic Analysis of the PCCP

4.1. Asymptotic solution of the equation (7)

Similarly to the results of [8], the matrix S(¢), appearing in this equation, can
be represented in the following block form:

S S
_ ! 2 é O(n—r) x(n—r) Q(n—r) xq
S(E) ? Sl O G—l 9
S5 (1/e%)Ss(e) wx(n)

. O —r r— ~—
G = diag(g1,. .-, ), 52=< g > S3(e) = Ir—q + > HaG ™ H3.
2
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Due to this block representation, the left-hand side of the equation (7) has a
singularity at € = 0. To remove this singularity, we seek the symmetric solution
P(e) of the equation (7) in the block form

Pi(e)  ePy(e)
(13) P(e) = ;
ePf(e) ePs(e)
where the blocks P (g), P2(¢) and P3(¢) have the dimensions (n—r+q) x (n—r+q),
(n—r+q) % (r—g) and (r— q) x (r — q); and PT(e) = Pi(), P(¢) = Py(c).
We also partition the matrix A into blocks with the same dimensions as in (13)
A1 A
A= . Substitution of the block representations for the matrices
As Ay
D, S(g), P(e), and A into the equation (7) yields after a routine rearrangement
an equivalent set of Riccati-type algebraic matrix equations with respect to Pj(¢),
Py(g) and P3(e). This set does not have a singularity at e = 0. Setting formally
€ = 0 in this set of equations, we obtain the system for its zero-order asymptotic
solution {Pl(), PQ(), P30}:
PigAy + AT Pyg — P1oS1Pio — Pao Py + Dy =0,

(14) PrgAgy — Py Pso = 0,

(P3)* — Dy = 0.

Solving the third and second equations of (14) with respect to Psy and P, we
obtain P3y = (Dg)l/Q, Pyy = PigAs (Dg)fl/Q, where the superscript “1/2” de-
notes the unique symmetric positive definite square root of the corresponding
symmetric positive definite matrix, while the superscript “—1/2” denotes the in-
verse matrix for such a square root. Substitution of the above obtained expression
for Py into the first equation of (14) yields the algebraic matrix Riccati equation
with respect to Pjg

(15) P10A1 + A{Plo — Pl()S()PlO + D = 0, S() é A2D2_1Ag + Sl.
Based on the results of [8], we represent the matrix Sy as So = BO~ BT,
B:(éw‘b)v §=<O(”_”X‘1>, 6):( G qu(”“”).
Iy O(r—q)xq Do
In what follows, we assume: (A2) the pair (A7, B) is stabilizable.
Due to this assumption and the results of [1], the equation (15) has the

unique symmetric solution Pjy > 0. The matrix Ag = Ay — S¢Pyp is a Hurwitz
one. Now, using Proposition 1 (D > 0), the above mentioned features of (15),
and the results of [11] (Sections 3.4 and 3.6.1), we can state the following.
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Lemma 1. Let the assumptions (A1)—(A2) hold. Then, there ezists a num-
ber g > 0 such that for all € € (0,e0] the equation (7) has the unique symmetric
solution P(g) > 0 of the block form (13) satisfying the inequalities || P;(e) — Pio|| <
ag, (i =1,2,3); a > 0 is some constant independent of €. The matriz A(e), given
by (8), is a Hurwitz one.

4.2. Asymptotic solution of the problem (10)
To derive this asymptotic solution, we represent the matrix A(e), the vector-
valued function f(¢) and the solution h(t,e) to (10) in the block forms as

Al(E) AQ(E) > (fl(t) > <h1(t E) >
A — 5 t) = 3 h t) — ' )
= (/e it ) 70= (5w ) rea= ()
where Al(E) = A1 - Slpl(E) - ESQ (PQ(E))T, AQ(E) = A2 - ESlpg(E) - ESQPg(E),
As(e) = Az —eSoPi(e) — S3(e) (Pg(s))T, Ay(e) = Ay — 25T Py(e) — S3(e) Ps(e);
fi(t) and hi(t,e) are of dimension n —r + ¢; f2(t) and ha(t, <) are of dimension
r—q.

