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EFFECTS OF TIME RESCALING FOR THE GAS
DYNAMICS EQUATIONS

Olga Rozanova

We show that a special change of time variable allows to obtain splitting
by physical processes in the barotropic gas dynamics equations. Namely,
on the first time step the gas dynamics can be reduced to nonlinear heat
equation, whereas on the second step the same system can be reduced to the
pressureless gas dynamics equations with a friction term. We discuss also
how the Cauchy data can be used on every step. Further, we show that in
several cases there exists analytical representation of solution.

1. Preliminaries

The system of the barotropic gas dynamics consists of the following equations for
density o(t,x), velocity u(¢,x), and pressure p(t,x), t >0, x € R" :

(1) Or0 + divy(ou) = 0,

(2) Orou + div(ou®@u) + Vup =0,

corresponding to conservation of mass and momentum. Equation (2) is vectorial.
In the barotropic model the pressure p(¢, z) is a function of density:

3) p="Y(o)
Often they use
¢ .
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The case v = 1 corresponds to so called isothermal case [2]. We consider the
Cauchy problem

(5) (u(2,0), oz, 0)) = (uo(x), oo(2) > 0) € CH(R™) N Cy(R™).

The system (1), (2) is symmetric hyperbolic, therefore the Cauchy problem locally
in ¢ has a solution as smooth as initial data [1].

Below we consider solutions before the moment of singularity formation. In
1D case the system (1), (2) can be written in the Riemann invariants, and the
class of data, such that the Cauchy problem has globally smooth solution, can
be found explicitly. Namely, the Cauchy problem (1), (2), (3), (4) has a globally

smooth solution if and only if
y—3

min(ug ¥ ¢p* ) =0

Otherwise, the derivatives of solution go to infinity within a finite time 7" > 0
(see [2]).

2. Time rescaling: a formal derivation

Let us perform the following change of time variable: 7 = 7(t). As the velocity of
a particle is the time derivative of its position, then in the new variables (7, z) we
get u(t,r) = 7'(t)u(r, z), whereas in the component of density we have to change
the time variable as o(t,z) = o(7,z). Here the bar denotes functions of the new
time variable. Thus, system (1), (2) will be changed as

(6) (7'(£))? [0;(o0) + divy (ot ® @)] + 7" (t)ou + Vop = 0,
(7) 7 (t)[0-0 + div.(ou)] = 0.
Below we discuss different choices of the function 7. First of all let us notice that
the time scaling leaves the continuity equation (1) unchanged. Nevertheless, the

conservation of momentum is strongly influenced by the time transform. To avoid
cumbersome notation we omit the bar in what follows.

2.1. Case 1. Small ¢t: the nonlinear diffusion equation
2
Following [3], for small ¢ we choose 71(t) = k—, 7(0) = 0, where k is a constant

of appropriate dimension. Thus, from (6) we get
(8) q1(t) [0r, (o) + div(eu ® u)] + [kou + Vp|] =0,
with ¢1 = k%2
If t < 1, and the derivatives of solution are bounded, then (8) implies
(9) kou + V,p = 0.
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Further, taking into account (9), (3) and (7) we obtain
1. 1.
(10) Or 0= Edlvx(vxqj(g)) = Edlvx(‘lﬂ(g)vxg)'

This is the nonlinear diffusion equation (known also as the nonlinear heat equation
or the nonlinear porous media equation). It arises in many applications (see,

e.g.[4]).

2.2. Case II. Fixed time approximation: the advection with dry fric-
tion

Let us choose t = A > 0, and assume that the solution is smooth for ¢ € [0, \).

The new change of variables can be found as a solution of equation 75 = \(75)%.

The solution, satisfying conditions 75(0) = 0 and 75 — 400 as t — A — 0, is the

following;:
1 t
TQ:_XIH<1_X)'

(11) [0, (0u) + diva(ou ®@ u) + Aou] + g2(t) Vep = 0,

with go = A2(\ — t)%
Therefore (11) implies

For this case

(12) Or,(ou) + divy(ou ® u) = —\pu,
(13) Or,0 + div(pu) =0,
ast— A—0.

2.3. Case III. Large t: the pressureless gas dynamics
Let us choose 73(t) = 71(t) and re-write equation (2) as

(14) [0r; (ou) + div(ou @ )] + g3(t) [kou + Vp] = 0,

with ¢3 = One can see that (14), (7) implies as t — oo the pressureless gas

dynamics equations
Or, (0u) + divz(ou ® u) = 0,
Ory0 + divy(pu) = 0.
Remark. All resulting equations are well-studied. In particular, the dis-
cussion on existence, uniqueness and boundedness of classical and generalized
solution to the Cauchy problem for the nonlinear diffusion equation, classes of
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exact self-similar and traveling wave solutions can be found in [4] and references
therein. Let us notice that if the solution has a compact support, then the front
propagates with a finite speed if and only if the integral

9 14/
/ mdQ, 6> 0,
0 0

converges. For p = Co” this implies v > 1.

