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THE BOSON STAR EQUATION WITH HARTREE TYPE

NON-LINEARITY: GLOBAL EXISTENCE IN H
1

2 (R2)

Vladimir Georgiev, Boris Shakarov

Local and global well-posedness for the Boson Star equation with Hartree
type non linearity with initial data in the critical space H

1

2 (R2) with finite
L2(R2) norm is established. The proof is based on Strichartz estimates,
conservation laws, Coifman-Meyer theorem and Paley-Littlewood decompo-
sition.

1. Introduction

In this paper we consider the Cauchy problem for the nonlinear Boson Star equa-
tions of the form

(1)

{

(−i∂t + (1 −∆)
1
2 )u = F (u),

u(0, x) = u0 ∈ H
1

2 (R2),

where u(t, x) : R1+2 → C
2, m ≥ 0 is a mass parameter, 〈D〉s = (1 − ∆)

s

2u =
F

−1((1 + |ξ|2)
s

2F (u)) and F (u) = ((b − ∆)−1|u|2)u with b > 0 is the Hartree
type nonlinearity. The nonlinearity could be also seen as

(2) F (u) := (Vb ∗ |u|
2)u

where Vb is a convolution kernel such that

(3) Vb(x) ≤ Ce−b |x|
2 ,
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when |x| ≥ 2, and

(4) M−1h(x) ≤ V (x) ≤Mh(x),

when |x| ≤ 2, where h(x) = 1− log(
|x|

2
) +O(|x2|), and M,C are constants. For

the rest of this work we will suppose that b = 1 and m = 1.
This paper is divided into two parts. In the first part, we proof the local

existence of the equation using a contraction method and Strichartz estimates.

Theorem 1. (Local existence) There exists a function

T : H
1

2 (R2) → (0,∞] such that for any u0 ∈ H
1

2 (R2), there exists a u ∈

C([0, T (u0));H
1
2 (R2)) such that for all t ∈ (0, T (u0)), u is the unique local solu-

tion to the equation (1) in the sense that, for all t < T (u0) it is true that

(5) ‖u(t, x)‖
H

1
2
x (R2)

<∞.

In the second part we will proof that the solution is actually global, and so
the time existence for all initial data u0 is unbounded.

Theorem 2. (Global existence) The local solution given by theorem 5 is ac-

tually global in C([0,∞);H
1
2 (R2)) for every λ ∈ R, in the sense that, given an

initial datum u0(x) ∈ H
1
2 (R2), for any t ∈ [0,∞), there is a constant Cu0

such

that

(6) ‖u(t, x)‖
H

1
2
x (R2)

≤ Cu0
.

For these two results, we will use tools coming from Harmonic Analysis, from
general Partial Differential Equation theory and conservation laws. The key
result, from which global existence will follow, is the bilinear estimate

Theorem 3. There exists C > 0 such that for any f, g ∈ L2(R2) we have

(7) ‖(1−∆)−1/2〈f, g〉C2‖L2(R2) ≤ C‖f‖L2(R2)‖g‖L2(R2).

2. Local existence

The main purpose of this section is to prove the local well-posedness of the
solution to the equation (1). First of all, we show that the nonlinearity is locally

Lipschitz continuous from H
1
2 (R2) into itself.
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Lemma 1. For all λ ∈ R, the map F (u) defined in (2) is locally Lipschitz

continuous from H
1
2 (R2) into itself with

(8) ‖F (u)− F (v)‖
H

1
2 (R2)

. LM‖u− v‖
H

1
2 (R2)

,

for all u, v ∈ H
1
2 (R2) where LM is a constant depending only on the H

1
2 (R2)

norm of u and v, with M = max{‖u‖
H

1
2
, ‖v‖

H
1
2
}.

For the proof, we used the Kato-Ponce inequality (For a proof, see e.g. [1])
and, since the proof uses Sobolev Embedding theorem, it relies on the dimension
of the space. The same result for the space R

3 was proven in [2].

