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STUDIA MATHEMATICA

ON THE COMMON POINTS OF TWO FAMILIES
OF N -SPHERES IN THE FLAT N + 1 DIMENSIONAL

SPACE, EACH OF WHICH PASSES THROUGH

THE VERTEXES OF A GIVEN N -SIMPLEX

Vassil K. Tinchev
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Kiril, who gave me a happy childhood.

Let two distinct N -simplexes be given in an Euclidean or pseudo-Euclidean
N + 1 dimensional space as each is defined by the coordinates of its N + 1
vertexes. We consider the two families of N -spheres passing through the
vertexes of the given N -simplexes and the set of couples of N -spheres (one
belonging to first family and the other to the second one). The elements of
this set have at least one common point; moreover, it is such that for the
angle α between the segments connecting that point and the centers of the
correspondingN -spheres, there holds cos2 α = const for each of the elements
of the defined set of N -spheres. In the present work we find the geometric
place of all these common points, including the special cases when cos2 α is
equal to 0 or 1.

It is known that in the flat space with N + 1 dimensions we can place as

many N -spheres and N -simplexes as we wish. It is also known that each such

N -sphere is defined uniquely by means of N+2 of its points, and each N -simplex
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in the flat space with N + 1 dimensions has N + 1 vertexes [1]-[4]. It is clear

that a family of N -spheres passes through the vertexes of one such N -simplex.

If we fix two distinct N -simplexes in our (N + 1)-dimensional flat space, then

two distinct families of N -spheres will pass through their vertexes. The elements

of these families can have one common tangent point, or intersect in (N − 1)-

dimensional sphere, or have no common points. In the present paper we shall

consider the couples of N -spheres of two distinct families of N -spheres, passing

through the vertexes of two given N -simplexes, that have at least one common

point. Moreover, for the angle α between the vectors connecting the common

points of the couples of the N -spheres from the first and the second family with

their centers, we assume that cos2 α = const. In the case when the two N -spheres

touch at a single point it lies on the line connecting their centers, and then α is

either 0 or π rad. Our goal is, given the value of cos2 α, to find the geometric

place of the common points of the defined set of couples intersecting N -spheres

in the Euclidean or pseudo-Euclidean space with N + 1 dimensions.

For simplicity, we shall first consider the one-dimensional case. There are

given two families of circles in the flat 2-dimensional space, in which we have a

fixed Cartesian coordinate system with arbitrarily fixed center O. The first family

of circles passes through the points T (xT , yT ) U(xU , yU ) (the vertexes of the first

one-dimensional simplex TU), and the second one through the points V (xV , yV )

W (xW , yW ) (the vertexes of the second one-dimensional simplex VW ). We choose

one common point of a given circle from the first family and the corresponding

circle from the second family. Let us denote this common point by K(xK , yK)

(with radius vector ~rK = (xK , yK)). Then the equations of these two circles are

[5]
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The equation of the first circle can also be written in the form
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Equation (2) implies that the coordinates of the center of the circle are
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For center of the other circle we have similar relations:
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The vectors ~rK − 0~rKTU and ~rK − 0~rKVW enclose a fixed angle α. Therefore

for the common points of the considered two families of circles, we can write the

following equation

(9) (cosα)|~rK − 0~rKTU ||~rK − 0~rKVW | − (~rK − 0~rKTU) · (~rK − 0~rKVW ) = 0.

If we consider in detail the differences between these radius vectors, we shall see

that

(10) ~rK − 0~rKTU =
1

2SKTU
(aTU (xK , yK), bTU (xK , yK)),
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Thus (9) is reduced to
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Through it (13) takes the form

(15)

FTUVW (α, x, y) ≡

∣

∣

∣

∣

aTU bTU

aVW bVW

∣

∣

∣

∣

2

− (sin2 α)
(

a2TU + b2TU

) (

a2VW + b2VW

)

= 0.