For v =1 (isothermal process) the resulting equation is the linear heat equa-
tion, the solution can be found by the classical integral formula.

We will show below that for resulting system in cases II and III an integral
representation exist as well.

Let us also notice that the gas dynamics equations (1), (2) belong to hy-
perbolic type (strictly hyperbolic for ¢ > ¢ > 0), this always implies a finite
speed of propagation of perturbations. However, the type of resulting equations

is different: parabolic for the case I and non-strictly hyperbolic for cases II and
I11.

3. The Cauchy problem

Below we will concentrate on the Cauchy problem (1), (2), (3), (5) for t € [0, \).
Thus, we consider the time re-scaling only for the cases I and II. If we want to
use the initial data (5), we encounter the following problems.

1. For small time approximation (Case I) we need only gp(x). The velocity
can be found as

V(o)
15 U:.=— .
(15) T
It is necessarily potential and
V‘I/(Qo)
16 Up = —
(16) : koo

has no relations with initial data ug.
2. For approximation as ¢ — A\ (Case II) we do not have initial data at all.
Therefore we propose the following splitting by physical processes on every
intermediate time step, which in principal can be used for numerical procedure.

Let us choose sufficiently small A > 0. The interval (0, A) is divided into zones
2

of influence of Cases I and II. They are separated by the point t, = o1 < A,

see Fig. 1.
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Figure 1: X\ = 0.5: graphs of q; = t* and go = A>(\ —t)2, t, =

e Intermediate step I. For ¢t € (0,t*) we use equation (10) and solve the
Cauchy problem

(7 00 = 1 dive(W(0)V20),  0(0,7) = 00(a),

ignoring uy. Let us notice that since

ug(z) = 7 (H)u(ri(t), )|,

and 7(0) = 0, we cannot define the Cauchy data for velocity inherited from

().

We denote p(t*,x) = o(m1(t), x)|t=t+, where o(71(t), ) is a solution to (17).

o Intermediate step II. For ¢ € (t*, \) we solve the Cauchy problem for (12),

(13) with initial data
(18) o(ma(t"), ) = p(t*, x),
(19) u(t*,x) = [ug(z) — Up(z) + U(ri(t7), x)]/75(t"),

A+1
where 75(t*) = ; # 0, Uy and U are defined as in (16) and (15).

Condition (18) is obtained on the first step, whereas (19) takes into account
the difference between genuine initial velocity and initial velocity, inherited
from initial density by formula (9).
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4. Analytical representation

If v = 1 (the isothermal case), then the solution to problem (17) can be found
as a convolution of the heat kernel with initial data (see, e.g. [5]). However, for
general state equation (3) we cannot find the solution on the 1st intermediate
step analytically. Nevertheless, for the solution on the 2nd step one can always
obtain analytical representation as an asymptotical limit. We use the method of
[6], the details can be also found in [7].

First of all let us note that on the smooth solutions the system (12), (13) of
Case 11 is equivalent to

O-u+ (u,Vy)u = —Au,
0-0 + divz(pu) = 0.

In what follows we skip the index and denote 75 = 7, u = (Uy,...,U,).
Let us introduce the Lagrangian coordinate z(7) to label a point which moves

dx(T)
d

with random particles paths, described by a 2n dimensional It6 stochastic differ-
ential system of equations, we get:

together with the medium, that is = u(7,z(7)). If we consider a medium

(20) ka(T) = Uy(r)dt + od(Wy),
(21) Ui (1) = =AU (7)dr.
u, where (X(7),U(7)) runs in the phase

Here k =1,...,n, X(0) =z, U(0)
space R*™, o > 0 is constant, ( )r =
Brownian motion.

= W)k, k=1,...,n,is the n - dimensional

The Fokker-Planck equation for the probability density in position and ve-
locity space P = P(7,x,u), corresponding to (20), (21), has the form

OP(T,xu B " 9 B, L 92
[ Zuk +)\; (uk Ouy, * 8uk> +2 83:%

subject to the initial data

P(r,z,u),

P(0,z,u) = Py(x,u).

