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STUDIA MATHEMATICA

RECENT DEVELOPMENTS OF THE METHODOLOGY
OF THE MODIFIED METHOD OF SIMPLEST

EQUATION WITH APPLICATION

Nikolay K. Vitanov

We discuss an extension of the modified method of simplest equation for ob-
taining exact analytical solutions of nonlinear partial differential equations.
The extension includes the possibility for use of: (i) more than one simplest
equation; (ii) relationship that contains as particular cases the relationship
used by Hirota [1] and the relationship used in the previous version of the
methodology; (iii) transformation of the solution that contains as particular
case the possibility of use of the Painleve expansion; (iv) more than one
balance equation. The discussed version of the methodology allows: ob-
taining multi-soliton solutions of nonlinear partial differential equations if
such solutions do exist and obtaining particular solutions of nonintegrable
nonlinear partial differential equations. Examples for the application of the
methodology are discussed.

1. Introduction

Differential equations occur in the process of mathematical study of many prob-
lems from natural and social sciences as these equations relate quantities to their
changes and such relationships are frequently encountered. Nonlinear differential
equations are used for modeling of processes in many branches of science such
as fluid mechanics, atmospheric and ocean sciences, mathematical biology, social
dynamics, etc. [2]–[5]. In many cases the model equations are nonlinear partial
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differential equations and their exact solutions help us to understand complex
nonlinear phenomena such as existence and change of different regimes of func-
tioning of complex systems, spatial localization, etc. Because of the above the
exact solutions of nonlinear partial differential equations are studied intensively
[6]–[14]. In the yearly years of the research on the methodology for obtain-
ing exact solutions of nonlinear partial differential equations one has searched
for transformations that can transform the solved nonlinear partial differential
equation to a linear differential equation. Numerous attempts for obtaining such
transformations have been made and in 1967 Gardner, Green, Kruskal and Miura
[9] managed to connect the Korteweg – de Vries equation to the inverse scattering
problem for the linear Schödinger equation. This methodology is known today as
Method of Inverse Scattering Transform, [6]. Below we are interested in another
line of research that was followed by Hirota who developed a direct method for
obtaining such exact solutions – Hirota method [1], [15]. Hirota method is based
on bilinearization of the solved nonlinear partial differential equation by means of
appropriate transformations. Truncated Painleve expansions may lead to many
of these appropriate transformations [14], [16], [17] and the study of the applica-
tions of these truncated expansions [18] leaded to the formulation of the Method
of Simplest Equation (MSE) [19], [20]. We refer to the articles of Kudryashov
and co-authors for further results connected to MSE [21]–[29].

I have started my work on the method of simplest equation by proposing the
use of the ordinary differential equation of Bernoulli as simplest equation [30] and
by application of the method to ecology and population dynamics [31] where the
concept of the balance equation has been used. Today the method of simplest
equation has two versions. The original version of Kudryashov is called Method
of Simplest Equation – MSE and there the determination of the truncation of
the corresponding series of solutions of the simplest equation is based on the
first step in the algorithm for detection of the Painleve property. An equivalent
version is called Modified Method of Simplest Equation – MMSE or Modified
Simple Equation Method – MSEM [20], [32], [33]. It if based on determination of
the kind of the simplest equation and truncation of the series of solutions of the
simplest equation by means of application of a balance equation. Up to now our
contributions to the methodology and its application are connected to this version
of the method [34]–[39] and in [40] where we have extended the methodology of
the MMSE to simplest equations of the class
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where k = 1, . . . , l = 1, . . . , and m and dj are parameters. The solution of Eq. (1)
defines a special function that contains as particular cases, e.g.: trigonometric
functions; hyperbolic functions; elliptic functions of Jacobi; elliptic function of
Weierstrass. Our goal is to extend the methodology of MSE and MMSE in order
to make it applicable to larger classes of nonlinear partial differential equations.

The text below is organized as follows. In Sect. 2 we discuss a version the
modified method of simplest equation that makes the methodology capable to
obtain multi-soliton solutions of nonlinear partial differential equations. Sect.3
contains examples of applications of the method. Several concluding remarks are
given in Sect. 4.