P r o o f. Take u, v ∈ H
1
2 (R2). We have that

(9) ‖F (u)− F (v)‖
H

1
2
= ‖〈D〉

1
2 ((〈D〉−2|u|2)u)− 〈D〉

1
2 ((〈D〉−2|v|2)v)‖L2

= ‖
1

2
〈D〉

1
2 (〈D〉−2(|u|2 − |v|2)(u+ v)) +

1

2
〈D〉

1
2 (〈D〉−2(|u|2 + |v|2)(u− v))‖L2

. ‖〈D〉
1
2 (〈D〉−2(|u|2 − |v|2)(u+ v))‖L2 + ‖〈D〉

1
2 (〈D〉−2(|u|2 + |v|2)(u− v))‖L2 .

Now we want to bound the two parts separately. Starting from

(10) B := ‖〈D〉
1
2 (〈D〉−2(|u|2 + |v|2)(u− v))‖L2 ,

and using the Kato-Ponce inequality, we have that
(11)

B . ‖〈D〉−
3
2 (|u|2 + |v|2)‖L4‖u− v‖L4 + ‖〈D〉−2(|u|2 + |v|2)‖L∞‖〈D〉

1
2 (u− v)‖L2 .

Using the Sobolev Embedding theorem in R
2 we have that ‖u−v‖L4 ≤ ‖u−v‖

H
1
2
.

For the same reason

(12) ‖〈D〉−
3
2 (|u|2+ |v|2)‖L4 ≤ ‖〈D〉−

3
2 (|u|2+ |v|2)‖

H
1
2
= ‖〈D〉−1(|u|2+ |v|2)‖L2 .

Use the fact that Bessel operators are Lp Fourier multipliers to obtain

(13) ‖〈D〉−1(|u|2 + |v|2)‖L2 ≤ ‖(|u|2 + |v|2)‖L2 ≤ ‖|u|2‖L2 + ‖|v|2‖L2

= ‖u‖2L4 + ‖v‖2L4 ≤ ‖u‖2
H

1
2
+ ‖v‖2

H
1
2
.

The last term is bounded due to the Sobolev Embedding theorem

(14) ‖〈D〉−2(|u|2 + |v|2)‖L∞ . ‖|u|2 + |v|2‖L2 . ‖u‖2
H

1
2
+ ‖v‖2

H
1
2
.
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Putting all together, we have that

(15) B . (‖u‖2
H

1
2
+ ‖v‖2

H
1
2
)‖u− v‖

H
1
2
.

Now let bound

(16) A := ‖〈D〉
1
2 (〈D〉−2(|u|2 − |v|2)(u+ v))‖L2 .

As before,

A . ‖〈D〉−
3

2 (|u|2 − |v|2)‖L4‖u+ v‖L4 + ‖〈D〉−2(|u|2 − |v|2)‖L∞‖〈D〉
1

2 (u+ v)‖L2 ,

and

‖〈D〉−
3
2 (|u|2 − |v|2)‖L4 . ‖|u|2 − |v|2‖L2 ,

Using Hölder inequality and Sobolev Embedding theorem, we can arrive to

(17) ‖|u|2 − |v|2‖L2 ≤ ‖u− v‖L4(‖u‖L4 + ‖v‖L4) . ‖u− v‖
H

1
2
(‖u‖

H
1
2
+ ‖v‖

H
1
2
).

Moreover

‖〈D〉−2(|u|2 − |v|2)‖L∞ ≤ ‖|u|2 − |v|2‖L2 . ‖u− v‖
H

1
2
(‖u‖

H
1
2
+ ‖v‖

H
1
2
).

The last two terms are bounded in this way

(18) ‖u+ v‖L4 . ‖u+ v‖
H

1
2
≤ ‖u‖

H
1
2
+ ‖v‖

H
1
2
,

and

(19) ‖〈D〉
1
2 (u+ v)‖L2 = ‖u+ v‖

H
1
2
≤ ‖u‖

H
1
2
+ ‖v‖

H
1
2
.

Putting all together, we have

(20) A . (‖u‖
H

1
2
+ ‖v‖

H
1
2
)2‖u− v‖

H
1
2
.

