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PARTIAL REGULARITY OF HOPF WEAK SOLUTIONS OF

THE NAVIER-STOKES EQUATIONS, WHICH SATISFY A

SUITABLE EXTRA-CONDITION

Jmmy Alfonso Mauro

We estimate the Hausdorff dimension of the set S of the possible singular
points, associated to a Hopf weak solution which satisfies a suitable extra-
condition.
According to what is known at the moment, the extra-conditions which we
consider doesn’t assure the regularity of the Hopf weak solution.

1. Introduction

We consider the non-stationary Navier-Stokes equations with unit viscosity and

zero body force

(1)
vt −∆v + (v·∇)v = −∇π ∀ (x, t) ∈ Ω× (0, T ),

∇· v = 0 ∀ (x, t) ∈ Ω× (0, T ),

where v and π represent the unknown velocity and pressure, respectively. In our

notation (v·∇)v = (∇v)v.

In addition to (1) we require the following initial and boundary conditions

(2)
v(x, t) = 0 ∀ (x, t) ∈ ∂Ω× (0, T ),

v(x, 0) = v0(x) ∀ x ∈ Ω,
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If n = 3, the system (1)–(2) describes the motion of a Newtonian fluid with a

nonslip boundary condition.

The initial data v0 should satisfy the compatibility conditions ∇· v0 = 0 in Ω

and v0 ·ν |∂Ω = 0, with ν(x) the outward pointing unit normal vector at x ∈ ∂Ω, at

least in weak form. on Moreover, if the domain Ω is unbounded, we also assume

the following condition at infinity

lim
|x|→∞

v(x, t) = 0 ∀ t ∈ [0, T ).

For the Cauchy problem, the existence of weak solutions for the initial-bound-

ary value problem (1)–(2) was proved by J. Leray in [13]; in particular, he intro-

duced the first notion of weak solution for the Navier-Stokes system (cf. Defini-

tion 2).

In [12] E. Hopf proved the existence of weak solutions on any smooth enough

domain Ω ⊂ Rn, with n ≥ 2; nevertheless, such solutions are slightly different to

Leray’s ones (cf. Definition 3).

Ever since, much effort has been made to establish results on the uniqueness

and regularity of weak solutions; however, such questions remain mostly open so

far. In particular, till now, it is not known whether or not a Leray weak solution

or a Hopf weak one can develop singularities in a finite time, even if the initial

data are smooth. The uniqueness problem is strictly related to the regularity

one. Indeed, it is well-known that if the solution is smooth enough, then it is

unique.

In a series of papers (e.g. see [21, 22]), where he introduced the notions

of suitable weak solution (see Definition 4) and of generalized energy inequality

(7), V. Sheffer began to study the partial regularity theory of the Navier-Stokes

system. Let us call a point (x, t) singular if the velocity v is not essentially

bounded in any neighbourhood of (x, t); the remaining points are called regular.

By a partial regularity theorem, we mean an estimate of the Hausdorff dimension

of the set S of singular points.

In [5], L. Caffarelli, R. Kohn, and L. Nirenberg proved a local partial regu-

larity theorem for suitable weak solutions. Improving a previous result of Shef-

fer, they showed that, for any such weak solution, the associated singular set

S satisfies P
1(S) = 0, where P

1 denotes a measure on R
3
x × Rt analogous to

one-dimensional Hausdorff measure H
1, but defined using parabolic cylinders

instead of Euclidean balls (cf. Section 1.2.).

As far as we know, there are no contributions that have improved this result.

In this paper (see Theorem 3), we prove that if v is a Hopf weak solution of
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problem (1)–(2) such that v ∈ Lp
(
0, T ;Lq(R3)

)
for some pair (p, q) satisfying

condition (8) (respectively ∇v ∈ Lp̄
(
0, T ;Lr̄(Ω)

)
for some pair (p̄, r̄) satisfying

condition (9)), then P
k(S) = 0 with k = p

(
3

q
+

2

p
− 1

)
(respectively with

k = p̄

(
3

r̄
+

2

p̄
− 2

)
). In particular, if

3

q
+

1

p
< 1 or

3

r̄
+

1

p̄
< 2, then we get

0 < k < 1.

The result presented in this paper is based on the Ph.D. Thesis [16] that

the author defended at the University of Pisa, under the supervision of Prof.

Vladimir Georgiev.