2. Extended version of the modified method of simplest equation

In the previous version of the method we have used a representation of the
searched solution of a nonlinear partial differential equation as power series of
a solution of a simplest equation. This approach does not work for the case of
search for bisoliton, trisoliton, and multisoliton solutions because the previous
version of the modified method of simplest equation was connected to the use of
a single simplest equation. If we allow for use of more than one simplest equation
then the modified method of simplest equation can be formulated in a way that
makes obtaining of multisoliton solutions possible. Below we formulate such a
version of the modified method of simplest equation. The schema of the old and
the new version of the methodology is shown in Fig. 1.

Let us consider a nonlinear partial differential equation

(2) R(u, . . . ) = 0

where R(u, . . . ) depends on the function u(x, ..., t) and some of its derivatives
participate in (u can be a function of more than 1 spatial coordinate). The 7
steps of the extended modified method of simplest equation are as follows.
Step 1.) We apply a transformation

(3) u(x, . . . , t) = H(F (x, . . . , t))

where H(F ) is some function of another function F . In general F (x, . . . , t) is a
function of the spatial variables as well as of the time. The transformation H(F )
may be the Painleve expansion [1], [11], [18], [41], [42] or another transformation,
e.g., u(x, t) = 4 tan−1[F (x, t)] for the case of the sine – Gordon equation, etc.
[43]—[47]. In many particular cases one may skip this step (then we have just
u(x, . . . , t) = H(x, . . . , t)) but in some cases the step is necessary for obtaining
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Figure 1: Schema of the previous version (righ-hand side) and of the extended
version (left-hand side) of the Modified method of simplest equation. The trans-
formation used in the extended version of the method contains as particular case
the transformation used in the previous version of the method. The form of the
function F used in the extended version of the method contains as particular case
the form of the function used in the previous version of the method. The new
form of the function F contains as particular case also the form of the function
used by Hirota. In the extended form of the method more than one simplest
equation can be used and more than one balance equation can arise. In the
previous version of the method one uses one simplest equation and one balance
equation.

a solution of the studied nonlinear PDE. The application of Eq. (3) to Eq. (2)
leads to a nonlinear PDE for the function F (x, . . . , t).
Step 2.) The function F (x, . . . , t) is represented as a function of other func-
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tions f1, . . . , fN (N = 1, 2, . . . ) that are connected to solutions of some differen-
tial equations (these equations can be partial or ordinary differential equations)
that are more simple than Eq. (2). We stress that the forms of the function
F (f1, . . . , fN ) can be different. One example is

F = α+

N
∑

i1=1

βi1fi1 +

N
∑

i1=1

N
∑

i2=1

γi1,i2fi1fi2 + · · ·+

N
∑

i1=1

· · ·

N
∑

iN=1

σi1,...,iN fi1 . . . fiN(4)

where α, βi1 , γi1,i2 , σi1,...,iN . . . are parameters. The relationship (4) contains as

particular case the relationship used by Hirota [1]. The power series

N
∑

i=0

µnf
n

(where µ is a parameter) used in the previous versions of the methodology of the
modified method of simplest equation are a particular case of the relationship (4)
too.
Step 3.) In general the functions f1, . . . , fN are solutions of partial differential
equations. By means of appropriate ansätze (e.g., traveling-wave ansätze such as
ξ = α̂x + β̂t; ζ = γ̂x + δ̂t, η = µ̂y + ν̂t . . . ) the solved differential equations for
f1, . . . , fN may be reduced to differential equations Dl, containing derivatives of
one or several functions

(5) Dl [a(ξ), aξ , aξξ, . . . , b(ζ), bζ , bζζ , . . . ] = 0; l = 1, . . . , N

If the equations for the functions f1, . . . are ordinary differential equations one
may skip this step but the step may be necessary if the equations for f1, . . . are
partial differential equations.
Step 4.) We assume that the functions a(ξ), b(ζ), etc., are functions of other
functions, e.g., v(ξ), w(ζ), etc., i.e.

(6) a(ξ) = A[v(ξ)]; b(ζ) = B[w(ζ)]; . . .

We note that the functions A , B, . . . are not prescribed. One may use a finite-
series relationship, e.g.,

(7) a(ξ) =

ν2
∑

µ1=−ν1

qµ1
[v(ξ)]µ1 ; b(ζ) =

ν4
∑

µ2=−ν3

rµ2
[w(ζ)]µ2 , . . .