Then the final estimate is

(21) ‖F (u) − F (v)‖
H

1
2
. (‖u‖2

H
1
2
+ ‖v‖2

H
1
2
+ ‖u‖

H
1
2
‖v‖

H
1
2
)‖u− v‖

H
1
2
.

Finally, let’s prove (17). If we define the following function f(s) := |v+s(u−v)|2,
then it is clear that f(1) = |u|2 , f(0) = |v|2 and

(22) |u|2 − |v|2 = f(1)− f(0) =

∫ 1

0
f ′(s)ds.

With some calculations,

(23) f ′(s) = (u− v)(v̄ + s(ū− v̄)) + (ū− v̄)(v + s(u− v)).
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Then, we have that

(24) |u|2 − |v|2 = (u− v)v̄ + (u− v)(ū− v̄) + (ū− v̄)v = (u− v)ū+ (ū− v̄)v.

It is sufficient to take the L2 norm and use Hölder inequality to conclude. �

The integral form of the solution to (1) is

(25) u(t, x) = e−it〈D〉u(0, x) + i

∫ t

0
ei(s−t)〈D〉λF (u(s, x))ds.

We want to prove that our problem is locally well-posed with a fixed u0 ∈

H
1
2 (R2) using a contraction principle and Strichartz estimates.

Theorem 4. Given the equation (25) with the linear part of the solution

ulin(t, x) = e−it〈D〉u0(x), the following Strichartz estimate is true:

‖ulin(t, x)‖L∞
t

(R),L2
x(R

2) . ‖u0(x)‖L2
x(R

2).

P r o o f. We apply the result proved in [3]. In our case, we have that
h(ρ) =

√

1 + |ρ|2, and

1. h′(ρ) =
ρ

√

1 + |ρ|2
> 0.

2. h′′(ρ) =
1

√

1 + |ρ|2
3 > 0.

3. h(3)(ρ) =
−3ρ

√

1 + |ρ|2
5 .

In particular the hypothesis are verified and choosing p = 2 , q = ∞ s1 = s2 =
s = 0, we have the estimate above. �

Lemma 2. Let T > 0, u0 ∈ H
1
2 (R2) and let u, v ∈ C([0, T ];H

1

2
x (R

2) two

solutions to integral form (25). Then u = v.

P r o o f. We set M = sup
t∈[0,T ]

max{‖u(t, x)‖
H

1
2
x

, ‖v(t, x)‖
H

1
2
x

}. Then

w(t) := ‖u(t, x)− v(t, x)‖
H

1
2
x

≤

∫ t

0
‖F (u(s, x)) − F (v(s, x))‖

H
1
2
x

ds
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≤ LM

∫ t

0
‖u(s, x)− v(s, x)‖

H
1
2
x

ds = LM

∫ t

0
w(s)ds.

We conclude, using the Gronwall’s lemma, that w(t) ≤ 0 a.e. �

Theorem 5. (Local Existence) Let M > 0 and let u0 ∈ H
1
2 (R2) be such that

‖u0‖
H

1
2
≤M . Then there exists a unique solution u ∈ C([0, TM ];H

1
2 (R2)) of the

equation (25) with

(26) TM :=
1

2L2M
> 0.

P r o o f. For this prove we use the notation H
1
2 := H

1
2 (R2).

The uniqueness is proven in the previous lemma. Let u0 ∈ H
1

2 and define

E = {u(t, x) ∈ C([0, TM ];H
1
2 ); ‖u(t, x)‖

H
1
2
x

≤ 2M, ∀t ∈ [0, TM ]}.

We equip E with the distance generated by the norm of C([0, TM ];H
1
2 ):

(27) d(u, v) := max
t∈[0,TM ]

‖u(t, x)− v(t, x)‖
H

1
2
x

,

which makes E a complete metric space since C([0, TM ];H
1
2 ) is a Banach space.

For all u ∈ E, we define φu ∈ C([0, TM ];H
1
2 ) by

(28) φu(t, x) = e−it〈D〉u(0, x) + i

∫ t

0
ei(s−t)〈D〉F (u(s, x))ds.