In the case of tangent circles we have that the considered geometric place of their

tangent points is given by the equation FTUVW (kπ, x, y) = 0 (k = 0, 1), which is

now of the form
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In view of (12), the function GTUVW (x, y) can be written explicitly in the form
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We observe that the geometric place of the points of tangency of two families of

circles, of which the members of the first family pass through the points T (xT , yT )

and U(xU , yU ), and the members of the second one through the points V (xV , yV )

and W (xW , yW ), is an algebraic curve of degree four. In the general case of two

families of intersecting circles in the flat two-dimensional space, for which the

angle α between the vectors, connecting the common points of the two circles in

a couple with their centers, we have that the corresponding geometric place of the

common points of these two families of circles is generally given by an algebraic

equation of degree eight – (15). When α = π/2 rad, this equation can again be

represented as an algebraic equation of degree four as for α equal to zero or π

rad. Indeed, for α = π/2 rad, (13) implies

(18) HTUVW (x, y) ≡ aTUaVW + bTUbVW = 0.

Let us explicitly write this function. We have
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Thus the problem we consider is solved in the one-dimensional case. The

curves given by equation (16) in the cases when TU ∦ VW and we cannot circum-

scribe a circle around TUVW are closed and have no points of self-intersection.

When TU ‖ V W and we cannot circumscribe a circle around TUVW , the curves

are open and they are asymptotically close to lines at infinity. The case when we

can circumscribe a circle around TUVW is degenerate—the curves decompose

into two circles, one of which is circumscribed around TUVW provided that it is

not a rectangle or a bilateral trapezium. Moreover, the two circles coincide when

TU and V W are the diagonals of TUVW . Finally, if TUVW is a rectangle or

a bilateral trapezium, then the curves decompose into a line and the circle cir-

cumscribed around TUVW . Figures 1 and 2 show various non-degenerate curves

(16). Figure 3 shows the degenerate case when a circle can be circumscribed

around TUVW , and also a similar non-degenerate variant of curve (16). Figure
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Figure 1: The curve GTUV W = 0 T (0, 0), U(1, 0), V (2, 4) and W (−1, 1). The segments
(i.e. the fixed one-dimensional simplexes) TU and VW are also given.

4 shows the degenerate case in which TUVW is rectangle or a bilateral trapezium

(TU ‖ V W ). Figures 5 and 6 show examples of curve (18), and Figure 7 contains

illustrations of the curves defined by equation (15). Generally speaking, equation

(18) defines a class of curves, whose graphs consist of two parts. Each ot these

parts is closed except when the angle between TU and VW is π/2 rad. Curve

(18) for ∠(TU, V W ) = π/2 rad is shown on Figure 5. A peculiar feature of this

case is that we have a degeneration of the curve when one of the segments TU

or VW lies on the perpendicular bisector of the other. Then the curve degener-

ate into a circle, passing through two of the four points and the perpendicular
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Figure 2: On the left: the curve GTUV W = 0 for T (0, 1), U(0,−1), V (1, 0) and W (2, 0). On
the right: the curve GTUV W = 0 in the open case. T (0, 0), U(1, 0), V (2, 2) and W (1, 2). The
segments TU and VW are also given.
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Figure 3: The curve GTUV W = 0 for T (1, 0), U(2, 2) and V (−1, 1). On the left: the non-
degenerate case W (0.001, 0.001). On the right: the degenerate case, in which it is possible to
draw a circle around TUVW—for W (0, 0). The segments TU and VW are also given.
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Figure 4: Graphs of the curves GTUV W = 0 in the degenerate cases. On the left: the case
when TUVW is a rectangle. T (−1, 1), U(−1,−1), V (1,−1) and W (1, 1). On the right: the case
when TUVW is a bilateral trapezium (TU ‖ VW ). T (−1, 2), U(−1,−2), V (1,−1) and W (1, 1).
The segments TU and VW are also given
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Figure 5: The curve HTUV W = 0 for ∠(TU, VW ) = π/2 rad. On the left: T (0, 0), U(1, 0),
V (0, 1) and W (0, 2); on the right: the degenerate case when VW lies on the perpendicular
bisector of TU , T (−1, 0), U(1, 0), V (0, 1) and W (0, 2). The segments TU and VW are also
given
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Figure 6: The curve HTUV W = 0 for T (0, 0), U(1, 0), V (2, 4) and W (−1, 1). The segments
TU and VW are also given

bisector of these two points, provided that TU and VW are not the diagonals of

a square or another quadrangle round which a circle can be circumscribed. In

these cases we have degeneration again—curve (18) reduces to the lines through

TU and VW , or to two circles that intersect at a right angle and pass through

TU and VW .

