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DYNAMICS OF PEM WITH NANO-INHOMOGENEITIES
VIA CELLULAR NANOSCALE NETWORKS*

Angela Slavova, Galina Bobeva

In this paper we study the dynamics of piezoelectrical material (PEM)
with nano-inhomogeneities. The boundary value model defined by the sys-
tem of two partial differential equations and the boundary conditions for
the generalized stress is mapped into Cellular Nanoscale Networks archi-
tecture. We study the dynamics of the obtained CNN model via harmonic
balance technique. Validation and simulations are provided which illustrate
the theoretical results.

1. Introduction

Cellular Nanoscale Networks (CNN) present a new class of information processing
systems which shows important potential applications (Fig. 1). The concept of
CNN is based on some aspects of neurobiology and adapted to integrated circuits.
CNN are defined as spatial arrangements of locally coupled dynamical systems,
referred to as cells. The CNN dynamics are determined by a dynamic law of an
isolated cell, by the coupling laws between the cells and by boundary and ini-
tial conditions. The cell coupling is confined to the local neighborhood of a cell
within a defined sphere of influence. The dynamic law and the coupling laws of
a cell are often combined and described by nonlinear ordinary differential- or dif-
ference equations (ODE), respectively, referred to as the state equations of cells.
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Figure 1: a) CNN architecture; b) cell circuit; ¢) output function of CNN

Thus a CNN is given by a system of coupled ODE with a very compact repre-
sentation in the case of translation invariant state equations. Despite of having a
compact representation, CNN can show complex dynamics like chaotic behavior,
self-organization, and pattern formation or nonlinear oscillation and wave propa-
gation. Furthermore, Reaction-Diffusion Cellular Nonlinear/Nanoscale Networks
(RD-CNN) have been applied for modeling complex systems [8]. These networks
are not representing a paradigm for complexity only but also establishing novel
approaches to information processing by the dynamics of nonlinear complex sys-
tems.

In this paper we shall study piezoelectric material (PEM) with nano-inhomo-

Figure 2: PEM with nano-inhomogeneities



Dynamics of PEM 159

geneities (see Figure 2). PEM active composites are anisotropic dielectrics, where
the electric, magnetic and elastic fields are coupled. The demand for smaller and
faster devices has encouraged technological advances resulting in the ability to
manipulate matter at nano-scales that have enabled the fabrication of nano-scale
electromechanical systems. With the advances in materials synthesis and device
processing capabilities, the importance of developing and understanding nano-
scale engineering devices has dramatically increased over the past decade. The
knowledge of both the scattered wave field and dynamic stress concentration near
nano-defects may provide useful information concerning damage and fracture of
these materials and structures made by them.

In Section 2 we shall present the application of CNN in modeling partial
differential equations (PDE). In Section 3 we shall state the mechanical prob-
lem. We shall map the boundary value problem under consideration into CNN
architecture in Section 4. Harmonic balance technique will be presented and the
dynamics of the CNN model will be studied. Validation and simulations will be
provided in Section 5.

2. CNN modeling of PDE

Some autonomous CNN represent an excellent approximation to the nonlinear
PDE. Although the CNN equations describing reaction-diffusion systems are with
the large number of cells, they can exhibit new phenomena that can not be
obtained from their limiting PDE. This demonstrates that an autonomous CNN
is in some sense more general than its associated nonlinear PDE.

In this section we shall present the derivation of the CNN implementations
through spatial discretization, which suggests a methodology for converting a
PDE to CNN templates and vice versa. The CNN solution of a PDE has four
basic properties — it is

i) continuous in time;

ii) continuous and bounded in value;

iii) continuous in interaction parameters;

iv) discrete in space.

We shall demonstrate how an autonomous CNN can serve as a unifying
paradigm for active wave propagation. Several well-known examples chosen from
different disciplines will be modeled. Moreover, we shall show how the three
basic types of PDE: the diffusion equation, the Laplace equation, and the wave
equation, can be solved via CNN.