The author expresses his gratitude to Prof. Vladimir Georgiev and to Prof.

Paolo Maremonti for their useful discussions during the preparation of this work.

1.1. Notations

Throughout this paper, we assume that Ω is a domain in R
n, with n ≥ 2, which

satisfies one of the following conditions:

Assumption 1.

(D1) Ω ≡ R
n;

(D2) Ω is a bounded domain in R
n;

(D3) Ω is an exterior domain in R
n.

Moreover, if Ω satisfies condition (D2) or (D3), its bounded boundary ∂Ω is

required to be (at least) of class Cm, where m is an even positive integer such

that 2m > n.

For 1 ≤ p ≤ ∞, let Lp(Ω) be the Lebesgue space of vector valued functions

on Ω. The norm in Lp(Ω) is indicated by ‖ · ‖p and we use the notation 〈u, v〉 =∫

Ω
u · v dx for any vector fields u, v for which the right hand side makes sense.

For 1 ≤ p ≤ ∞ and m ∈ N, let Wm,p(Ω) be the Sobolev space of functions

u : Ω → R
n in Lp(Ω) with distributional derivatives in Lp(Ω) up to order m

included; the norm in Wm,p(Ω) is denoted by ‖ · ‖
W

m,p
(Ω)

.

By C∞
0 (Ω) we denote the space of all infinitely differentiable vector valued

functions with compact support in Ω. By C0(Ω) we denote the class of all
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solenoidal vector fields ϕ(x) ∈ C∞
0 (Ω); for 1 < p < ∞, Jp(Ω) and J1,p(Ω) are the

closure of C0(Ω) in Lp(Ω) and W 1,p(Ω), respectively. If Ω satisfies condition (D2)

or (D3), we can give the following characterization of the spaces J(Ω) ≡ J2(Ω)

and J1,2(Ω) (see Theorems 1.4 and 1.6 in [26])

(3)
J(Ω) =

{
u ∈ L2(Ω) : ∇ · u = 0, γν(u) = 0

}

J1,2(Ω) =
{
u ∈

◦
W

1,2(Ω) : ∇ · u = 0, γ0(u) = 0
}
,

where γ0 is the trace operator from W 1,2(Ω) into W
1
2
,2(∂Ω), whereas γν is a

linear continuous operator from E(Ω) =
{
u ∈ L2(Ω) : ∇ · u ∈ L2(Ω)

}
1 into

W− 1
2
,2(∂Ω), such that γν(u) = u · ν |∂Ω for every vector field u ∈ C∞(Ω), with

ν(x) the outward pointing unit normal vector at x ∈ ∂Ω.

For T ∈ (0,∞) and for a given Banach space X, with associated norm

‖ · ‖
X
, Lp

(
0, T ;X

)
is the linear space of functions f : (0, T ) → X such that∫ T

0
‖u(τ)‖p

X
dτ < ∞, if 1 ≤ p < ∞, or ess sup

τ∈(0,T )

‖u(τ)‖
X
< ∞, if p = ∞.

For every T ∈ (0,∞), we set ΩT = Ω×[0, T ) and we define

C0(ΩT ) = {ϕ ∈ C∞
0

(
ΩT ;R

n
)

: ∇·ϕ = 0 in ΩT}.

In this work, we use the same symbol to denote functional spaces of scalar

or vector valued functions. Moreover, the symbol c denotes a generic positive

constant whose numerical value is not essential to our aims. It may assume

several different values in a single computation.

1.2. The parabolic metric and measure

Let d(x, y) = |x − y| the Euclidean metric in R
n; in R

n
x × Rt we consider the

following parabolic metric

δ
(
(x, t) , (y, τ)

)
= max

{
d(x, y) ;

√
|t− τ |

}
∀ (x, t), (y, τ) ∈ R

n
x × Rt.

We denote by

Qr(x, t) = Br(x)× (t− r2, t+ r2)

the ball of radius r > 0, centered at (x, t) ∈ R
n
x × Rt, with respect to the metric

δ, which we also call parabolic cylinder. We have

µ
(
Qr(x, t)

)
= rn+2 µ

(
Q1(x, t)

)
= 2ωn r

n+2.

1
E(Ω) is a Hilbert space with respect to the inner product 〈u, v〉E(Ω) = 〈u, v〉+ 〈∇ · u,∇ · v〉.
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The following covering Lemma is the analogue for parabolic metric δ of the

well-known Vitali lemma for Euclidean balls. For its proof see [5, Lemma 6.1].

