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LOCAL ACTIVITY IN MEMRISTOR-BASED CHAOTIC
SYSTEM MODEL"

Angela Slavova, Ronald Tetzlaff, Maya Markova

In this paper a memristor-based chaotic system model will be studied. Dy-
namics of such model will be investigated. Local activity theory will be
applied in order to determine the edge of chaos domain of the parameter set
in which the model under consideration can exhibit complexity. Simulations
and applications will be provided.

1. Introduction

In 1963 an American meteorologist Lorenz tried to simulate the weather changes
by bringing forward system equations. The Lorenz system became the first
chaotic model which revealed the complex and fundamental behavior of the non-
linear dynamical systems [6]. Chaos can be described as a kind of random change
or an irregular movement occurring in a deterministic system, and chaotic state
can be considered as the fourth state besides equilibrium state, periodic state
and quasi periodic state. Recent years increasing attention have been given to
the theory and application research of chaos [4,7,11]. Numerous new chaotic sys-
tems are found and constructed constantly. This makes people to have a deeper
understanding of the chaotic phenomenon, to enrich and improve the research
content of chaos theory. Moreover, chaos and related theories will have a broad
application in signal processing, electronic engineering, biology, ecology, etc.

On the other hand, an adjustable nonlinear element, memristor [3] can be
used easily as nonlinear part in chaotic generator. Because of its characteristics
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of small volume and low power consumption, memristor can be an ideal choice
for nonlinear elements in the chaotic circuit. Various kinds of chaotic systems
based on memristors have received great attention from the researchers. In [5]
Itoh and Chua adopted a flux-controlled piecewise linear memristor model to
replace the Chua’s diode in Chua’s chaotic circuit. In this way first memristor-
based chaotic system was constructed, which expanded people’s understanding
of its characteristics. Then some other new memristor chaotic circuits have been
realized [9] in which under certain conditions of circuit parameters different shapes
of chaotic attractor can be generated.

But the current researchers mostly focus on the nonlinear characteristics of
the memristor, and ignore its resistance variability. That is why this paper aims
to build a bridge between memristor parameters and chaotic systems by applying
local activity theory.

In Section 2 we shall introduce the memristor-based chaotic system. Section
3 will deal with application of local activity theory in order to determine edge
of chaos region for the CNN memristor-based chaotic model which will be con-
structed. In Section 4 we shall present bifurcation diagram of the CNN model
under consideration. We shall provide simulations of the obtained theoretical
results throughout the paper.

2. Memristor-based chaotic system

Let us consider the following chaotic system model:

dx
1 = = -
(1) o ay
dy
T - br +cy —yz +gf(—|z|)
d
d_i = —dry — ez + 1>,

where the variables z,y,2 € R are the state variables, a,b, c,d, e are real con-
stants, and f(—|z|) refers to the charge of the memristor given by the formula
below:
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tor, k = D If we set the parameters for the memristor
2

model (1), (2) as: Ron = 1002, Ropr = 20k, M(0) = 16k, D = 10nm,

o = 107%m2s ™t 4 =12, =22, ¢ =0.1,d =22, e = 0.5, g = 10%, the

system generates a typical chaotic attractor, different from other obtained results

[4] (see Fig. 1):
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Figure 1: Chaotic attractor described by memristor-based system (1), (2)

Similar to the above chaotic system is studied in [4], but without memristor
incorporated in the system. In this paper we are interested to study the dynami-
cal behaviour of (1), (2) by rigorous mathematical analysis based on local activity
theory. Intuitively, a cell is locally active if it is endowed with some excitable in-
nate potential, such that under certain conditions, it can become mathematically
alive, capable of exhibiting oscillation and chaos.

Definition 1. (Complexity)[2] A spatially continuous or discrete medium
made of identical cells which interact with all cells located within a neighbourhood
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(called the sphere of influence), with identical interaction laws is said to manifest
complexity if the homogeneous medium can exhibit a nonhomogeneous static or
spatio-temporal pattern, under homogeneous initial and boundary conditions.

All complexity related examples, problems such as pattern generation, wave
propagation and oscillations can be analysed and explained via local activity. We
shall proposed below a constructive algorithm for the exact determination of so
called phenomena edge of chaos [2,8].

3. Local activity in memristor-based chaotic system

In this section we shall apply local activity theory in order to determine the edge
of chaos region in our memristor based chaotic system (1), (2). We shall first
discretize the model into Cellular Nonlinear Networks (CNN) architecture [1].
According to [2,8] a rigorous analytical test can be performed at the cell level in
order to determine whether a cell is locally active or not. In the local activity
domain, it is possible to determine cell parameters for which both unstable and
stable dynamics of the cell can spawn emergent behaviors. We shall call edge
of chaos (EC) domain a region in the parameter space of a dynamical system in
which chaotic behaviour appears. Numerical simulations of the CNN dynamics
corresponding to a large variety of cell parameters chosen on, or nearby, the edge
of chaos confirmed the existence of a wide spectrum of complex behaviors, many
of them with computational potentials in image processing and other applica-
tions [8].

We shall try to define more precisely this phenomena below.

To begin with we shall map the memristor-based chaotic system (1), (2) into
CNN architecture:

dl‘ij
a Vi
5 dyij
(3) = brij + czij — yijzij + 9f (—|wiz|)
dZ"

We can consider the above discretized system as the state equations of CNN [1].
We look for the equilibrium points of (3) which satisfy the following sys-
tem [12]:
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—aYi; = 0
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The only equilibrium point of the system (3) is Ey = (0,0,0). In general, the
number of equilibrium points is not equal to the order of the system [12].