The graphs of the curves defined by equation (15) have two, three (in one

special case), or four parts, which, as in the previous case, are closed, provided

that the angle between TU and V W is not equal to α. An example of curve

(15) for α = ∠(TU, V W ) is given on Figure 8. The special case is realized
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Figure 7: The curve FTUV W = 0 for T (0, 0), U(1, 0), V (2, 4) and W (−1, 1). On the left:
α = π/12 rad; on the right: α = π/18 rad. The segments TU and VW are also given
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Figure 8: The curve FTUV W = 0 for α = ∠(TU,V W ) = π/6 rad. On the left: T (0, 0), U(2, 0),
V (

√
3/2, 3/2) and W (0, 1); on the right: T (0, 0), U(1, 0), V (

√
3, 2) and W (0, 1). The segments

TU and VW are also given
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when the segments TU and VW connect the midpoints of the opposite sides of a

parallelogram. Then the graph of curve (15) has three parts for α = ∠(TU, V W ).

Figure 9 shows an example of this peculiar case of curve (15).

When N > 1 we can conduct similar considerations. The equations of the

two families of N -spheres are stated by means of the condition the determinants

of two square matrixes of order N + 3 to be equal to zero,
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Here n = N + 1, and xiK (i = 1, 2, . . . , n) are the coordinates of any common

point of the couples of N -spheres in the containing N +1-dimensional flat space.

As in the one-dimensional case, we denote this point by K. Similarly, xiSj
and

xiVj
(i = 1, 2, . . . , n; j = 1, 2, . . . , n) are the coordinates of the j-th vertex of the

first and the second N -dimensional simplex in the same N + 1-dimensional flat

space. We denote the vertexes (as points) of these simplexes by Sj and Vj. Let

the radius vectors of the centers of any representatives of the couples of N -spheres

be 0~rKS1..Sn and 0~rKV1..Vn . About the differences between the radius vectors of

the point K and these two vectors, we can write relations similar to (10), (11)

and (12). We have

(21) ~rK−0~rKS1...Sn =
1

2VKS1...Sn

(a1S1...Sn(~rK), a2S1...Sn(~rK), . . . , anS1...Sn(~rK)),
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Figure 9: The curve FTUV W = 0 for T (−1, 0), U(1, 0), V (cosβ12, sin β12) and
W (− cosβ12,− sin β12), where β12 = ∠(TU,V W ). On the left illustration we have α = π/3
rad and β1 = π/4 rad; on the right: α = β2 = π/3 rad. The segments TU and VW are also
given
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(24)

a1B1...Bn(~r) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2x1 1 0 . . . 0 0
n
∑

i=1

x2i x1 x2 . . . xn 1

n
∑

i=1

x2iB1
x1B1

x2B1
. . . xnB1

1

. . . . . . . . . . . . . . . 1
n
∑

i=1

x2iBn
x1Bn x2Bn . . . xnBn 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

a2B1...Bn(~r) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2x2 0 1 . . . 0 0
n
∑

i=1

x2i x1 x2 . . . xn 1

n
∑

i=1

x2iB1
x1B1

x2B1
. . . xnB1

1

. . . . . . . . . . . . . . . 1
n
∑

i=1

x2iBn
x1Bn x2Bn . . . xnBn 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

. . . ,

anB1...Bn(~r) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2xn 0 0 . . . 1 0
n
∑

i=1

x2i x1 x2 . . . xn 1

n
∑

i=1

x2iB1
x1B1

x2B1
. . . xnB1

1

. . . . . . . . . . . . . . . 1
n
∑

i=1

x2iBn
x1Bn x2Bn . . . xnBn 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The equation, analogous to (13), in the N -dimensional case is given by

(25) (cos2 α)

(

n
∑

i=1

a2iS1...Sn

)(

n
∑

i=1

a2iV1...Vn

)

−

(

n
∑

i=1

aiS1...Sn aiV1...Vn

)2

= 0.