(where qµ1
, rµ2

, . . . are coefficients) but other kinds of relationships may be used
too.
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Step 5.) The functions v(ξ), w(ζ), . . . are solutions of simpler ordinary dif-
ferential equations called simplest equations, i.e., the extended version of the
methodology allows for the use of more than one simplest equation.
Step 6.) The application of the steps 1.)–5.) to Eq. (2) transforms the left-hand
side of this equation. Let the result of this transformation be a function that is a
sum of terms where each term contains some function multiplied by a coefficient.
This coefficient contains some of the parameters of the solved equation and some
of the parameters of the solution. In the most cases a balance procedure must
be applied in order to ensure that the above-mentioned relationships for the co-
efficients contain more than one term. This balance procedure may lead to one
or more additional relationships balance equations among the parameters of the
solved equation and parameters of the solution.
Step 7.) We may obtain a nontrivial solution of Eq. (2) if all coefficients men-
tioned in Step 6.) are set to 0. This condition usually leads to a system of non-
linear algebraic equations for the coefficients of the solved nonlinear PDE and
for the coefficients of the solution. Any nontrivial solution of the above algebraic
system leads to a solution the studied nonlinear partial differential equation.

3. Examples

3.1. The most simple example: bisoliton solution of the Korteweg-de
Vries equation

We shall describe this example very briefly in order to show the capacity of
the extended version of the methodology to lead to multi-soliton solutions of
integrable partial differential equations. We consider a version of the Korteweg
– de Vries equation

(8) ut + σuux + uxxx = 0

where σ is a parameter. The 7 steps of the application of the version of the
modified method of simplest equation from Sect. 2 are as follows.
Step 1.) The transformation
We set u = px in Eq. (8). The result is integrated and we apply the transformation

p =
12

σ
(lnF )x. The result is

(9) FFtx + FFxxxx − FtFx + 3F 2
xx − 4FxFxxx = 0

Step 2.) Relationship among F (x, t) and two functions f1,2 that will be con-
nected below to two simplest equations
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We shall use two functions f1(x, t) and f2(x, t) and the relationship for F is
assumed to be a particular case of Eq. (4):

(10) F (x, t) = 1 + f1(x, t) + f2(x, t) + cf1(x, t)f2(x, t)

where c is a parameter. The substitution of Eq. (10) in Eq. (9) leads to a non-
linear partial differential equation containing 64 terms.
Step 3.) Equations for the functions f1(x, t) and f2(x, t)
The structure of the obtained allow us to assume a the simple form of the equa-
tions for the functions f1,2:

∂f1
∂x

= α1f1;
∂f1
∂t

= β1f1;
∂f2
∂x

= α2f2;
∂f2
∂t

= β2f2;(11)

Eq. (11) transforms the solved nonlinear partial differential equation to a polyno-
mial of f1 and f2. Further we assume that ξ = α1x+β1t+γ1 and ζ = α2x+β2t+γ2
and f1(x, t) = a(ξ); f2(x, t) = b(ζ) where α1,2, β1,2 and γ1,2 are parameters.
Step 4.) Relationships connecting a(ξ) and b(ζ) to the functions v(ξ) and w(ζ)
that are solutions of the simplest equations
In the discussed here case the relationships are quite simple. We can use Eq. (16)
for the cases µ1 = ν2 = 1 and µ2 = ν4 = 1. The result is: a(ξ) = q1v(ξ);
b(ζ) = r1w(ζ).
Step 5.) Simplest equations for v(ξ) and w(ζ)
The simplest equations are

(12)
dv

dξ
= v;

dw

dζ
= w

and the corresponding solutions are v(ξ) = ω1 exp(ξ); w(ζ) = ω2 exp(ζ). Below
we shall omit the parameters ω1,2 as they can be included in the parameters q1
and r1 respectively. We shall omit also q1 and r1 as they can be included in ξ
and ζ.
Step 6.) Transformation of the nonlinear PDE that contains 64 terms
The substitution of all above in the nonlinear partial differential equation that
contains 64 terms leads to a sum of exponential functions and each exponential
function is multiplied by a coefficient. Each of these coefficients is a relationship
containing the parameters of the solution and all of the relationships contain
more than one term. Thus we don’t need to perform a balance procedure.
Step 7.) Obtaining and solving the system of algebraic equations
The system of algebraic equations is obtained by setting of above-mentioned
relationships to 0. Thus we obtain the following system:

α3
1 + β1 = 0, α3

2 + β2 = 0,



36 N. K. Vitanov

(c+ 1)α4
1 + 4α2(c− 1)α3

1 + 6α2
2(c+ 1)α2

1 + [(4c − 4)α3
2 + (β1 + β2)c+

β1 − β2]α1 + [(c+ 1)α3
2 + (β1 + β2)c− β1 + β2]α2 = 0.(13)

