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ON AN EXAMPLE OF DERIVATIVE NONLINEAR

SCHRÖDINGER EQUATION WITH D2 REDUCTION

V. S. Gerdjikov, A. A. Stefanov

We briefly analyze the integrable derivative nonlinear Schrödinger (DNLS)
equations paying attention to mainly to the one known as GI equation
[5, 6, 4]. Using Mikhailov’s reduction group we impose on the Lax pair
additional Z2 invariance and derive new integrable DNLS eq. having an
additional cubic nonlinearity. We analyze the spectral properties of the new
D2-invariant Lax operator. We construct the fundamental analytic solutions
of the reduced Lax operator and formulate the Riemann-Hilbert problem
that they satisfy.

1. Introduction

The well known non-linear Schrödinger equation

(1) i
∂u

∂t
+

1

2

∂2u

∂x2
+ |u|2u = 0, u = u(x, t)

solved by Zakharov and Shabat [13] finds numerous applications [3] – for exam-
ple in optics, laser physics, bose-einstein condensates. It allows for derivative
generalizations with the most famous being, the family of three derivative NLS
equations (DNLS) admitting a Lax representation

• DNLS-I, or Kaup-Newell eq. [8]

(2) i∂tq + ∂2xq − ∂x(q|q|
2) = 0,
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• DNLS-II, or Chen-Lee-Liu eq. [2]

(3) i∂tq + ∂2xq + i|q|2∂xq = 0,

• DNLS-III or GI eq. [5, 6, 4]

(4) i∂tq + ∂2xq + iq2∂xq
∗ +

1

2
q|q|4 = 0,

It can be shown that those equations are related by a chain of gauge trans-
formation, but it is often more convenient to treat them separately [12].

Each of the DNLS can be written down as the compatibility condition
[L(·, λ),M(·, λ)] of two linear operators:

Lψ ≡ i
∂ψ

∂x
+ U(x, t, λ)ψ(x, t, λ) = 0,

Mψ ≡ i
∂ψ

∂t
+ V (x, t, λ)ψ(x, t, λ) = 0.

(5)

where the potentials U(x, t, λ) and V (x, t, λ) depend polynomially on λ.

The aim of the present paper is to demonstrate that by imposing additional
Z2 symmetry on L and M , which takes λ into λ−1, it is possible to derive new
Lax pairs resulting in new integrable versions of DNLS. Such approach generically
allows one, starting from Lax pair with Zh Mikhailov’s reduction [11] to construct
new Lax pair which will be invariant under the group Dh.

The paper is a natural extension of [7] and is structured as follows: In Sec-
tion 2 we formulate some preliminary facts relevant to our purposes. In Section 3,
following [7] we derive the corresponding GI eq. with D2 reduction group. Com-
pared to the original GI eq. the new one contains additional cubic nonlinearity
and additional linear terms. In Section 4 we derive the spectral properties of the
new Lax operator. We end with some concluding remarks.

2. Preliminaries

The Lax pair (5) is of generic form. In what follows we will specify the poten-
tials U(x, t, λ) and V (x, t, λ) to be polynomial in the spectral parameter λ with
coefficients taking values in a simple Lie algebra. We will fix them to be:

(6)
U(x, t, λ) =

(

Q0 + λQ1 − λ2J
)

V (x, t, λ) =
(

V0 + λV1 + λ2V2 + λ3V3 − λ4K
)

,
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where Vi(x, t), Qi(x, t), J and K take values in the Lie algebra sl(2). We will fix
up the gauge by choosing

J = K = σ3 =

(

1 0
0 −1

)

, Q1(x, t) =

(

0 2q
−2p 0

)

.(7)

2.1. Reductions of Lax pairs

The reduction groups introduced by [11] are a powerful tool for deriving new
integrable equations, admitting a Lax representation.

A reduction group GR is a finite group acting on the solution set of (5) which
preserves the Lax representation [10], i.e. it ensures that the reduction constraints
are automatically compatible with the evolution. GR must have two realizations:
i) GR ⊂ Autg and ii) GR ⊂ Conf C, i.e. as conformal mappings of the complex
λ-plane. To each gk ∈ GR we relate a reduction condition for the Lax pair as
follows [11]:

(8) Ck(L(Γk(λ))) = ηkL(λ), Ck(M(Γk(λ))) = ηkM(λ),

where Ck ∈ Aut g and Γk(λ) ∈ ConfC are the images of gk and ηk = 1 or −1
depending on the choice of Ck. Since GR is a finite group then for each gk there
exist an integer Nk such that gNk

k = 11.
The finite subgroups of Conf (C) were classified by Klein [9]. They consist of

two infinite series: i) Zh - cyclic group of order h; ii) Dh - dihedral group of order
2h; and the groups related to the Platonic solids: tetrahedron, cube, octahedron,
dodecahedron and icosahedron.

It is important to note that the form of the equations depends not only on
the chosen reduction group, but also on its realization.