Substitution of the block representations for A(e), P(e), f(t) and h(t,€) into
the problem (10) yields an equivalent terminal-value problem with respect to
hi(t,e) and hs(t,e). Setting formally ¢ = 0 in this problem, we obtain the
problem for its zero-order asymptotic solution {hjo(t), hoo(t)}
a6 dhio(t)/dt = — AT (0)hio(t) — A% (0)hao(t) — Piofi(t), hio(+o00) =0,

0= —A%(0)h1o(t) — AT (0)hoo (t).

Solving the second equation of (16) with respect to hog(t), and taking into ac-
count that A4(0) = —P3g = —(D2)1/2 and A(0) = Az, we obtain hoy(t) =
(Dg)fl/ 2A2Th10(t). Substitution of the latter into the first equation of (16) and
using the expressions A;(0) = A; — S1Pyo, A3(0) = _(PQO)T yield the problem
for hig(t): dhio(t)/dt = —Afhio(t) — Piofi(t), hio(+00) = 0, which has the
unique solution hig(t) = f0+°° exp (A(:]FC )P10 f1(C + t)d(¢ satisfying the inequality
tho(t)H < aexp(—nt), t >0, a > 0 is some constant.

Lemma 2. Let the assumptions (A1)—(A2) hold. Then, there ezists a num-
ber 0 < €1 < &g, such that for all € € (0,e1] the solution h(t,e) = It )
eha(t,e)

of the problem (10) satisfies the inequalities ||hi(t,e) — hio(t)| < ceexp (—put),
(i=1,2),t>0; ¢c>0 and p > 0 are some constants independent of €.

The detailed proof of the lemma can be found in [9].
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4.3. Asymptotic solution of the problem (12)
Substitution of the block representations of the matrix S(¢) and the vectors f(t)
and h(t,e) into this problem, and setting formally € = 0 in the resulting problem
yield after some rearrangement the problem for the zero-order asymptotic solution
s0(t) to the problem (12):

dso(t)/dt = —2h1y(t) f1(t) + hip(t)Sohi1o(t), so(+00) = 0.
The latter has the solution

+oo
o) = [ (2Mo(@)1(0) = M) Sohro(e) ) o

satisfying the inequality [|so(t)|| < aexp(—2yt), ¢ > 0; a > 0 is some constant.
Similarly to Lemma 2, we obtain the following lemma.

Lemma 3. Let the assumptions (A1)—(A2) hold. Then, there exists a num-
ber 0 < g2 < €1, such that for all € € (0,e3] the solution s(t,e) of the problem
(12) satisfies the inequality Hs(t,s) - so(t)H < ceexp(—2ut), t > 0, where ¢ > 0
18 some constant independent of €.

4.4. Asymptotic expansion of the value (11)

Let us partition the vector zy into blocks zy = < z(()] >, xg € BV yy € BT,

and introduce the value J* = :L‘O T Pryzo+2h10(0)z0+50(0). As adirect consequence
of the equation (11) and Lemmas 1,2,3, we obtain the following assertion.

Lemma 4. Let the assumptions (A1)—(A2) hold. Then,
e € (0,e3], where ¢ > 0 is some constant independent of .

JI — j*| < ¢z,

Note, that J* is the optimal value of the cost functional in the following
regular optimal control problem, called the Reduced Optimal Control Problem
(ROCP):

dz(t)/dt = A1z(t) + B’I_L(t) + f1(t), t>0, z(0) =z, Z(t) € En—rta
f+oo (zT(t)Drz(t) +u’ (t)Ou(t))dt — ming, u(t) € E".

5. Main Results: Solution of the OOCP

Theorem 1. Let the assumptions (A1)—(A2) hold. Then, J* = J*, where
J* is the infimum of the cost functional in the OOCP.
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Consider a numerical sequence {e}: e >0, (k=1,2,...), limg_ 1o = 0.