Mathematically, the signal must be infinitesimally small in order to model
the cell by only the linear terms in its Taylor series expansion. This in turn
allows us to apply well-known linear mathematics and derive explicit analytical
criteria for the cell to be locally active at the equilibrium point where the Taylor
series expansion is computed. This also proves that complexity originates from
infinitesimally small perturbations, notwithstanding the fact that the complete
system is typically highly nonlinear. According to the local activity theory [2,8]
we should linearize the system (3) at the equilibrium point Fy in order to find
the cell coefficients.

The corresponding Jacobian matrix which consists of these cell coefficients is:

0 —a O
(5) Jo=|b ¢ 0 |,
0 0 —e
b+ 10° <
X n
Rorr !
where b b+ 10" <z <
- —_— n X n .
N (0) 1 2
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Then we can find the trace and determinant of the Jacobian matrix (5) T'r(Jp)
and A(Jy) In our case, Tr(Jo)g, = ¢ —e < 0, A(Jy)p, = bea > 0. It can be
shown [2], that Tr(Jy) < 0 and A(Jy) > 0 are the only region which corresponds
to locally asymptotically stable [12] equilibrium points.

Now we are ready to define the stability and locally active region at the equi-
librium point Ey, SLAR(Ep). According to [2] we have the following definitions:

Definition 2. Stable and Locally Active Region SLAR(Ey) at the equilibrium
point Ey the CNN model (3) is such that Tr(E)) < 0 and A(E)) > 0.
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In our case for CNN model (3) SLAR(Ep) can be defined as the following
parameter set:

104
c<e and ea<b+ >>0 for x <mnq,
Rorr

14
(6) c<e and ea<b—|—M(zo)>0> for n; <x < ng,

10%
c<e and eal|b—+ >0 for z>ns.
Ron

The simulation of this region is given on Fig. 2:
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Figure 2: SLAR(Ey) region for the CNN model (3)

Now we shall define EC domain following the standard definition below [2]:

Definition 3. CNN is operating in the edge of chaos regime if and only if
there is at least one equilibrium point which is both locally active and stable.

In this way the following theorem hold:
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Theorem 1. CNN model (3) of the memristor-based chaotic system (1), (2)
operates in edge of chaos if and only if the conditions (6) are satisfied. This
means that there is at least one equilibrium point which is both locally active and
stable.

We can show that an uncoupled cell on the edge of chaos may cause CNN to
oscillate under the appropriate choice of the parameters. However, it does not
imply that it is always possible to find some such parameter set to destabilize
an otherwise homogeneous solution. Actually, it is possible to prove that, in
general, such a set of destabilizing parameters exist only for a proper subset of
the edge of chaos parameter domain, which is called the sharp edge of chaos
domain. By definition, a cell on the edge of chaos, but not on the sharp edge of
chaos cannot be destabilized by any locally-passive coupling networks. The sharp
edge of chaos parameter domain is a proper subset of the edge of chaos parameter
domain, which in turn is a proper subset of the local activity parameter domain:
Sharp Edge of Chaos C Edge of Chaos C Local Activity.

According to our investigations above equilibrium point Ej satisfies the con-
ditions (6), therefore we have sharp edge of chaos (see Fig. 3):
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Figure 3: Sharp edge of chaos domain for CNN model (3)
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(b) Non chaotic attractor.

Figure 4: Influence of the memristor parameter g on the dynamic behavior of
CNN model (3)
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Remark. In general, by properly selecting the value of memristor parame-
ter g, the corresponding mirror symmetric attractor can be generated when the
polarity of the g is changed under the identical initial condition (see Fig. 4 (a)).
But then by changing the value of parameter g , system (3) will no longer pro-
duce chaotic motion under the original parameters (see Fig. 4 (b)). Therefore
the flexibility of the selection of g value expand the application range of system
(3). System (3) can not only be applied to the practical applications which need
to produce chaotic motion such as secure communication and so on, but it can
also be used in the process of suppressing the chaos because of the function of
suppressing chaos.

Some interesting conclusions can be done about the effect of memristors on
chaotic systems: (a) when the polarity of the memristor is changed, a mirror
image of the chaotic attractors will appeared in the system; (b) along with the
proper choose of the memristor parameters, the chaotic motion of system will be
suppressed and enhanced, and therefore the system can be applied to the practice
on either generating chaos signal or suppressing chaotic interference.

4. Bifurcation diagram of our memristor-based chaotic
CNN model

We shall present in this section structure of several bifurcation diagrams which
we derive from the Definitions 2 and 3 for local activity and sharp edge of chaos.
In the simulations we set parameters a = 12, b = 2.2, d = 22, e = 0.5,
g = 10%, and make ¢ C (0,2]. Fig. 5 shows the bifurcation diagram of system (3)
with respect to c. It indicates that when 0 < ¢ > 2, the system (3) is always in
a state of chaotic, and parameter ¢ has little influence on the system (3). From
the bifurcation diagram in Fig. 5, it can be concluded that the amplitude of the
output signal y of system (3) is decreased when increasing the parameter c.

By the above bifurcation diagrams, we can conclude that the changes of
parameters a, b and c affect the state of the system. And the dynamic character-
istics of thesystem are very rich, which verified that the model is a typical chaotic
system.

Systems made of a large number of simple components interacting with each
other in accordance with some coupling laws tend to operate in one of three
possible regimes: 1). an ordered regime such as for example crystals; 2). disorder
regime such as fluids, and 3). phase transition regime which separates them.
The concept of local activity argues that only systems operating in the phase
transition regime are capable of information processing and complexity, and the
domain of parameters which gives rise to such regime is the edge of chaos domain.
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Figure 5: Bifurcation diagram of CNN model (3) for different values of parameter
a,b,c
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