In [8] it was shown how a typical PDE, the heat equation, can be approxi-
mated, on a finite spatial grid, by a CNN with a given simple cell and cloning
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templates. This is possible, because PDE and CNN share a common property;
namely, their dynamics behavior depends only on their spatial local interactions.
The well known heat equation from physics is:

(1) Ugz + Uyy = Euh

where k is a constant, called the thermal conductivity. The solution, u(z,y,t) of
the heat equation is a continuous function of the time ¢, and the space variables
x, y. If the function u(z,y,t) is approximated by a set of functions w;;(t), which
are defined as

(2) wij(t) = u(ihg, jhy,t),

where h, and h, are the space intervals in the x and y coordinates, then, the par-
tial derivatives of u(x,y,t) with respect to x and y can be replaced approximately
by:

1
(3) Uge + Uyy A [wij—1(t) + wij+1(t) + wi-1;(t) + uit15(t)]
—u;(t), for all i,j.

Thus, the heat equation (1) can be approximated by a set of equations

Z dt] = Z[Uijfl(t) +ugipr(t) + ui—15(t) + wip1;(t)]

(4)

—u;i(t), for all i,j.

By adding a capacitor across the output of a simple cell, wave type equations
have been also generated. Moreover, at the equilibrium, we recover the Laplace
equation. These CNN will be called reaction-diffusion CNNs because they are
described mathematically by a discretized version of the following well-known
system of nonlinear PDE - reaction-diffusion equations [8]:

0
(5) = = f(w) + DV,

ot
where u € R™, f € R™, D is a m x m diagonal matrix whose diagonal elements
D; are called the diffusion coefficients, and

82 g 82 s
ox?  Oy?’

(6) V2u; =
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is the Laplacian operator in R2.

There are several ways to approximate the Laplacian operator (6) in discrete
space by a CNN synaptic law with an appropriate A-template [8]. For example
we can have:

a) one-dimensional discretized Laplacian template:

(7) Al : (17—271)§

b) two-dimensional discretized Laplacian template:

01 0
(8) AQ : 1 -4 1 5
01 0

which is in fact the approximation for the heat equation (1).

2.1. One dimensional CNN and PDE

Let us consider a one-dimensional CNN, described by the space-invariant A-
template A = [rps] with no B-template and no independent term (I = 0). The
equation describing the cell C; of such a CNN is thus given by

9) U = —ui +7f(ui—1) +pf(ui) + sf(uip1) = —u; + [rps]* fug),

where the nonlinearity f(u) is the piecewise linear function and the symbol x
denotes a discrete spatial convolution. If |u;| < 1, cell C; will be called a linear
cell, whereas, if |u;| > 1, it will be called saturated cell. The template [rps] can
be decomposed as follows

(10) [rps|=(@+s+7)010]+ (s+7)/2[1 —21]+

+(s —r)[~1/201/2).

Notice that the template [I — 21] corresponds to the discrete version of the
second spatial derivative, while [-1/201/2] is the discrete central spatial deriva-
tive. Consequently equation (9) can be written in the following form

(11) U =—u;+(p+r+s)flu)+ (84—7“)/232 * f(u;) + (s —T‘)é* f (i),

where & = [-1/201/2] and 8> = [1 —21]. Equation (11) indicates that equation
(9) is the spatially discrete analog of the PDE

(12) Ou(z,t) = —u+ af (u(z,t) + do>f(u(z,t) + cd. f(u(z, 1)),
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where z is the spatial variable, 9;, 0, are the partial derivatives with respect to ¢
and z and a, d, c are three constants. The three last terms of the right hand side of
equation (12) are respectively the active reaction, diffusion and convection terms.
Moreover, by comparing equation (11) and (12), the following correspondence can
be stated among the parameters of the two equations:

(13) (s+7r)/2—=d, (s—1r)—¢c, p+s+r—a.

The correspondence (13) can be used to compare the qualitative dynamics of
equation (9) with that of equation (12). In particular it is shown that, whenever
the spatial discrete nature of CNN has not a critical influence on dynamics,
PDEs are an useful tool to explain properties proved or simply shown by means
of numerical simulations for CNN. Interesting is that, when this is the case, CNNs
can be used as analog simulators of physical and biological continuous systems.