For any k = 1,2,..., and x € E" "4, y € E"9, consider the state-feedback
control
o-157T [Plox + hlo(t)} .
ug(z,t) = — - , z:< >
(1/ex) [onl“ + Pyoy + hzo(t)] Yy

Theorem 2. Let the assumptions (A1)—(A2) hold. Then, limg_, J(uk())
J*, i.e., the sequence of controls {uk(z,t)} 1S a minimizing sequence in the

OOCP.

Proofs of Theorems 1 and 2 are based on the asymptotic analysis of the
PCCP, presented in Section 4. The details of these proofs can be found in [9].

REFERENCES

[1] B. D. O. ANDERSON, J. B. MOORE. Linear Optimal Control. Prentice-
Hall, Englewood, NJ, 1971.

[2] R. BELLMAN. Dynamic Programming. Princeton University Press, Prince-
ton, NJ, 1957.

[3] R. GaBasov, F. M. KIrRILLOVA. High order necessary conditions for op-
timality. STAM J. Control 10, 1 (1972), 127-168.

[4] T. GEERTS. All optimal controls for the singular linear-quadratic problem
without stability; a new interpretation of the optimial cost. Linear Algebra
Appl. 116 (1989), 135-181.

[5] V. Y. GLIZER. Stochastic singular optimal control problem with state de-
lays: regularization, singular perturbation, and minimizing sequence. STAM
J. Control Optim. 50, 5 (2012), 2862-2888.

[6] V. Y. GLIZER. Singular solution of an infinite horizon linear-quadratic
optimal control problem with state delays. In: Wolansky, G., Zaslavski,
A.J. (eds.): Variational and Optimal Control Problems on Unbounded Do-
mains, Contemporary Mathematics Series, vol. 619, pp. 59-98. American
Mathematical Society, Providence, RI, 2014.

[7] V. Y. GLIZER, L. M. FRIDMAN, V. TURETSKY. Cheap suboptimal control
of an integral sliding mode for uncertain systems with state delays. IEEE
Trans. Automat. Control 52, 10 (2007), 1892-1898.



56

8]

[9]

V.Y. Glizer, O. Kelis

V. Y. GLIZER, O. KELIS. Solution of a zero-sum linear quadratic differ-
ential game with singular control cost of minimizer. J. Control Decis. 2, 3
(2015), 155-184.

V. Y. GLizér, O. KEeLis. Singular infinite horizon quadratic con-
trol of linear systems with known disturbances: a regularization ap-
proach. arXiv:1603.01839v1 [math.OC], (2016), 36p. Available online at
http://arxiv.org/abs/1603.01839.

V. I. GURMAN, N1 MING KANG. Degenerate problems of optimal control.
III. Autom. Remote Control 72, 5 (2011), 929-943.

P. V. Kokorovic, H. K. KHALIL, J. O’REILLY. Singular Perturbation
Methods in Control: Analysis and Design, Academic Press, London, UK,
1986.

V. MEHRMANN. Existence, uniqueness, and stability of solutions to singular
linear quadratic optimal control problems. Linear Algebra Appl. 121 (1989),
291-331.

L. S. PONTRIAGIN, V. G. Borryanskil, R. V. GAMKRELIDZE, E.F.
MisCHENKO. The Mathematical Theory of Optimal Processes. Gordon &
Breach, New York, 1986.

M. E. SALUKVADZE. The analytical design of an optimal control in the case
of constantly acting disturbances. Automat. Remote Control 23, 6 (1962),
657-667.

A. N. TikHONOV, V. Y. ARSENIN. Solutions of Ill-Posed Problems. Hal-
sted Press, New York, 1977.

J. C. WIiLLEMS, A. KiTapct, L. M. SILVERMAN. Singular optimal oontrol:
a geometric approach. SIAM J. Control Optim. 24, 2 (1986), 323-337.

S. T. ZAVALISHCHIN, A.N. SESEKIN. Dynamic Impulse Systems: Theory
and Applications. Kluwer Academic Publishers, Dordrecht, 1997.

Valery Y. Glizer

email: valery48@braude.ac.il
Oleg Kelis

email: olegkelis@braude.ac.il
Department of Applied Mathematics
ORT Braude College of Engineering,
P.O.B. 78, Karmiel, 2161002, Israel



	Page 1

