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NECESSARY AND SUFFICIENT CONDITION FOR FINITE
TIME BLOW UP OF THE SOLUTIONS TO SIXTH ORDER
DOUBLE DISPERSIVE EQUATIONS*

N. Kutev, N. Kolkovska, M. Dimova

The nonlinear double dispersive equation of sixth order with linear restoring

force is investigated. Necessary and sufficient condition for finite time blow
up of the solution with arbitrary positive energy is obtained. New very
general sufficient conditions for blow up of the solution are proved. Explicit
choice of initial data with arbitrary positive initial energy, satisfying all
conditions of the theorems, are given.

1. Introduction

The aim of this paper is to prove necessary and sufficient condition for finite time
blow up of the solutions to Cauchy problem for sixth order double dispersive
equation with linear restoring force

(1) Ut — Ugg — Utz + Uzgrr T Uttzger T U + f(u)xx = O,
(2) U(O,JL‘) = UO(x)¢ ut(oax) = ul(x)a z eR.
The initial data wug, u; satisfy the regularity conditions

(3)  up € HY(R), w; € HY(R), (=A)2uyeL2(R), (—A)"Y2u; € LA(R)
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where (—A)"*u = F ! (|¢|7**F(u)) for s > 0 and F(u), F~'(u) are the Fourier
transform and the inverse Fourier transform, respectively.
The nonlinear term in (1) has one of the following forms

l s
Fw) = agluP " u =" blul% M,
k=1 j=1

! s
flw) = arul™ +3 " apfulPru =" bjlul% M,
k=2 7j=1

where the constants ay, pr (k= 1,2,...,0) and b, ¢; (j = 1,2,...,s) fulfil the
conditions

ar >0, ap >0, b; >0 for k=2,...,l, j=1,...,s,

()

I1<g<ga<-—<qa<p1<p2<---<p <.

The nonlinear term (4), (5) includes the quadratic-cubic nonlinearity (f(u) =
u? + u?®) and the cubic-quintic nonlinearity (f(u) = u® + «°) which appears in
a number of mathematical models of physical processes, e.g. propagation of
longitudinal strain waves in an isotropic cylindrical compressible elastic rod [9],
water wave problems with nonzero tension [10] and others.

It is wellknown that every weak solution to (1)—(4) with nonpositive initial
energy, except the trivial one, blows up for a finite time. The global behaviour
of the solutions to (1)—(4) with positive initial energy is basically investigated by
the potential well method introduced by Sattinger and Payne [8] for nonlinear
wave equation.

For special nonlinearities

(6) fu) =alulP or f(u)=alulPtu, p>1 a>0

and for combined power nonlinearities (4) global existence or finite time blow up
of the solutions to (1)—(2) is proved in [11, 12, 13] under the sign condition of the
Nehari functional I(ug) > 0 or I(ug) < 0 respectively. The main assumption in
the potential well method is that the initial energy is subcritical, i.e. 0 < E(0) <
d, where d is the critical energy constant.

For supercritical initial energy F(0) > d there are only sufficient conditions
for finite time blow up of the solutions to (1)—(2), see [3]. The proof of the finite
time blow up is based on the concavity method of Levine [7].
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In the present paper, in Theorem 7, we give a necessary and sufficient con-
dition for finite time blow up of the solutions to (1)—(4). The result sheds light
on the genesis of the blow up of the solutions to (1)—(4) and gives better under-
standing of the different sufficient conditions and their analysis.

The paper is organized in the following way. In Section 2 some preliminary
results are given, while in Section 3 the main result is formulated and proved.
In Section 4 explicit choice of initial data satisfying the sufficient conditions in
theorems in Section 3 is proposed.

2. Preliminaries

For functions u(t, x), depending on ¢ and x, we use the following notations

[ull == llult, 2@ [l = [lult )l @), (u0) Z/RU(t,w)v(t,x) dz,

(7) {u,0) = (ult,2), v(t,2)) = (u,0) + (g, v2) + (=2) 72, (=2)120).
We recall the definition for blow up of the solutions to (1)—(4).