Lemma 1. Let I be any family of parabolic cylinders Qr(x, t) contained in

some bounded subset of R
n
x × Rt. Then, there exists a finite or denumerable

subfamily I
′ = {Qri(xi, ti)} such that

Qri(xi, ti) ∩ Qrj(xj , tj) = ∅ for i 6= j,

∀ Qr(x, t) ∈ I ∃ Qri(xi, ti) ∈ I
′ | Qr(x, t) ⊂ Q5ri(xi, ti).

We introduce the measure P
k on R

n
x ×Rt, defined in a similar way to Haus-

dorff measure H
k, but using parabolic metric δ instead of Euclidean one (cf. [5,

Section 2D]).

Definition 1. For any X ⊂ R
n
x × Rt and k ≥ 0 we define

P
k(X) = lim

ε→0+
P

k
ε (X),

with

P
k
ε (X) = inf

{
∞∑

i=1

rki | X ⊂
∞⋃

i=1

Qri , ri < ε

}
.

P
k is an outer measure, for which all Borel sets are measurable; on its σ-

algebra of measurable sets, P
k is a Borel regular measure.

Hausdorff measure H
k is defined in the same way, but replacing Qri by an

arbitrary closed subset of Rn
x × Rt of diameter at most ri. Of course,

H
k(X) ≤ C(k)P

k(X).

Remark 1. For any X ⊂ R
n
x × Rt and k ≥ 0, P

k(X) = 0 if and only if, for

each ε > 0, there exists a sequence {Qri} such that X ⊂ ∪
i
Qri and

∑

i

rki < ε.

2. Weak solutions: definitions and properties

We give three different definitions of weak solutions of the initial-boundary value

problem (1)–(2) and we collect some their properties which will be used after-

wards.
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Definition 2. Let v0 ∈ J(Ω). A vector field v : Ω × (0,∞) → R
n is said

a Leray weak solution of problem (1)–(2) with initial data v0, if it satisfies the

following conditions for all T ∈ (0,∞)

1. v ∈ L∞
(
0, T ;J(Ω)

)
∩ L2

(
0, T ;J1,2(Ω)

)
;

2. ∀ ϕ ∈ C0(ΩT )

(4)

∫ T

0

[
〈v, ϕt〉 − 〈∇v,∇ϕ〉 − 〈(v·∇)v, ϕ〉

]
dt = −〈v0, ϕ0〉 ;

3. there holds the following energy inequality

(5) ‖v(t)‖22 + 2

∫ t

s
‖∇v(τ)‖22 dτ ≤ ‖v(s)‖22

for s = 0, a.e. s > 0 and ∀ t ≥ s.

Definition 3. Let v0 ∈ J(Ω). A vector field v : Ω × (0,∞) → R
n is said a

Hopf weak solution of problem (1)–(2) with initial data v0, if it satisfies, for all

T ∈ (0,∞), conditions 1, 2 of Definition 2 and if the energy inequality (5) holds

only for s = 0 and for all t ≥ 0.

If Ω is a domain in R
n (with n = 2, 3, 4) satisfying Assumption 1, for any

initial data v0 ∈ J(Ω) there exists at least a Leray weak solution of problem

(1)–(2). Whereas, if Ω is an arbitrary domain in R
n (with n ≥ 2), for any initial

data v0 ∈ J(Ω) there exists at least a Hopf weak solution (cf. [13, 12, 9, 18], see

also [8, Section 3]).

Obviously, every Leray weak solution is a Hopf weak one too.

Definition 4. Let v0 ∈ J(Ω) and T ∈ (0,∞]. A pair (v, π), having as first

component a vector field v : Ω × (0, T ) → R
n and as second component a scalar

function π : Ω × (0, T ) → R, is said a suitable weak solution of problem (1)–(2),

in Ω× (0, T ), with initial data v0, if the following conditions are satisfied

1. v ∈ L∞
(
0, T ;J(Ω)

)
∩ L2

(
0, T ;J1,2(Ω)

)
;

2. the energy inequality (5) holds, at least, for s = 0 and for all t ∈ (0, T );

3. ∀ φ ∈ C∞
0

(
ΩT ;R

n
)

(6)