The non-trivial solution of this system is: β1 = −α3
1; β2 = −α3

2; c =
(α1 − α2)

2

(α1 + α2)2

and the corresponding solution of Eq. (8) is

u(x, t) =
12

σ

∂2

∂x2

[

1 + exp
(

α1x− α3
1t+ γ1

)

+ exp
(

α2x− α3
2t+ γ2

)

+

(α1 − α2)
2

(α1 + α2)2
exp

(

(α1 + α2)x− (α3
1 + α3

2)t+ γ1 + γ2

)

]

(14)

Eq. (14) describes the bisoliton solution of the Korteweg – de Vries equation.

3.2. Second example: the generalized Maxwell-Cataneo equation

As a second example we shall consider a nonlinear partial differential equation
that is a generalization of the Maxwell-Cataneo kind of equation

(15) ut + ruautt = pub−1u2x + qubuxx

The original Maxwell-Cataneo kind of equation is obtained when a = 0, b = 1
[48]. We follow the methodology for the case u(x, t) = H[F (x, t)] = F (x, t). and
search for traveling waves by using the traveling-wave ansatz F (x, t) = F (ξ) =
F (αx + βt) that reduces the solved nonlinear PDE to a nonlinear ODE. Then
the solution F (ξ) is searched as some function of another function f(ξ), i.e.,

(16) F (ξ) =

ν1
∑

µ=−ν

pµ[f(ξ)]
µ,

pµ are coefficients and f(ξ) is a solution of simpler ordinary differential equation
(the simplest equation):

(17) fξ = n
[

f (n−1)/n
− f (n+1)/n

]

,

where n is an appropriate positive real number. The solution of this equa-
tion is f(ξ) = tanhn(ξ). n must be such real number that tanhn(ξ) exists for
ξ ∈ (−∞,+∞) (n = 1/5 is an appropriate value for n and n = 1/4 is not an
appropriate value for n). Following the steps of the methodology we obtain two
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balance equations: a = b =
1

n
, and the nonlinear partial differential equation

(15) is reduced to the system of nonlinear algebraic equations

r(n+ 1)β2
− [(p + q)n+ q]α2 = 0

{

r(n− 1)β2
−

[(

(p+ q)n− q

)]

α2

}

δ1/n + β = 0

[

(p+ q)α2
− rβ2

]

nδ1/n −
1

2
β = 0.(18)

One non-trivial solution of this system is

(19) α =
1

2npr1/2δ1/n

[

(n+ 1)(np + nq + q)

]1/2

; β =
np+ nq + q

2nprδ1/n
,

and the corresponding solution of Eq. (15) is

u(x, t) = δ tanhn

{

1

2npr1/2δ1/n

[(

(n+ 1)(np + nq + q)

)1/2

x+
np+ nq + q

r1/2
t

]}

.

(20)

Several particular cases are as follows. For n = 1: the equation

(21) ut + ruutt = pu2x + quuxx,

has the solution

(22) u(x, t) = δ tanh

{

1

2pr1/2δ

[(

2(p + 2q)

)1/2

x+
p+ 2q

r1/2
t

]}

.

For n = 2: the equation

(23) ut + ru1/2utt = pu−1/2u2x + qu1/2uxx,

has the solution

(24) u(x, t) = δ tanh2

{

1

4pr1/2δ1/2

[(

3(2p + 3q)

)1/2

x+
2p+ 3q

r1/2
t

]}

.
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Finally let n = 1/3. Then the equation

(25) ut + ru3utt = pu2u2x + qu3uxx,

has the solution

(26) u(x, t) = δ tanh1/3

{

3

2pr1/2δ3

[(

4

9
(p+ 4q)

)1/2

x+
p+ 4q

3r1/2
t

]}

.

4. Concluding remarks

Above we have discussed an extended version of the methodology of the mod-
ified method of simplest equation. The extension is based on the possibility of
use of more than one simplest equation, on a transformation connected to the
searched solution and on a possibility of use of more general relationship among
the solution of the solved nonlinear partial differential equation and the solutions
of the simplest equations. These possibilities add the capability for obtaining
multisolitons to the discussed extended methodology by keeping its ability to
lead to particular exact solutions of nonintegrable nonlinear partial differential
equations. Two examples of application of the methodology are presented and
it is demonstrated that the balance procedure can lead to ore than one balance
equation.
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