Definition 1. Suppose u(t,z) is a weak solution to (1)—(4) in the mazimal
existence time interval [0,T,,), 0 < T,, < co. Then u(t,z) blows up at T,, if

(8) limsup ull; = oo
t—Tm t<Tpm

Let us formulate the local existence result for problem (1)—(4).

Theorem 1. If (3), (4) hold, then problem (1)—(2) has a unique local solu-
tion u(t,z) € C'([0,Tp); H'(R)), (=A)~Y2u € CY([0, T} ); LA(R)), (—A) 2w, €
CH[0, T, ); LA(R)) on a mazimal existence time interval [0, Ty,), Trn < 00. More-
over:

(i) The solution u(t,x) satisfies the conservation law

(9) E(t) = E(0) for every t €[0,Ty,),

=
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(1) If limsup ||ull1 < oo, then T, = co.
t—Tm t<Tm

The proof of Theorem 1 is similar to the proofs of local existence results in
(Th 2.4, [11]), (Th 23, [13]) and we omit it.

We will use the results from [2] for finite time blow up of the solutions to the
following ordinary differential equation

() U(t) — U2 (t) = aV?(t) — BY(t) + H(t), t € [0,T},), 0 < Ty, < 00,
10
1o v>1, a>0, >0, H(t) € C([0,T},)), H(t) >0 for t € [0,T},).

Theorem 2. ([2], Th 2.2) Suppose ¥(t) € C*([0,T,,)) is a nonnegative so-
lution of the equation (10), where [0,T,,), 0 < T, < o0 is the mazimal ezistence
time interval for U(t). If U(t) blows up at T, then T,, < oco.

Theorem 3. ([2], Th 2.3) Suppose ¥(t) € C*([0,T,,)) is a nonnegative so-
lution of the equation (10), where [0,T,,), 0 < T, < o0 is the mazimal ezistence
time interval for ¥(t), H(t) € C([0,00)), and H(t) > 0 fort € [0,00). Then U(t)
blows up at Ty, if and only if

(11) there exists b € [0,Ty,) such that B < a¥(b) and V'(b) > 0.

Moreover, if (11) holds, then the estimate

v (b) -
(12) Tm§b+(7_1)\1ﬂ(b) <

1$ satisfied.
Theorem 4. ([2], Th 3.1) Suppose ¥(t) € C*([0,T,,)) is a nonnegative so-

lution of (10) in the mazimal existence time interval [0,T,,), 0 < T;, < oo,

H(t) € C([0,00)) and H(t) >0 fort € [0,00). If

2y —192(0)  a(2y-1)
2 w(0) ' 2(v-1)

a2’y—1 \1127—1 (0)
2(y —1)p2”

(13) B < U(0) —

(14) v'(0) > 0,

then W(t) blows up at Tp,, < oo.
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Theorem 5. ([2], Th 3.2) Suppose ¥(t) € C*([0,T,,)) is a nonnegative so-
lution of (10) in the maximal existence time interval [0,T,,), 0 < T5, < oo,
H(t) € C([0,00)) and H(t) > 0 for t € [0,00). If ¥'(0) > 0 and one of the

following conditions

(1)
(15) B < a¥(0);

(ii) [4]

o 2
(16) B < 272 ! ‘I\lp((o(;) + a¥(0);
(iid) [1]
o 2 « — 12

(17) B < 272 ! \I&J(g;) +a®(0) + 2(;1’7%(1 - AP, A= 1 \1\11,2((8)) 1

is satisfied, then V(t) blows up at T, < oco.

3. Main results

In this section we formulate and prove the main results in this paper.

Theorem 6. Suppose u(t,x) is the weak solution to (1)—(4) with E(0) > 0
defined in the mazimal existence time interval [0,T,,), 0 < 1), < oo. If u(t,z)
blows up at T, then T,, < co.

Theorem 7. Suppose u(t,x) is the weak solution to (1)—(4) with E(0) > 0
defined in the mazimal ezistence time interval [0,T,,), 0 < T,, < co. Then u(t, )
blows up at T, if and only if there exists b € [0,T,,,) such that

pr—1
(18) E(0) < mw(b,-),u(b,-» and (u(b,-),us (b, ")) > 0.