∫ T

0

[
〈v, φt〉− 〈∇v,∇φ〉− 〈(v·∇)v, φ〉

]
dt = −

∫ T

0
〈π,∇ ·φ〉 dt−〈v0, φ0〉 ;



Partial regularity of Hopf weak solutions with an extra-condition 99

4. for every non-negative, scalar valued function σ ∈ C∞
0

(
ΩT ;R

)
there holds

the following generalized energy inequality

∫

Ω
|v(t)|2σ(t) dx+ 2

∫ t

s

∫

Ω
|∇v|2σ dxdτ ≤

∫

Ω
|v(s)|2σ(s) dx

+

∫ t

s

∫

Ω
|v|2(στ +∆σ) dxdτ +

∫ t

s

∫

Ω
(|v|2 + 2π)v · ∇σ dxdτ

for s = 0, a.e. s ∈ (0, T ) and ∀ t ∈ (s, T ).

(7)

Definition 5. A point (x, t) ∈ Ω× (0, T ) is called singular for a solution v of

system (1) iff the vector field v is not essentially bounded [i.e. v 6∈ L∞(I(x,t))] on

any neighborhood I(x,t) of (x, t).

For a suitable weak solution (v, π), there holds the following result (cf. [5,

Proposition 1, Proposition 2], [14, Theorem 3.1, Theorem 3.3], [28, Theorem 2]).

Theorem 1. If n = 3, there exist universal constants δ∗1 , δ
∗
2 such that the

following property holds for any suitable weak solution (v, π) of problem (1)–(2),

in Ω× (0, T ), with π ∈ L
3
2
(
Ω× (0, T )

)
. Let (x̄, t̄) be in Ω× (0, T ) and such that

lim sup
r→0+

1

r

t̄+r2∫

t̄−r2

∫

Br(x̄)

|∇v|2 dx dt ≤ δ∗1 ,

or

lim sup
r→0+

1

r2

t̄+r2∫

t̄−r2

∫

Br(x̄)

[
|v|3 + |π|

3
2
]
dx dt ≤ δ∗2 ,

then, v is bounded in a neighborhood of (x̄, t̄) (i.e. (x̄, t̄) is a regular point).

Some local regularity results for suitable weak solutions are also obtained in

[27], with slightly different hypothesis.

As a consequence of Theorem 1, for a suitable weak solution (v, π), there

holds the following local partial regularity result (cf. [5, Theorem B] and [14]).
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Theorem 2. Let Ω be an arbitrary domain in R
3 and let T ∈ (0,∞]; for

any suitable weak solution (v, π) of problem (1)–(2) in Ω × (0, T ), with π ∈

L
3
2
(
Ω×(0, T )

)
, the associated set S of possible singular points satisfies P

1(S) = 0.

In the previous theorem, the hypothesis π ∈ L
3
2
(
Ω× (0, T )

)
can be weakened

to π ∈ L
5
4
(
0, T ;L

5
4
loc(Ω)

)
(cf. [5, Section 2C] and [25]).

3. Estimate of the Hausdorff dimension of the set S

In this section we consider the question of the Hausdorff dimension of the set

S of the possible singular points, associated to a Hopf weak solution v which

satisfies a suitable extra-condition. According to what is known at the moment,

the extra-conditions which we considerdoesn’t assure the regularity of the Hopf

weak solution.

The following Theorem is a generalization of Theorem B in [5].

Theorem 3. Let Ω ⊆ R
3 be a domain satisfying Assumption 1, T ∈ (0,∞)

and v0 ∈ J(Ω). Let v be a Hopf weak solution of problem (1)–(2) with initial data

v0 and associated set S of singular points;

1. if Ω ≡ R
3 and v ∈ Lp

(
0, T ;Lq(R3)

)
for some pair (p, q) such that

(8)
3

q
+

2

p
> 1,

3

q
+

1

p
≤ 1 and

1

q
+

1

p
≤

1

2

then, for every bounded domain Ω̃ ⊂ R
3, P

k
(
S ∩ (Ω̃ × (0, T ))

)
= 0, with

k = p

(
3

q
+

2

p
− 1

)
;

2. if ∇v ∈ Lp̄
(
0, T ;Lr̄(Ω)

)
for some pair (p̄, r̄) such that

(9)
3

r̄
+

2

p̄
> 2,

3

r̄
+

1

p̄
≤ 2 and

6

r̄
+

5

p̄
≤ 5

then, for every bounded domain Ω̃ ⊆ Ω, P
k
(
S ∩ (Ω̃ × (0, T ))

)
= 0, with

k = p̄

(
3

r̄
+

2

p̄
− 2

)
.