We have that F (0) = 0 and so ‖F (u(s, x))‖
H

1
2
x

≤ 2ML2M =
M

TM
. It follows that

(29) ‖φu(t, x)‖
H

1
2
x

≤ ‖u0‖
H

1
2
+

∫ t

0
‖F (u(s, x))‖

H
1
2
x

ds ≤M + t
M

TM
≤ 2M.

Consequently φ : E → E and for all u, v in E,

(30) ‖φv(t, x)− φu(t, x)‖
H

1
2
x

≤ L2M

∫ t

0
‖v(s, x)− u(s, x)‖

H
1
2
x

≤ TML2Md(u, v) ≤
1

2
d(u, v).

Therefore, φ is a contraction in E and so φ has a fixed point u ∈ E, which solves
the integral solution (25). �
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Corollary 1. There exists a function T : H
1
2 (R2) → (0,∞] such that for

every u0 ∈ H
1
2 (R2), T : u0 → Tu0

and there exists a u ∈ C([0, Tu0
);H

1
2 (R2))

such that for all T ∈ (0, Tu0
), u is the unique solution to the equation (25) in

C([0, T ];H
1
2 (R2)). In addition,

(31) 2L2‖u(t,x)‖
H

1
2
x

≥ (Tu0
− t)−1,

for all t ∈ [0, Tu0
). In particular there are two alternatives:

1. Tu0
= ∞;

2. Tu0
<∞ and lim

t→T−
u0

‖u(t, x)‖
H

1
2
x (R2)

= ∞.

The proof is a standard argue by contradiction. In particular, there can be
some initial data for which the solution is only local and other for which the
solution is global (Tu0

= ∞).

3. Global Existence

In the previous section, we proved the local existence and uniqueness of a solution

to the equation (25) in the space C([0, T );H
1
2 (R2)), showing also the minimum

guaranteed time of existence for all initial data u0 ∈ H
1
2 (R2) and showing a

persistence of regularity for small time. The next step is proving that the time of

existence is Tu0
= ∞. In other words, we want to show that, given u0 ∈ H

1
2 (R2),

the solution will have a finite norm ‖u(t, x)‖
H

1
2
x (R2)

for any t > 0.

The first step for proving the global existence is obtaining these conservation
laws:

(32) E[u] :=
1

2

∫

R2

ū〈D〉udx+
1

4
λ

∫

R2

(〈D〉−2|u|2)|u|2dx,

(33) N [u] :=

∫

R2

|u|2dx.

Lemma 3. Given u0 ∈ H
1
2 (R2), the local solution given by the theorem 5

obeys to these conservation laws and in particular

(34) E[u(t, x)] = E[u0(x)] and N [u(t, x)] = N [u0(x)],

for all t ∈ [0, Tu0
).
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P r o o f. This proof follows the traces in [2]. Fixed a initial datum u0, let
first multiply the equation (1) for ū(t, x) and then integrate it in x. Taking the
imaginary part we have that

(35) ∂t‖u‖
2
L2(R2) = 0

for all t ∈ [0, Tu0
). Consequently N [u(t, x)] = N [u0(x)].

The conservation of energy is more delicate. Formally, it is sufficient to multiply

the equation (1) by ∂tū(t, x) ∈ H− 1
2 (R2) and then integrate over R2. Taking the

real part we have that

(36) 0 = ∂t

(

1

2

∫

R2

ū〈D〉udx−
1

4

∫

R2

(〈D〉−2|u|2)|u|2dx

)

.

In particular E[u(t, x)] = E[u0(x)]. The problem is pairing two elements of

the space H− 1
2 (R2) and then integrating them is generally not well defined. In

this case, we need to introduce a regularization procedure (see [2] and other
regularization methods in [5], [4]). The idea is that we can approximate the

operator 〈D〉 = (1−∆)
1
2 with the family of operators

(37) Mε := (ε〈D〉+ 1)−1, for ε > 0.