The effect of some typical reductions on the matrix-valued functions of the
Lax representation [11]:

(9)

1) C1(U
†(κ1(λ))) = U(λ), C1(V

†(κ1(λ))) = V (λ),

2) C2(U
T (κ2(λ))) = −U(λ), C2(V

T (κ2(λ))) = −V (λ),

3) C3(U
∗(κ1(λ))) = −U(λ), C3(V

∗(κ1(λ))) = −V (λ),

4) C4(U(κ2(λ))) = U(λ), C4(V (κ2(λ))) = V (λ),

Let us consider a Dh type reduction. The dihedral group Dh has two gener-
ating elements satisfying the generating relations:

r2 = sh = 11, srs−1 = s−1.(10)



102 V. S. Gerdjikov, A. A. Stefanov

The group has 2h elements: {sk, rsk, k = 1, . . . , h} and allows several inequivalent
realization on the complex λ-plane. Some of them are:

(i) s(λ) = λω, r(λ) = ǫλ∗, (ii) s(λ) = λω, r(λ) =
ǫ

λ∗
,

(iii) s(λ) = λω, r(λ) = ǫλ, (iv) s(λ) = λω, r(λ) =
ǫ

λ
,

where ω = exp(2πi/h) and ǫ = ±1. An important realization in the case of a D2

reduction group is given by

(11) (v) s(λ) = λ∗, r(λ) =
ǫ

λ
.

3. Generalization of the DNLS-III equation

We will impose two reductions (types one and four from (9)). Their effect on the
potential of the Lax operator is given by

(12) 1) U †(x, t, λ∗) = U(x, t, λ), 2) Ũ

(

x, t,
1

λ

)

= U(x, t, λ).

where by “tilde” we mean

(13) X̃ = −BXTB−1, B =

(

0 −1
1 0

)

.

The same holds for V (x, t, λ). It is not difficult to show that, in order to satisfy
the reductions, the new potentials of the Lax operators must be invariant with
respect to GR, i.e. they take the form

(14)
U(x, t, λ) = U(x, t, λ)−BUT (x, t, λ−1)B−1

= Q0 + λQ1 − λ2J +
1

λ
Q̃1 −

1

λ2
J̃ ,

(15) V (x, t, λ) = V (x, t, λ)− V UT (x, t, λ−1)B−1

= V0 + λV1 + λ2V2 + λ3V3 − λ4K +
1

λ
Ṽ1 +

1

λ2
Ṽ2 +

1

λ3
Ṽ3 −

1

λ4
K̃.

The compatibility condition [L,M ] = 0 leads to the following set of recursion
relations:

(16)

λ6 : [J,K] = 0, λ5 : [J, V3] = [K,Q2],

λ4 : [J, V2] = [K,Q0] + [Q1, V3],

λ3 : [J, V1] = i
∂

∂x
V3 + [Q1, V2] + [Q0, V3] + [Q̃1,K],

λ2 : [J, V0] = i
∂

∂x
V2 + [Q0, V2] + [Q1, V1] + [Q̃1, V3] + [J̃ ,K].
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There are also analogous conditions for the negative powers of λ which are auto-
matically satisfied, provided that the above are true.

Solving these recurrent relations we determine V3, V2, V1 and V0 in terms of
Q1 and Q1 and their derivatives.

(17)

Q0 =

(

−2qp 0
0 2qp

)

, V3 =

(

0 2q
−2p 0

)

V2 =

(

−2qp 0
0 2qp

)

, V1 =

(

0 i∂xq
i∂xp 0

)

,

V0 = −
1

2
Q2

0 +
1

4
[Q1, [V1, J ]] + 2Q0,

where p = q∗.
Finally, inserting them in the last two relations:

(18)
λ1 : i

∂

∂t
Q1 = i

∂

∂x
V1 + [Q0, V1] + [Q1, V0] + [Q̃1, V2]− [J, Ṽ1] + [J̃ , V3],

λ0 : i
∂

∂t
Q0 = i

∂

∂x
V0 + [Q0, V0] + [Q1, Ṽ1] + [Q̃1, V1]− [J, Ṽ2] + [J̃ , V2].

we obtain the relevant NLEE. The λ1 terms in (16) give the following equation

(19) i
∂q

∂t
+

1

2

∂2q

∂x2
+ 2iq2

∂q∗

∂x
+ 4q|q|4 − 8q |q|2 + 2i

∂q

∂x
− 4q = 0.

This is DNLS-III equation with an additional cubic nonlinearity (and a linear
term). The λ-independent term vanishes, provided that q is a solution of (19).