Remark. If v is a Hopf weak solution such that v ∈ Lp
(
0, T ;Lq(R3)

)
, for

some pair (p, q) such that
3

q
+

2

p
= 1 and q > 3, or ∇v ∈ Lp̄

(
0, T ;Lr̄(Ω)

)
, for



Partial regularity of Hopf weak solutions with an extra-condition 101

some pair (p̄, r̄) such that
3

r̄
+

2

p̄
= 2 and r̄ >

3

2
, then v is regular in R

3 × (0, T )

(respectively in Ω × (0, T )) (cf. [19, 20], [24, Theorem 3.1], [10, Theorem 5–ii],

[2], [3], [4]); for a survey of regularity results see also [8, Section 5].

According to what is known at the moment, the extra-conditions which we

consider in Theorem 3 doesn’t assure the regularity of the Hopf weak solution v.

Remark. In Theorem 3, if
3

q
+

1

p
< 1 in case 1. or

3

r̄
+

1

p̄
< 2 in case 2.,

then we get 0 < k < 1: as far as we know, the best partial regularity result for

suitable weak solutions is P
1(S) = 0, proved in [5].

P r o o f. 1. Let v be a Hopf weak solution of the Cauchy problem (1)–(2)

with initial data v0 ∈ J(R3), such that v ∈ Lp
(
0, T ;Lq(R3)

)
, for some pair

(p, q) satisfying condition (8) and for some T ∈ (0,∞). By Theorem 1 in [17] and

Corollary 1.1 in [16], there exists a scalar field π : Ω × (0,∞) → R, associated

to v, which is in L
p
2
(
0, T ;L

q
2 (R3)

)
. From Theorem 2.3 in [25] there follows that

v and the associated pressure π satisfy the generalized energy equality (7) for

every 0 ≤ s ≤ t ≤ T , i.e. (v, π) is a suitable weak solution in R
3 × (0, T ).

Let S be the set of singular points associated to the weak solution v. For an

arbitrary bounded domain Ω̃ ⊂ R
3, let S̃ = S∩ (Ω̃× (0, T )). We denote by S̃t the

projection of S̃ onto the t-axis

S̃t =
{
τ ∈ (0, T ) for which ∃ x ∈ Ω | (x, τ) ∈ S̃

}

and by S̃x the projection of S̃ onto R
3
x

S̃x =
{
y ∈ Ω for which ∃ t ∈ (0, T ) | (y, t) ∈ S̃

}
.

We recall, as pointed out in Remark 1 of [5, Section 6], that H
1
2 (S̃t) ≤ C P

1(S̃)

and H
1(S̃x) ≤ C P

1(S̃); since by Theorem 2 we have P
1(S̃) = 0, we get

H
1
2 (S̃t) = H

1(S̃x) = 0.

By Theorem 1, if (x̄, t̄) ∈ S̃ then

lim sup
r→0+

1

r2

∫∫

Qr(x̄,t̄)

[
|v|3 + |π|

3
2
]
dx dt > δ∗2 .

Let V ⊂ (0, T ) be an open neighborhood of S̃t and let U ⊂ Ω̃ be an open

neighborhood of S̃x. So, U × V ⊂ Ω̃ × (0, T ) is an open neighborhood of S̃. Let
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ε > 0; for each (x̄, t̄) ∈ S̃ we can choose Qr(x̄, t̄) = Br(x̄) × (t̄ − r2, t̄ + r2) such

that

0 < r < ε,
1

δ∗2

∫∫

Qr(x̄,t̄)

[
|v|3 + |π|

3
2
]
dx dt > r2,

Br(x̄) ⊂ U, (t̄− r2, t̄+ r2) ⊂ V.

Applying Lemma 1 to this family of parabolic cylinders, we obtain a (finite or

denumerable) disjoint subfamily {Qri(xi, ti)}i∈I
such that

(10) S̃ ⊂
⋃

i∈I

Q5ri(xi, ti).