Moreover, if (18) holds, then the estimate

2 (U(ba ')7 u(bv )>
(19) T <04 I 2D b, ), wa (6,)

1$ satisfied.
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In order to prove the main result we need the following auxiliary statements.

Lemma 8. Suppose u(t,z) is the weak solution to (1)—(4) with E(0) > 0
defined in the maximal existence time interval [0,T,,), 0 < T,,, < co. Then the
blow up of H* norm of u(t,z) at Ty, is equivalent to the blow up of (u(t,-),u(t,-))

at Ty, i.e. limsup ||u]ly = oo if and only if
t—Tom t<Tm,

(20) limsup (u(t,-),u(t, ) = co.
t—Tp t<Tr,

Proof. If limsup ||u||; = oo, then from (7) it follows that ||ul|? < (u,u)
t—Tm t<Tm

and (u,u) blows up at T),.
Conversely, suppose that (20) holds but

(21) limsup ||ull; < 0.
=T t<Trm

From Definition 1 we get limsup((—A)~"?u, (~A)""/?4) = co. By means of the
t—Tim,
conservation law (9) it follows that at least one of the norms ||u||;s,+1 tends to

infinity for ¢t — T,. Hence from the embedding of H'(R) into LP** (R), p > 1

we get that limsup ||u||; = oo, which contradicts (21). Lemma 8 is proved. O
t—Tm t<Trm

Lemma 9. Suppose u(t x) 1is the weak solution to (1)—(4) in the mazimal
existence time interval [0,T,,), 0 < T, < oo. Then function ¥(t) = (u,u)
satisfies the equation

p1+3

(22 w()w(r) -2

PLES () = (py — 1)WR(1) — 201 + DEQO)W () + H(),
where
(23) H(t) = (p1 +3) ((ut,ut>(u,u> - (u,ut>2) +2(p1 + 1)B(t)(u,u) >0

and

l

=3 oot Lt
= (pr +1)(p1 —l— 1)

+ u| Yt dz.
Z (g +1 p1+1 /‘ |
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Proof. By means of (1) and (9), we get the following identities for W(¢):
U (t) = 2(u,uy),

W (t) = 2ug, ue) + 2(u, use) = 2(ur, ug) = 2[ul|f = 2[|(=A) " ul* + 2/RUf(U) dx

= 2(ut, ug) — 2(u, u) + 2/Ruf(u) dz

= (p1 + 3){ue, ) — 2(p1 + DE(0) + (p1 — 1){u, u) +2(p1 + 1) B(?).
Here B(t) is given by (24) and from (5) we have
(25) B(t)>0  for  tel0,Ty).

Substituting ¥'(¢) and ¥”(t) in the lhs of (22), we get that ¥(¢) is a solution to
(22). Here H(t) is given in (23) and H(t) > 0 from (25) and the Cauchy—Schwarz
inequality. O

Proof of Theorem 6. From Lemma 9 it follows that the function W(¢)
satisfies in [0,T},,) equation (10). Hence, ¥(¢) is a solution to (10) for

_ppt3

and H(t) defined in (23). If u(¢,x) blows up at Tj,, i.e. (8) holds, then from
Lemma 8 we get that W(¢) = (u,u) blows up at 7,,. Applying Theorem 2, we
obtain that 7,, < co. Theorem 6 is proved. U

Proof of Theorem 7. (Necessity). Suppose u(t,z) blows up at T;,, and
hence from Lemma 8, W(¢) = (u,u) blows up at T,,. Then from Lemma 2.1 in
[2] for M =2(p1 +1)E(0)/(p1 — 1) and b = to condition (18) is satisfied.

(Sufficiency). Suppose (18) holds. We assume by contradiction that wu(t,x)
does not blow up at T;,, i.e

(26) @ =p1 — 17 ﬁ = 2(p1 + 1)E(0) > 0) 1

(27) limsup ||ull; < oo.
t—Tyn t<Thm

From Theorem 1(ii) it follows that 7},, = co. According to Lemma 9 V(t) = (u, u)
satisfies (22) in [0, 00) for «a, 3, v defined in (26). Note, that H(t), given in (23),
is a nonnegative function for every ¢ > 0. Moreover, condition (11) in Theorem 3
is fulfilled from (18). Applying Theorem 3 we get that ¥(¢) = (u,u) blows up at
T,,. Hence from Lemma 8 u(t,x) also blows up at T,,, which contradicts (27).
Theorem 7 is proved. [
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4. Sufficient conditions for finite time blow up

In this section we give explicit sufficient conditions on ug, u; for finite time blow
up of the solutions to (1)—(4).