When using the fact that for all u ∈ Hs and s ∈ R, Mεu → u strongly, we can
approximate the difference

(38) E[u(t2, x)]− E[u(t1, x)] = lim
ε→0+

(E[Mεu(t2, x)] −E[Mεu(t1, x)]) .

Now it can be seen that, whenever ε > 0, there are not two H− 1
2 elements paired,

in contrast to the case ε = 0. Then, using the dominated convergence theorem,
it can be proven that lim

ε→0+
(E[Mεu(t2, x)]− E[Mεu(t1, x)) = 0. �

Definition 1. A solution u(t, x) to the equation (25) exists globally in

H
1
2
x (R

2) if and only if for any finite time t > 0 the norm ‖u(t, x)‖
H

1
2
x (R2)

is finite.

The idea to gain the global solution is to proof a a priori bound of the H
1
2

norm of the solution is such a way that

(39) ‖u(t, x)‖
H

1
2
x (R2)

≤ Cu0
,

for all t > 0 and for all initial data u0(x) ∈ H
1
2 , where Cu0

is a constant,
depending on u0. In the case of a defocusing nonlinearity we have that λ = 1
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and so

(40) E[u] :=
1

2

∫

R2
x

ū〈D〉udx+
1

4

∫

R2
x

(〈D〉−2|u|2)|u|2dx.

This leads to the simple bound

(41) ‖u(t, x)‖2
H

1
2
x (R2)

≤ 2E[u] = 2E[u0].

In the case of the focusing nonlinearity (λ = −1) we obtain

(42) ‖u(t, x)‖2
H

1
2
x (R2)

=
1

2
‖ 〈D〉−1 |u(t, x)|2‖2L2

x(R
2) + 2E[u0(x)],

And, using theorem 3, we arrive to

(43) ‖u(t, x)‖2
H

1
2
x (R2)

. 2E[u0(x)] + ‖u(t, x)‖4L2
x(R

2) = 2E[u0(x)] + ‖u0(x)‖
4
L2
x(R

2)

4. Proof of the Theorem 3

We take two functions f, g ∈ L2(R2). Using Gagliardo–Nirenberg inequality, we
have that

(44) ‖(1−∆)−1/2〈f, g〉‖2L2(R2) . ‖∇(1−∆)−1/2〈f, g〉‖2L1(R2).

So, if we define

(45) Tσ(f1, f2)(x) =

∫

Rn

σ(ξ1, ξ2)f̂1(ξ1)f̂2(ξ2)e
ix(ξ1+ξ2)dξ1dξ2,

where σ : R2 × R
2 → R

2 is

(46) σ(ξ1, ξ2) =
1

(1 + |ξ1 + ξ2|2)
1

2

(ξ1 + ξ2).

it is clear that theorem 3 is equivalent to proving that

(47) ‖Tσ(f, ḡ)(x)‖L1(R2) ≤ C‖f(x)‖L2(R2)‖g(x)‖L2(R2).

One of the fundamental theorem to arrive to the desired estimate is the Coifman–
Meyer theorem, (see e.g. [6]). We introduce the Paley–Littlewood decomposition:

Let ψ(ξ) be a real-valued radial and symmetric bump function with support
supp(ψ(ξ)) = {ξ ∈ R

n : ‖ξ‖ ≤ 2} which is equals 1 in the ball B = {ξ ∈ R
n :

‖ξ‖ ≤ 1}. Now, for j ∈ Z, let φj(ξ) = ψ(2−jξ) − ψ(2−j+1ξ) be a bump function

supported in the annulus

{

(

1

2

)−j+1

≤ ‖ξ‖ ≤ (2)j+1

}

whose derivatives satisfy
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the inequality 2j|α| |∂αφj(ξ)| ≤ cα for some positive number cα and for all multi-

indices α ∈ Z
n. By construction, the bump functions φj satisfy

∑

j∈Z

φj(ξ) = 1 for

all ξ 6= 0, thus they provide a specific partition of unity which allows to decompose

an arbitrary function u as u =
∑

j∈Z

Pju =
∑

j∈Z

uj , where Pj is a projection operator

defined by Pj(u) = (φj û)
∨.