Using Hölder’s inequality, for every i ∈ I we have

r2i <
1

δ∗2

∫∫

Qri
(xi,ti)

[
|v|3 + |π|

3
2
]
dx dt

≤ c
r
3(1− 3

q
)+2(1− 3

p
)

i

δ∗2



{∫ ti+r2i

ti−r2i

‖v(t)‖p
L

q
(Bri

(xi))
dt

} 3
p

+

{∫ ti+r2i

ti−r2i

‖π(t)‖
p
2

L
q/2

(Bri
(xi))

dt

} 3
p


 ;

≤ c
r
5−3( 3

q
+ 2

p
)

i

δ∗2



{∫ ti+r2i

ti−r2i

‖v(t)‖p
L

q
(U)

dt

} 3
p

+

{∫ ti+r2i

ti−r2i

‖π(t)‖
p
2

L
q/2

(U)
dt

} 3
p


 ;

from which

r
p( 3

q
+ 2

p
−1)

i <
c

(δ∗2)
p
3

∫ ti+r2i

ti−r2i

[
‖v(t)‖p

L
q
(U)

+ ‖π(t)‖
p
2

L
q/2

(U)

]
dx dt, ∀ i ∈ I ,

where the positive constant c is independent of (xi, ti), ri and δ∗2 .

Since {(ti − r2i , ti + r2i )}i∈I
is a family of disjoint intervals and
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∪
i∈I

(ti − r2i , ti + r2i ) ⊆ V by construction, then we have

∑

i∈I

r
p( 3

q
+ 2

p
−1)

i <
c

(δ∗2)
p
3

∑

i∈I

∫ ti+r2i

ti−r2i

[
‖v(t)‖p

L
q
(U)

+ ‖π(t)‖
p
2

L
q/2

(U)

]
dx dt

=
c

(δ∗2)
p
3

∫

∪
i∈I

(ti−r2i ,ti+r2i )

[
‖v(t)‖p

L
q
(U)

+ ‖π(t)‖
p
2

L
q/2

(U)

]
dx dt

≤
c

(δ∗2)
p
3

∫

V

[
‖v(t)‖p

L
q
(U)

+ ‖π(t)‖
p
2

L
q/2

(U)

]
dx dt.

Since ri < ε for every i ∈ I , recalling (10) and Definition 1, we have

P
k
ε (S̃) ≤

∑

i∈I

(5ri)
k ≤

c

(δ∗2)
p
3

∫

V

[
‖v(t)‖p

L
q
(U)

+ ‖π(t)‖
p
2

L
q/2

(U)

]
dx dt,

with k = p

(
3

q
+

2

p
− 1

)
. By arbitrariness of ε > 0, we may conclude that

P
k(S̃) ≤ c

∫

V

[
‖v(t)‖p

L
q
(U)

+ ‖π(t)‖
p
2

L
q/2

(U)

]
dx dt

Since H
1
2 (S̃t) = 0 and ‖v(t)‖p

L
q
(U)

+ ‖π(t)‖
p
2

L
q/2

(U)
∈ L1(0, T ), using Lebesgue

integral properties (cf. Section 12.34 in [11]), for every η > 0 we can choose the

open neighborhood V of the projection S̃t so that

P
k(S̃) ≤ c

∫

V

[
‖v(t)‖p

L
q
(U)

+ ‖π(t)‖
p
2

L
q/2

(U)

]
dx dt < η.

From Remark 1, then, there follows P
k(S̃) = 0, with k = p

(
3

q
+

2

p
− 1

)
.

2. Let Ω ⊆ R
3 be a domain satisfying Assumption 1; let v be a Hopf

weak solution of problem (1)–(2) with initial data v0 ∈ J(Ω), such that

∇v ∈ Lp̄
(
0, T ;Lr̄(Ω)

)
, for some pair (p̄, r̄) satisfying condition (9) and for some

T ∈ (0,∞). By Theorem 1 in [17], there exists a scalar field π : Ω× (0,∞) → R,

associated to v. From Theorem 1.3 and Remark 1.5 in [16] there follows that v
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and the associated pressure π satisfy the generalized energy equality (7) for every

0 ≤ s ≤ t ≤ T , i.e. (v, π) is a suitable weak solution in Ω× (0, T ).

Let S be the set of singular points associated to the weak solution v. For an

arbitrary bounded domain Ω̃ ⊆ Ω, let S̃ = S ∩ (Ω̃ × (0, T )). We denote by S̃t the

projection of S̃ onto the t-axis and by S̃x the projection of S̃ onto R
3
x; we have

H
1
2 (S̃t) = H

1(S̃x) = 0.