The identity we have to use now is

(26)

(

n
∑

i=1

X2
i

)(

n
∑

i=1

Y 2
i

)

−

(

n
∑

i=1

XiYi

)2

=

n−1
∑

i=1

n
∑

j>i

(

∣

∣

∣

∣

Xi Xj

Yi Yj

∣

∣

∣

∣

2
)

.
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Thus (25) is reduced to

(27)

FS1...SnV1...Vn(α,~r) ≡
n−1
∑

i=1

n
∑

j>i

(

∣

∣

∣

∣

aiS1...Sn ajS1...Sn

aiV1...Vn ajV1...Vn

∣

∣

∣

∣

2
)

−

−(sin2 α)

(

n
∑

i=1

a2iS1...Sn

)(

n
∑

i=1

a2iV1...Vn

)

= 0.

It is clear that unlike the one-dimensional case, the defined two families of N -

spheres for N > 1 do not determine an N -dimensional surface if α 0 or π rad

because then there should hold

(28) GijS1...SnV1...Vn(~r) ≡

∣

∣

∣

∣

aiS1...Sn ajS1...Sn

aiV1...Vn ajV1...Vn

∣

∣

∣

∣

= 0,

for every i and j (j > i). In the other cases this is not so. Moreover, just like in

the one-dimensional case, the equation that describes the considered geometric

place can be simplified for α = π/2 rad. By (25) we have

(29) HS1...SnV1...Vn(~r) ≡

n
∑

i=1

aiS1...Sn aiV1...Vn = 0.

It is clear that for n = 2 thie equation defines a surface in the flat three-

dimensional space. Figure 10 shows an example of such a two-dimensional man-

ifold. We see that it has the topology of a torus. Figure 11 shows an example of

the general two-dimensional manifold (27) such that sin2 α 6= 0 or 1.

If we allow the containing flatN+1-dimensional space to be pseudo-Euclidean

[6], [7], then we can define the smooth manifolds, which are a multidimensional

analog to the G-surfaces, given by (16) for N = 1. Let xnA be N+1th coordinate

of an arbitrary point A of the containing flat space. In this case, in order that it

is pseudo-Euclidean, it is sufficient to set

(30) xnA = itA; i2 ≡ −1, tA ∈ R.

Then xN+1 = it and for t = const ∈ R we can define the following two “fixed-
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Figure 10: The surface HRSTUV W = 0 for R(−1, 0, 0), S(0, 1, 0), T (1, 0, 0), U(−2, 0, 1),
V (0,−1,−1) and W (2, 0, 1)

moment” manifolds (along with their intersection):

(31)

Re

[

n−1
∑

k=1

n
∑

l>k

G2
klS1...SnV1...Vn

(t, ~r)

]

= 0,

Im

[

n−1
∑

k=1

n
∑

l>k

G2
klS1...SnV1...Vn

(t, ~r)

]

= 0.
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Figure 11: The surface FRSTUV W = 0 for R(−1, 0, 0), S(0, 1, 0), T (1, 0, 0), U(−2, 0, 1),
V (0,−1,−1) and W (2, 0, 1) for α = π/6 rad

Here ~r = (x1A, x2A, . . . , xNA) ∈ R
N . Of course, nothing prevents us from doing

the same with (29) and (27). We have

(32)
Re [HS1...SnV1...Vn(t, ~r)] = 0,

Im [HS1...SnV1...Vn(t, ~r)] = 0;

(33)
Re [FS1...SnV1...Vn(a, b, t, ~r)] = 0,

Im [FS1...SnV1...Vn(a, b, t, ~r)] = 0,
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Figure 12: The curve Re(HRSTUVW ) = 0 in various “time moments” t for R(−1, 0, 0),
S(0, 1, 0), T (1, 0, 0), U(−2, 0, i), V (0,−1,−i) and W (2, 0, i)

where sin2 α ≡ a + ib (a = const ∈ R, b = const ∈ R). Figures 12–14 show

examples of this type of manifolds. Equations (31), (32) and (33) implicitly

give all possible smooth “fixed-moment” manifolds of the types we consider in

the pseudo-Euclidean case with signature {n, 1} (n = N + 1). The cases with
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Figure 13: The curve Re(GRSTUVW ) = 0 in various “time moments” t for R(−1, 0, 0),
S(0, 1, 0), T (1, 0, 0), U(−2, 0, i), V (0,−1,−i) and W (2, 0, i)

different signature can be considered in a similar way.

All this manifolds are of interest, especially if we take into account that they

possess quite noteworthy properties with regard to inversion.
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Figure 14: The curve Re(FRSTUVW ) = 0 for α = π/6 rad in various “time moments” t for
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