This proof will be divided in two step: the first one deals with a non prob-
lematic subset of the frequencies space R

2
ξ1 × R

2
ξ2 , in which we will gain some

uniform bounds using Coifman–Meyer theorem; and the second one in which this
theorem cannot be used and it will be required to study accurately high and
low frequencies. A useful way to see this separation is through Paley-Littlewood
decomposition. We now that for every f Schwartz we have that

(48) f =
∑

j∈Z

Pj(f) =
∑

j∈Z

fj.

Then, we can decompose the product f ·g as
∑

j∈Z

fj
∑

k∈Z

ḡk. Then the two parts we

consider in this proof are
∑

j∈Z

fj
∑

|k−j|>M

ḡk, and
∑

j∈Z

fj
∑

|k−j|≤M

ḡk. In this way, we

divides the phase space (ξ1, ξ2) ∈ R4 into two parts in such a way that the first
part is the set in which the phases are not similar. In this part, it is possible to use
Coifman-Meyer theorem due to the fact that the symbol σ verifies proper bounds
of the derivatives. To prove that, let’s think the symbol σ to be σ : R4 → R

2,
ξ = (ξ1, ξ2, ξ3, ξ4),

(49) σ(ξ) :=
1

(1 + (ξ1 + ξ3)2 + (ξ2 + ξ4)2)
1
2

(ξ1 + ξ3, ξ2 + ξ4).

We define y := (ξ1 + ξ3)2 + (ξ2 + ξ4)2. We have that

(50) ∂ξiσ(ξ) = (1, 0)
1

(1 + y)
1
2

− (ξ1 + ξ3, ξ2 + ξ4)
ξi + ξi±2

(1 + y)
3
2

Computing the norm, it could be seen that

(51) |∂ξiσ(ξ)|
2 ≤ C

1

|ξ|2
.

We can go further and arrive to the fourth order derivative, but the arguments
will be the same. The key observation is that each differentiation gives two orders
of infinite rate. This fact matches perfectly with the required bound |ξ|−2α, where
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α is the derivative order.
So the hypothesis of the Coifman-Meyer are satisfied when the frequencies are
near to each other. Choosing r = 1, p = q = 2, for every f, g ∈ L2(R2), there
exists a constant C such that we have the uniform bound

(52) ‖Tσ(f, ḡ)‖L1(R2) ≤ C‖f‖L2(R2)‖g‖L2(R2),

which is exactly what we wanted to prove.
Note that Coifman-Meyer theorem cannot be used near zero. For this reason,

we supposed that |ξi| ≤ δ|ξj |. Now we have to deal with this case in which the
two frequencies are similar. So, we want to find a bound for the L2 norm of the

sum
∑

j∈Z

fj
∑

|k−j|≤M

ḡk. Let’s rewrite it in another equivalent form:

(53)
∑

k∈Z

fk
∑

|k−m|≤M

ḡm =
∑

|k−m|≤M
k,m∈Z

fkḡm.

Let’s start with fixed k,m ∈ Z. We have that

(54) ‖(1 −∆)−
1

2∇(fkḡm)‖L1(R2)

≤ ‖(1−∆)−
1
2 (∇(fk)ḡm)‖L1(R2) + ‖(1−∆)−

1
2 (fk∇(ḡm))‖L1(R2).

On the right hand side, the two elements are similar, so it is sufficient to show

how to bound one of them. Using the fact that (1−∆)−
1
2 is a Fourier multiplier

in all Lp spaces with p ≥ 1, we have that

‖(1−∆)−
1
2 (∇(fk)ḡm)‖L1(R2) ≤ ‖∇(fk)ḡm‖L1(R2) ≤ ‖∇(fk)‖L2(R2)‖ḡm‖L2(R2).

To bound the term with the gradient, we need to use Hardy spaces.

(55) ‖∇(fk)‖L2(R2) = C‖∇(−∆)−
1
2 ((−∆)

1
2 (fk))‖L2(R2)

.