By Theorem 1, if (x̄, t̄) ∈ S̃ then

lim sup
r→0+

1

r

∫∫

Qr(x̄,t̄)

|∇v|2 dx dt > δ∗1 .

Let V ⊂ (0, T ) be an open neighborhood of S̃t and let U ⊂ Ω̃ be an open

neighborhood of S̃x. So, U × V ⊂ Ω̃ × (0, T ) is an open neighborhood of S̃. Let

ε > 0; for each (x̄, t̄) ∈ S̃ we can choose Qr(x̄, t̄) = Br(x̄) × (t̄ − r2, t̄ + r2) such

that

0 < r < ε,
1

δ∗1

∫∫

Qr(x̄,t̄)

|∇v|2 dx dt > r,

Br(x̄) ⊂ U, (t̄− r2, t̄+ r2) ⊂ V.

Applying Lemma 1 to this family of parabolic cylinders, we obtain a (finite or de-

numerable) disjoint subfamily {Qri(xi, ti)}i∈I
such that there holds (10). Using

Hölder’s inequality, for every i ∈ I we have

ri <
1

δ∗1

∫∫

Qri
(xi,ti)

|∇v|2 dx dt ≤ c
r
3(1− 2

r̄
)+2(1− 2

p̄
)

i

δ∗1

{∫ ti+r2i

ti−r2i

‖∇v(t)‖p̄
L

r̄
(Bri

(xi))
dt

} 2
p̄

≤ c
r
5−2( 3

r̄
+ 2

p̄
)

i

δ∗1

{∫ ti+r2i

ti−r2i

‖∇v(t)‖p̄
L

r̄
(U)

dt

} 2
p̄

;

from which

r
p̄( 3

r̄
+ 2

p̄
−2)

i <
c

(δ∗1)
p̄
2

∫ ti+r2i

ti−r2i

‖∇v(t)‖p̄
L

r̄
(U)

dt, ∀ i ∈ I ,

where the positive constant c is independent of (xi, ti), ri and δ∗1 .



Partial regularity of Hopf weak solutions with an extra-condition 105

Since {(ti − r2i , ti + r2i )}i∈I
is a family of disjoint intervals and ∪

i∈I
(ti−r2i , ti+

r2i ) ⊆ V by construction, then we have

∑

i∈I

r
p̄( 3

r̄
+ 2

p̄
−2)

i <
c

(δ∗1)
p̄
2

∑

i∈I

∫ ti+r2i

ti−r2i

‖∇v(t)‖p̄
L

r̄
(U)

dt ≤
c

(δ∗1)
p̄
2

∫

V

‖∇v(t)‖p̄
L

r̄
(U)

dt.

Analogously at item 1, since ‖∇v(t)‖p̄
L

r̄
(U)

∈ L1(0, T ), we may conclude P
k(S̃) =

0, with k = p̄

(
3

r̄
+

2

p̄
− 2

)
. �

Remark. From Remark 1 and Theorem 3, there follows that for every

ε > 0, there exists a sequence {Qri(xi, ti)}i∈I
such that S̃ ⊂ ∪

i∈I

Qri(xi, ti) and

∑

i∈I

rki < ε (with k = p
(3
q
+

2

p
− 1

)
and k = p̄

(
3

r̄
+

2

p̄
− 2

)
in item 1. and item

2. respectively). Since

∪
i∈I

Qri(xi, ti) = ∪
i∈I

[
Bri(xi)× (ti − r2i , ti + r2i )

]

⊆
[

∪
i∈I

Bri(xi)
]
×

[
∪

i∈I
(ti − r2i , ti + r2i )

]
,

then, we obtain that the the projection S̃t ⊂ ∪
i∈I

(ti − ai, ti + ai), with ai = r2i .

Since
∑

i∈I

a
ki/2
i =

∑

i∈I

rki < ε, by Remark 1 we get H
k
2 (S̃t) = 0.

Therefore, as a consequence of case 1 in Theorem 3, we obtain Theorem 5-i

in [10], for the Cauchy problem with n = 3.

If Ω ⊆ R
3 satisfies condition (D1) or (D2), it is known that, for any Hopf

weak solution of problem (1)–(2), H
1
2 (St) = 0 (cf. [21, 6]).
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