4. Spectral properties of the Lax operator

Here we will briefly outline the spectral properties of the new Lax operators:

Lψ ≡ i
∂ψ

∂x
+U(x, t, λ)ψ(x, t, λ) = 0, Mψ ≡ i

∂ψ

∂t
+ V (x, t, λ)ψ(x, t, λ) = 0,

(20)

assuming that the the potential Q1(x) is a smooth function of x tending to 0 fast
enough for x → ±∞. To this end we introduce the Jost solutions of L. These
are fundamental solutions of (20) defined by their asymptotics for x → ∞ and
for x→ −∞:

lim
x→−∞

φ exp(iJ (λ)x) = 11, lim
x→∞

ψ exp(iJ (λ)x) = 11,(21)
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λ

Figure 1: The continuous spectrum of the Lax operator (20) and the contour of
the related Riemann-Hilbert problem.

where J (λ) = (λ2 + λ−2)σ3. Then one can derive the integral equations for the
Jost solutions. The result is the following set of Volterra-type integral equations:

(22) X±(x, λ) = 11

+ i

∫ x

±∞

dy E−1(x, y, λ)
(

Q0(y) + λQ1(x) + λ−1Q̃1(y)
)

X±(y, λ)E(x, y, λ),

where E(x, y, λ) = exp(iJ (λ)σ3(x− y)) and

X+(x, λ) = ψ(x, t, λ) exp(iJ (λ)σ3x), X−(x, λ) = φ(x, t, λ) exp(iJ (λ)σ3x).

The next step is to determine the values of λ on the complex λ-plane for which
eq. (22) allows solution, i.e. we need to find those values of λ for which the
exponentials E(x, y, λ) oscillate:

ImJ (λ) = Im (λ2 + λ−2) = 0.(23)

Let us parametrize λ = ρeiα where ρ = |λ| and α = arg(λ). Then eq. (23) goes
into:

(ρ2 − ρ−2) sin(2α) = 0.(24)
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Ω0 Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7

− + − + + − + −

Table 1: The signs of ImJ (λ) in each of the sectors Ωa

Obviously eq. (24) has three solutions: i) α = 0; ii) α = π/2 and iii) ρ = 1.
Thus the continuous spectrum of L will consist of the real axis, the imaginary
axis and the unit circle, see Figure 1. Inside each of the sectors Ωa, a = 0, . . . , 8
the function ImJ (λ) keeps its sign, see the Table 1.

The scattering matrix of the operator L is determined by:

T (λ, t) = ψ−1φ(x, t, λ) =

(

a+ −b−

b+ a−

)

.(25)

Its t-dependence is fixed by the second operator M ; in our case it is:

i
∂T

∂t
= (λ4 + λ−4)[σ3, T (λ, t)].(26)

which means that the functions a±(λ) are t-independent, while

i
∂b±

∂t
= ∓2(λ4 + λ−4)b±(λ, t).(27)

The inverse scattering problem for L can be reduced to a Riemann-Hilbert
problem (RHP). Indeed, coming back to the equations (22) it is not difficult to
check that only one of the columns of X+(x, λ) and X−(x, λ) will allow analytic
extension in each of the sectors. Combining them we will be able to introduce
a fundamental analytic solution (FAS) in each of the sectors. For example, the
FAS in the sectors Ω0 and Ω4 are constructed as follows:

ξ0(x, t, λ) =
(

X+
(1),X

−
(2)

)

(x, t, λ), ξ4(x, t.λ) =
(

X−
(1),X

+
(2)

)

(x, t, λ).(28)

Similarly in each of the sectors Ωk one can construct the corresponding FAS
ξk(x, t, λ). These FAS ξk(x, t, λ) and ξp(x, t, λ) will be linearly related on the
intersection of the sectors:

ξk(x, t, λ) = ξp(x, t, λ)Gkp(x, t, λ), λ ∈ Ωk ∩ Ωp,(29)

and the x, t dependence of the sewing functions Gkp is determined by:

(30) i
∂Gkp

∂x
= (λ2+λ−2)[σ3, Gkp(x, t, λ)], i

∂Gkp

∂t
= (λ4+λ−4)[σ3, Gkp(x, t, λ)].
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k 0 1 2 3 4 5 6 7
k̄ 2 3 0 1 6 7 4 5

Table 2: The correspondence between k and k̄ in eq. (32)

Elaborating further one can express Gkp in terms of the scattering matrix ele-
ments. For example,

G04(x, t, λ) =
1

a−(λ)

(

1 b−(λ, t)
b+(λ, t) 1

)

,(31)

where λ ∈ Ω0 ∩Ω4, i.e. λ = eiα and 0 ≤ α ≤ π/2.
The set of relations (29) can be viewed as a RHP. One can check that it is

canonically normalized, i.e. lim
λ→∞

ξk(x, t, λ) = 11 for k = 4, . . . , 7. In addition the

FAS satisfy

(32) ξk(x, t,−λ) = ξ−1
k̄

(x, t, λ).

where the correspondence between k and k̄ is given in Table 2.

5. Discussion and conclusions

We demonstrated how one can obtain new integrable equations applying addi-
tional reductions to the initial Lax pair. We have analyzed the spectral properties
of the new D2-invariant Lax operator L and constructed its fundamental analytic
solutions. This allows one to apply the dressing Zakharov-Shabat method [14, 15]
and construct the soliton solutions of the new system.
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