2
∑

j=1

‖Rj(−∆)
1
2 (fk)‖L2(R2) ≤ ‖(−∆)

1
2 (fk)‖h2(R2),

where Rj are Riesz transforms and h2 is the Hardy space, which is equivalent to
the L2 space. So we have that

‖(−∆)
1
2 (fk)‖h2(R2) . ‖(−∆)

1
2 (fk)‖L2(R2).

Using lemma 6.2.1. of the book [7], we arrive to

‖(−∆)
1
2 (fk)‖L2(R2) ≤ C2k‖fk‖L2(R2).
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Applying the same passages to the second term we have that

(56) ‖(1 −∆)−
1
2∇(fkḡm)‖L1(R2)

. 2k‖fk‖L2(R2)‖gm‖L2(R2) + 2m‖fk‖L2(R2)‖gm‖L2(R2).

We will use (56) when min(k,m) < 1. In this case 2k and 2m are bounded by
a constant.
When min(k,m) ≥ 1, we can get another estimate. Let’s for a moment suppose
that m = k (as we will see below this supposition is irrelevant until |k−m| ≤M).
Then,

‖(1−∆)−
1
2 (∇(fk)ḡk)‖L1(R2) = ‖(1−∆)−

1
2Pk((∇(fk)ḡk))‖L1(R2),

where Pk is, as before, the kth Paley-Littlewood projection. Then we have that

‖(1−∆)−
1
2Pk((∇(fk)ḡk))‖L1(R2) ≤ 2−k‖Pk((∇(fk)ḡk))‖L1(R2).

Thanks to Bernstein inequality, if we take p = q = 1, then s = 0 and

2−k‖Pk((∇(fk)ḡk))‖L1(R2) . 2−k‖(∇(fk)ḡk)‖L1(R2).

From here, making the same passages as in the first case, it is clear that

‖(1−∆)−
1
2 (∇(fk)ḡm)‖L1(R2)

. 2−k2k‖fk‖L2(R2)‖ḡm‖L2(R2) + 2k2−m‖fk‖L2(R2)‖ḡm‖L2(R2),

and we have the bound

(57) ‖(1 −∆)−
1
2∇(fkḡm)‖L1(R2)

. ‖fk‖L2(R2)‖ḡm‖L2(R2)(2 + 2k−m + 2m−k).

Note that in the right hand side the element (2+2k−m+2m−k) can be bounded
by 2M+1. Then, putting together (56), (57), we have that

‖∇(1−∆)−
1
2 (

∑

|k−m|≤M
k,m∈Z

fkḡm)‖L1 ≤

‖∇(1−∆)−
1
2 (

∑

|k−m|≤M
min(k,m)≤0

fkḡm)‖L1 + ‖∇(1 −∆)−
1
2 (

∑

|k−m|≤M
min(k,m)≥1

fkḡm)‖L1
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.
∑

|k−m|≤M
min(k,m)≤0

(2k + 2m)‖fk‖L2‖gm‖L2 +
∑

|k−m|≤M
min(k,m)≥1

2M+1‖fk‖L2‖gm‖L2

. 2M+1
∑

|k−m|≤M
k,m∈Z

‖fk‖L2‖gm‖L2 .

From here we conclude observing that
∑

|k−m|≤M
k,m∈Z

‖fk‖L2‖gm‖L2 ≤ ‖fk‖ℓ2L2(R2)‖gm‖ℓ2L2(R2) . ‖f‖L2(R2)‖g‖L2(R2),

where we use Hölder inequality and discrete Young inequality, that is, in general,
for any sequence (ai)i∈N,

∑

|i−m|≤M

aiam =
∑

i

(b ∗ a)iai ≤ ‖ai‖ℓ2‖(b ∗ a)i‖ℓ2 ≤ ‖ai‖ℓ2‖ai‖ℓ2‖b‖ℓ1 ,

where b is the indicator function 1(k≤M) and so ‖b‖ℓ1 is finite. The last inequality

is a well know property of the Besov space B0
2,2, which norm is equivalent to the

norm of L2.
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