Let us denote by u(7,x) the conditional expectation of the velocity U(7) at
time 7 given the position X(7) at time 7. Thus, if
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then

N 1 /
a(r,z) = = uP(r,x,u)du,
() p(T,w)Rn ( )

x €R" 7> 1o(t"). If we choose

Po(w,u) = 6(u—vo(ra(t*), @) f(x) = [ ] our — (wo(ra(t*), 2))) f (=),
k=1

with an arbitrary sufficiently regular f(x), then

pra(t’), ) = f(x), (ra(t?),2) == vo(ma(t"), ) = u(t", 2)/75(t").

The scalar function p(t,z) and the vector-function a(r,z) = (4,...
[

solve the following system

]:

op 1 R0
7 + div,(ph) 39 Z—axi7
k=1
I(pi; RN
(pi) + Vi(pu;a) =
or

i=1,...,n,t>7(t").

123

We apply the Fourier transform with respect to the variable x to obtain the

following equation for P(7,&,u)

opP - oP o2 9 . .
(22) E—)\z:luka—uk‘i‘(/\—jf —i(&u)P,
subject to initial data
(23) P(0,€,u) = / e UEN5(u—vo(s)) f(s)ds, &€ e€R™
]Rn

The solution to (22), (23) is

~ Ar— 02§2T+i(u,§) A
P(r,&u) =e 2 o F(& ue™),

with an arbitrary differentiable function F : R? — R.

F(&u) = e 5 /ei(é’s)é(u —vo(s)) f(s)ds, £EeR"
R
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N Ar— CUERT | i(u)(=erT) —i(£,3) AT
P(r.&u) = 7 TR [ O3 v (s) f(s) ds,

Rn
P(r,z,u) =
6)\7 AT ‘5‘ +’L(§ (CE s— (z)(
o [ [ 9 ded =
R™ n
AT ls—zt+d(r)e T u|?
(0-6277”_)” / f(S) 5(6)‘7' U — 7}0(5)) e 202 dS,
1— —AT
where ¢(7) = +
Thus,
(5*”‘?(*2u))u(t*,s)/ré(t*))?
pA(ta x) — ( 2 / f 2027'2(t) ds’
g 71'7'2
 (s—z+alra(®)u(t*,s)/7h ("))
€_>\T2(t) f f(S)U(t*7 5) e 20279 (1) s
u t, €Tr) = n
o _ (S*”Wz(t))u(t*,s>/féu*))2
f f(s) e 20-27—2(,5) ds
]Rn

If (p(7, ), U(r,x)), the limits of (p,u) as o — 0, are C' — smooth bounded
functions for (7,z) € [ra(t*),T) x R", T' < oo, then they solve the damped pres-
sureless gas dynamics system

O-p+divy(pU) =0, 0;(pU) + V.(pU @ U) = —A\pU,
which coincides with (12), (13).

5. Discussion

Our results imply that the structure of initial boundary layer for the gas dynamics
equations is the following: first the density reacts on the initial data and then the
velocity does. Thus, it one of the form of splitting by physical processes, see [8].
In fact, the same idea was used in the famous "the particle-in-cell” computing
method by Harlow [9], see also [10]. Indeed, on the 1st intermediate step one
have to take into account the influence of pressure by solving the system

00=0, 0+ V,p=0.



Effects of time rescaling for gas dynamics 125

Then, on the 2nd intermediate step one have to take into account the processes
of advection and solve
O(ou) + div,(pu ® u) =0,
Oro + divy(ou) = 0.
The second system describes the influence of velocity. The respective numerical
scheme has the 1st order of approximation, so has the scheme based on our
method.

It should be also noticed that the nonlinear porous medium equation arises as
the long time asymptotics for compressible gas dynamics with damping. Namely,
there exists the following hypothesis, based on experiment: as ¢ — oo, solution
to the system

0o + divy(ou) = 0,
Orou + divz(pu ® u) + Vyp = —pu,
tends to the solution of
9o = Aup(e), ou+ Vap =0.

Important advances to support this hypothesis were made by P.Marcati,
A Milani, L.Hsiao, T.Liu, T.Yang, K.Nishihara, T.Luo, H.Zhao starting from
1990. In some sense definitive result for n =1, 1 < v < 3, was obtained in [11].
Namely, it was proved that L*°-entropy weak finite mass solution of compressible
gas dynamics with damping tends in the sense of distributions to the Barenblatt
solution of the porous media equation. Let us recall that the Barenblatt solution
is the following positive solution with a finite mass M:

Lo by =1 a2k

Uy(t,z;C) == t_a(C > tQ—b)rl,
n a
= b=— = M .
a n(7_1)+27 n7 C C(’Y7”7 )>O
lim U (t, 2, C) = M6(0).
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