3. Statement of the boundary value problem

Let G € R? is a bounded piezoelectric domain with a set of inhomogeneities
I = Ul € G (holes, inclusions, nano—holes, nano—inclusions) subjected to time—
harmonic load on the boundary dG, see Figure 2. Note that heterogeneities are
of macro size if their diameter is greater than 10~%m, while heterogeneities are
of nano-size if their diameter is less than 10~ m.

The aim is to find the field in every point of M = G\I, I and to evaluate
stress concentration around the inhomogeneities.

Using the methods of continuum mechanics [9] the problem can be formu-
lated in terms of boundary value problem for a system of 2-nd order differential
equations:

NA N, NA.N N
cyyAus +ejsAuy — pruz gy =0,

14
(14) enguéV — E%Aui\] =0,
0? 0?
where x = (x1,22), A = — 5t 5 is Laplace operator with respect to t, N = M
Ox{ Oxs

forx € M and N = [ for x € I; uév is mechanical displacement, uflv is electric
potential, pN is the mass density, cfl\i > 0 is the shear stiffness, e{\g = 0 is the
piezoelectric constant and sﬁ > 0 is the dielectric permittivity.

Assume that the interface between the nano-inhomogeneity I and its sur-
rounding matrix M is regarded as thin material surface S that possesses its own

mechanical parameters cf,, 6{5, el).
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We shall consider that constants in I to be ¢fy = 0, els = 0, el; = 0 and

boundary conditions on S to be
S

(15) tj»w = % on S
where UlSj is generalized stress [2, 5], j = 3,4, [ is the tangential vector. Then we
shall study boundary value problem (BVP) (14) with boundary conditions (15).

There are only few numerical results for dynamic behavior of bounded piezo-
electric domain with nano-inhomogeneities under anti-plane load. For instance,
validation is done in [1, 6] for infinite piezoelectric plane with a hole, in [4] for
isotropic bounded domain with holes and inclusions and in [3] for piezoelectric
plane with nano-hole or nano-inclusion.

4. CNN model of boundary value problem and its dynamics

Following Section 2, CNN model of the BVP (14), (15) which consists of n = L.L
cells can be written in the following form:

B NdQU:'n' -0
P ~
ejl\gAl*u;),i—sﬁAl*u@ =0,1<i<n,

(16) CﬁAl * U3; + ejl\gAl * U4

where A; is 1-dimensional discretized Laplacian template [8], * is convolution
operator, 1 < i < n. Boundary conditions (15) can be written in terms of CNN
architecture are as follows:

doM
M _ lig . _
t] - 8[ 7‘3 _3>47 l
(17) v wOuy o a0uy,

013; = Cyy Dz +ei5 9z

l 1
M _ ar Oug; EMau4i

O =€ — 1< <n.
14i 15 al’l 11 8.’El7 >0 >

We express from the second equation of (16), A; * ug; and substitute in the
first equation. So we obtain the following equation for wus;:

2
Nd us;

(18) CAy *us; — p o2

=0,

(e

where C' = ¢} +
€11
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We shall take the output of the CNN model (17), (18) as a piecewise linear
function [8].

We shall apply approximative method in order to study the dynamics of our
CNN model (17), (18). This method is based on a special Fourier transform and
is known in electrical engineering as harmonic balance method [7].

4.1. Harmonic balance technique

The frequency response method is a powerful tool for the analysis and design of
linear control systems. It is based on describing a linear system by a complex-
valued function, the frequency response, instead of differential equation. The
power of the method comes from a number of sources. First, graphical represen-
tations can be used to facilitate analysis and design. Second, physical insights can
be used, because the frequency response functions have clear physical meanings.
Finally, the method’s complexity only increases mildly with system order. Fre-
quency domain analysis, however cannot be directly applied to nonlinear systems
because frequency response functions cannot be defined for nonlinear systems.

For some nonlinear systems an extended version of the frequency response
method, called the harmonic balance technique (HBT), can be used to ap-
proximately analyze and predict nonlinear behaviour. Even though it is only an
approximation method, the desirable properties it inherits from the frequency
response method, and the shortage of other systematic tools for nonlinear system
analysis, make it an indispensable component of the bag of tools of practicing
control engineers. The main use of HBT is for the prediction of limit cycles in
nonlinear systems, although the method has a number of other applications such
as predicting sub-harmonics, jump phenomena, and the response of nonlinear
systems to sinusoidal inputs.