Theorem 10. Suppose u(t,x) is the weak solution to (1)—(4) with E(0) >0
defined in the maximal existence time interval [0,T,,), 0 < Ty, < 0o . If (ug,u1) >
0 and one of the following conditions

(4)
E(0) < %(w,uw
(i2) [5]
up, U 2 -
(28) E(0) < %<<u00: u10>> + 25)11 +11) (ug, uo)
(i12) [6]
1(ug,ur)® = p1—1 {uo, uo) |, _ (g, w)” o
E(0) < 2 (ug, ug) * 2(p1 + 1)<u0,u0> " p1+1 ! <1 " (o, uo) >

is satisfied, then u(t,x) blows up at T, < co.

Theorem 11. Suppose u(t,x) is the weak solution to (1)—(4) with E(0) > 0
defined in the mazimal ezistence time interval [0,T,,), 0 < T,, < oo . If (ug,ui) >
0 and

p1+1

(ug,ur)* 1 p—1 = (o, up) \ 2 1om
’7+§(u0,uo>—< 5 > <p1—|—1> E—=(0),

(29) E(0) <

then u(t,z) blows up at T, < oo.

The proof of Theorem 10 and Theorem 11 follows from Theorem 4 and Theo-
rem 5, respectively, for a, 3, v defined in (26) and ¥ (¢) = (u,u), ¥(0) = (uog, up).

Example: For f(u) = ayu® + apu®, a1 > 0, az > 0 conditions (iii) of Theo-
rem 10 and (29) become

(30) <UO,U1> >0
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1 {up,ug)(ug,ur)?
4 (ug, uo)? + (uo, u1)?

1<U07U1>2 (ug, uy)? M 3
(31)  E(0) < Eo+ >{< >2+<1+ > }

(uo, u1)?

respectively.

5. Choice of initial data

We will chose explicitly initial data ug, w1 with arbitrary large positive energy,
satisfying (30), (31). For this purpose we rewrite (31) in the following equivalent
way

1 1 (’LLO,’LL1> 1 <u0,u0><u0,u1>2
2 =— - = - = — =
1
1 <U0,U1>2 <u07u1> ( 2<U0,U0>2>2
33 -2 +(14 2t
(33) 4 (ug,uo) | (uo,u0)? + (uo, u1)? (uo, ug)?
(34) -8t - %/ ubdx < 0
4 Jr 6 Jr

Let v € HY(R), w € H*(R) be arbitrary functions satisfying the conditions
(35) (v,w) =0, (Ulvw,) =0, (,U//’wl/) =0, HUHQ = HwHQ =1
where || f|]2 = || f||n2(r). For example, if v is odd and w is an even function, then
orthogonality conditions (35) will be satisfied.

We fix an arbitrary constant M > 0 and € < 0 and chose the initial data

ug = w', u; = ow’ + pv'. For suitable chosen constant o > 0 and px > 0 we will
show that

(36) K=¢lel << 1

(37) EW0)>M
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Since (ug,u1) = o||w|[3 > 0 and ¢ > 0, condition (30) is satisfied. For ug, u; we
get the following identities

(38) (uo, uo) = Jwll3 =1, (ur,ur) = o*||wll3 + p’|Joll3 = o + 1%,

(o, u1) = o||w|[3 = o,

We fix o0 = oy,

1
(39) 02 =2M + 5 /

1
w'dz + —ag/ w'ldx
R 3 " Jr

2u? +1
so that E(0) > M + ,u4—i—

chosen as

1
p? == 4e+1+00+020+08 1+ = —|—a1/w'4dm+ﬂ/w'ﬁdm
2 1+o0§ of R 3 Jr

> M and (37) holds. Finally, the constant p is

and (36) is fulfilled. Under the above choice of initial data all conditions in (30),
(31) are satisfied.
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