It is well-known that the presence of limit cycles in nonlinear autonomous
systems which admit a Lur’e representation [7] but have no spatial dependence
can be investigated by resorting to the HBT. Such technique consists of two
fundamental steps:

1. The signal entering through the nonlinear block of the Lur’e scheme [7]
is approximated by means of a suitable sinusoidal term whose frequency and
amplitude are unknown.

2. The higher-order harmonics in the output of the nonlinear block are ne-
glected, i.e. the nonlinear block is replaced by a constant gain having the same
input, which minimizes the mean squared error between the output from the
nonlinearity and that from the gain itself.

We shall consider a basic Lur’e scheme [7], with £ — linear time- invariant
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dynamic system and A — nonlinear time-invariant static and memoryless system.
The block £ can be described by its transfer function

p(s)
19 L S) = ——
(19) (=22
where s is the complex variable and p(.) and ¢(.) are polynomial operators, while
the block N is represented by the nonlinear single-valued function n(.). In terms
of differential equation the system is governed by the form

(20) q(D)y(t) +p(D)nly(t)] = 0

where D is the differential operator.

The feedback structure in study is an important class of representation of
circuits and systems also with regard to their chaotic dynamics.

Since the methods presented in this section are based on a first harmonic
study, assume for the system output the form

(21) yo(t) = A+ Beoswt, B,w>0

and assume that the corresponding nonlinearity output nlyg(t)] is expanded in
Fourier series as

(22) nlyo(t)] = No(A, B)A+ Ny (A, B)Bcoswt + - - -

The nonlinear system N is characterized, in an approximate form related to
the (steady state) periodic regime, by the bias and w frequency real gains

(23) No(AB) = 5 [ nlo(t)ldot
(24) Ny (A, B) = % /7r nfyo(t)] cos wtdwt

which are the well-known describing function terms. As an extension, one can
define higher frequency complex gains N (A, B), k = 2,3, ..., which describe the
remaining terms of (22).

Definition 1. Predicted Limit Cycles The approzimative periodic solutions
yo(t) of the system derived by the HBT. According to (22), (23) and (24) the
predicited limit cycles conditions are:

(25) AL + No(A, B)|L(0) = 0

(26) 1+ Ny (A, B)L(jw) = 0.



166 A. Slavova, G. Bobeva

Such equations follow by imposing the HBT [7] along the system loop of the
Lur’e scheme, where the transfer function L and the nonlinearity n have been
evaluated at their steady state gains of zero and w frequency. Equations (25) and
(26) must be solved with respect to the parameters A, B and w. In general, when
B tends to zero the relation (26) expresses the Hopf bifurcation existence and the
relation (25) leads to a bias value A = E;, being E; the equilibrium points where
the bifurcation occurs. Such a point can be viewed as the generator of a family
of periodic solutions.

Any periodic solution yy(t) indicates in the state space a limit cycle which
is called predicted since it derives from a heuristic analysis and its exact shape
and even existence are uncertain. The reliability of the prediction depends on
the distortion along the system loop.

4.2. Dynamics of CNN model (17), (18)
Following harmonic balance method we introduce double Fourier transform:

k=00 00
(27) F(s,z)= > =z 7* /_ fe(t)exp(—st)dt.

k=—o00

where z = exp(i€)), Q is continuous spatial frequency, s = iw, w is continuous
temporal frequency.

We apply the above transform (27) to (18) and obtain the following transfer
function:

N g2
(28) H(s,z) = m

According to harmonic balance method we shall look for the solution of (17),
(18) in the form:

usg; = Us sin(wt + i€Q),
ug; = Uy sin(wt + iQ2),

2
where Us, Uy are amplitudes, 0 < Q < 27, w = %, T being the minimal period.

We shall express the transfer function (28) in terms of s = iw and z = exp (i§2)
and we obtain:
_ N2
(29) How)= — 2%
C(2cos2 —2)
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Following harmonic balance method the following constraints hold:

Re(Ho(w)) = %

(30) 4
Im(Hq(w)) = 0.

Now according to the method [7], if for a given value of Q, we can find a
solution (w,UsUy) of (30), then we can predict the existence of periodic solutions

2

with amplitudes Us, Uy and period of approximately T = il The following
w

proposition hold:

Proposition 1. CNN model (17), (18) consisting of n = L.L cells has peri-

odic state solutions us;, ug; with a finite set of spatial frequencies 2 and a period

T=2T.
w

Sketch of the Proof.  Following harmonic balance method [7], we
first approximate the output of our CNN model (17), (18), the fundamental
component of its Fourier expansion

(31) y = Y sin(wt + i2)

with L
Y =— N (V sint) sin ¥da.
77

—T

Then we substitute real and imaginary part of the transfer function Hq(w)
(28) in (30) and we obtain the system of algebraic equations for the unknowns
(w,UsUy). We solve this system and find the unknowns.This is the end of the
proof. O

Remark. In order to validate the accuracy of the obtained results we apply
possible initial conditions from which the network will reach, at steady state, a
steady state solution characterized by the desired value of €). In our case we
propose the initial conditions of the form: u;;(0) = sin(%), j = 3,4 ,1 <i < n.

Consider the square PEM domain G1G2G3G4 with a side «, containing a sin-
gle circular inhomogeneity with a radius r = Sa and center at the square center.
Note that if 8 < 0.05 the influence of the exterior boundary G on the solution
is expected to be small, while if 8 > 0.2 it is expected significant influence. In
our case of inhomogeneities at nano-scale, we shall take the material parameters

inside I to be: c£4 = 0.1, cﬁ,eﬁ = 0.1, e%, {1 = 0.1, %, I'— M Qpatial frequency
M

is defined as = ¢4/ (—7)w. For this parameter set we present below on Figure
Ca4

3 the obtained solution of our CNN model (17), (18).
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Figure 3: Simulations of CNN model (17), (18)

5. Simulations and validation

The characteristic that is of interest in nano-structures is normalized Stress Con-
centration Field (SCF) (0/0¢) and it is calculated by the following formula [2,
5]:

(32) o = —o3sin(yp) + 023 cos(y),

where ¢ is the polar angle of the observed point, o;; is the stress near S.

Material parameters of the matrix are for transversely isotropic piezoelectric
material PZT4 are:

~ Elastic stiffness: ¢}f = 2.56 x 101 N/m?;

— Piezoelectric constant: ef =12.7 C/m?

— Dielectric constant: el =64.6 x 10710 C/Vm;

~ Density: pM = 7.5 x 10° kg/m?.

The applied load is time harmonic uni-axial along vertical direction uniform

mechanical traction with frequency w and amplitude oo = 400 x 10° N / m? and
M

€

electrical displacement with amplitude Dy = k%vl[ao. This means that the bound-
€15

ary conditions (15) are:

—on G1G2 : tg/l = —0y, tiw = —Do;

—on GoGz : i =t} =0,

— on G3G4 : tg/j = 0, tﬁ/j = Do;

fonG4G1:t§/I:tflw:0.

The validation of our model is provided below on Figure 4 for the parameter
sets given above.
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Figure 4: Validation — dynamic SCF at observed point

6. Conclusions

In this paper we consider homogeneous or functional graded piezoelectric mate-
rial with heterogeneities of different type (hole, crack, inclusion, nano-hole, nano-
inclusion) subjected to time-harmonic wave. There is a certain lack of work for
solution of 2D ant-plane dynamic problems for piezoelectric and magnetopiezo-
electric solids with nanoinclusions or nano-cavities. The reason is that such a
goal requires multidisciplinary knowledge and skills.

In this paper we propose CNN approach for numerical study of the dynamics
of the boundary value model (14), (15). We study the dynamics of the obtained
CNN architecture by means of harmonic balance technique. We provide simula-
tions and validation in order to illustrate the theoretical results.

Computational nanomechanics has a high priority in Europe, because it con-
cerns the development and creation of new smart materials and devices based
on them. The present paper addresses the vital component of accurate descrip-
tion and computation of the wave motions and stress concentrations that are
developed in the multifunctional materials with nano-structures.
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