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INVERSE SCATTERING BY OBSTACLES

AND SANTALO’S FORMULA

Luchezar Stoyanov

We consider some problems related to recovering information about an ob-
stacle K in an Euclidean space from certain measurements of lengths of
generalized geodesics in the exterior of the obstacle – e.g. sojourn times of
scattering rays in the exterior of the obstacle, or simply, travelling times of
geodesics within a certain large ball containing the obstacle. It is well-known
in scattering theory that this scattering data is related to the singularities
of the scattering kernel of the scattering operator for the wave equation in
the exterior of K with Dirichlet boundary condition on the boundary. For
some classes of obstacles, K can be completely recovered from the scattering
data. On the other hand, for some obstacles the set of trapped points is
too large and this makes it impossible to recover them from scattering data.
We discuss also a certain stability property of the trapping set, which is
obtained from a generalisation of Santalo’s formula to integrals over billiard
trajectories in the exterior of an obstacle. Some other applications of this
formula to scattering by obstacles are discussed as well.

1. Sojourn times and travelling times

An obstacle is a compact subset of Rn (n ≥ 2) with smooth (Ck for some k ≥ 2)

boundary ∂K and a connected complement

ΩK = Rn \K.
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By a scattering trajectory (or simply a trajectory) in ΩK we mean the trajectory of

a point moving with unit speed in the interior of Ω and reflecting at ∂K following

the usual law of geometrical optics.

Remark. Strictly speaking, one has to consider more general trajectories in ΩK ,

namely the so called generalised geodesics of Melrose and Sjöstrand [16], [17],

which combine billiard trajectories in ΩK with geodesics on the boundary ∂ΩK =

∂K. However almost all generalised geodesics are standard billiard trajectories

(assuming the boundary ∂K is not too bad – see below).

Shifting along generalized geodesics (billiard trajectories) defines the gener-

alized geodesic (billiard) flow

F
(K)
t : Ṫ ∗(ΩK) = T ∗(ΩK) \ {0} −→ Ṫ ∗(ΩK),

which preserves the unit cosphere bundle S
∗(ΩK).

We will now describe a (generic) family of obstacles in R
n (n ≥ 2) to which

the results presented in this paper apply.

Denote by K be the class of obstacles such that for each (x, ξ) ∈ Ṫ ∗(∂K) if

the curvature of ∂K at x vanishes of infinite order in direction ξ, then all points

(y, η) sufficiently close to (x, ξ) are diffractive (see e.g. Ch. 1 in [22]; roughly

speaking, this means that ∂K is convex at y in the direction of η). It is known

that for K ∈ K the flow F
(K)
t is well-defined and continuous ([17]).

Next, let S0 be a ”large” sphere in R
n with centre 0 and let M be the open

ball with boundary S0. We will consider obstacles contained in M . Set

S
∗
+(S0) = {(p, ξ) : p ∈ S0, ξ ∈ S

n−1, 〈ξ, ν(p)〉 ≥ 0},

where ν(p) is the inward unit normal to S0 at p.

Given x = (p, ξ) ∈ S
∗
+(S0), let γ+(x) be the scattering trajectory in the

exterior of K issued from p in direction ξ. Set t(x) = ∞ if γ+(x) is bounded

(i.e. doesn’t intersect S0). If γ+(x) intersects S0 at some q ∈ S0, denote by t(x)

the length of γ+(x) from p to q along the trajectory. The number t(x) = tK(x)

defined in this way is called the travelling time of γ+(x).

Consider the cross-sectional map PK : S∗+(S0)\Trap
+
K(S0) −→ S

∗(S0) defined

by the shift along the flow F
(K)
t . Here Trap+K(S0) is the set of points x ∈ S

∗
+(S0)

with t(x) = ∞ (see Sect. 2 below). Let γ = γ+(p0, ξ0) be a scattering trajectory

in ΩK intersecting S0 at some point q0 (before going to infinity) which is a simply

reflecting (no tangent points to ∂K). We will say that γ is regular if the differential
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of the map S
n−1 ∋ ξ 7→ PK(p0, ξ) ∈ S0 is a submersion at ξ = ξ0, i.e. its

differential at that point has rank n − 1. Denote by L0 the class of all obstacles

K ∈ K such that ∂K does not contain non-trivial open flat subsets and γK(x, u)

is a regular simply reflecting ray for almost all (x, u) ∈ S
∗
+(S0) such that γ(x, u)∩

∂K 6= ∅. Using an argument from Ch. 3 in [22] one can show that L0 is of second

Baire category in K with respect to the C∞ Whitney topology in K. That is,

generic obstacles K ∈ K belong to the class L0.

A slightly different way of measuring lengths of trajectories produces the so

called scattering lengths spectrum. Let again M be a large ball in R
n containing

the obstacle K in its interior and let S0 = ∂M . Given ξ ∈ S
n−1 denote by Zξ

the hyperplane in R
n orthogonal to ξ and tangent to S0 such that M is contained

in the half-space Rξ determined by Zξ and having ξ as an inner normal. For an

(ω, θ)-ray γ in ΩK , the sojourn time Tγ of γ is defined by Tγ = T ′
γ −2a, where T ′

γ

is the length of that part of γ which is contained in Rω ∩R−θ and a is the radius

of the ball M . It is known that this definition does not depend on the choice of

the ball M (see [9] for the case of classical geodesics and Ch. 2 and 5 in [22] for

the general case of generalized geodesics).

The scattering length spectrum of K is defined to be the family of sets of

real numbers SLK = {SLK(ω, θ)}(ω,θ) where (ω, θ) runs over S
n−1 × S

n−1 and

SLK(ω, θ) is the set of sojourn times Tγ of all (ω, θ)-rays γ in ΩK . It is known

(see Theorem 11.1.1 in [22]) that for n ≥ 3, n odd, and generic1 obstacles K

with C∞ boundary ∂K there exists a subset R of Sn−1 × S
n−1 of full Lebesgue

measure such that

sing supp sK(t, θ, ω) = {−Tγ : γ is an (ω, θ)-ray in ΩK} = −SLK(ω, θ)

for all (ω, θ) ∈ R. Here sK is the scattering kernel related to the scattering

operator for the wave equation in R×ΩK with Dirichlet boundary condition on

R×∂ΩK (cf. [12], [15], [22]). Following [28], we will say that two obstacles K and

L have almost the same SLS if there exists a subset R of full Lebesgue measure

in S
n−1 × S

n−1 such that SLK(ω, θ) = SLL(ω, θ) for all (ω, θ) ∈ R.

In the present paper we are dealing with the following

General Inverse Problem. Obtain information about the obstacle K from

measurements of travelling times t(x) of scattering trajectories γ+(x), x ∈ S
∗
+(S0),

or from the scattering length spectrum {Tγ}.

1
K ∈ K would be enough.
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Similar inverse problems concerning metric rigidity (involving lengths of

geodesics) have been studied for a very long time in Riemannian geometry. With-

out going into details and without providing too many precise references, let us

just mention a (very incomplete) list of authors with significant contributions in

this area: J. P. Otal 1990, R. Michel 1981, C. Croke 1991, C. Croke – Kleiner

1994, P. Stefanov – G. Uhlmann [24], P. Stefanov – G. Uhlmann – A. Vasy [25],

C. Guillarmou [8], S. Dyatlov – C. Guilarmou [6]. We refer the reader to [24] and

[25] for a more comprehensive information (see also the references in these two

papers).

Some classes of obstacles K are uniquely ‘recoverable’ from travelling times.

For example, convex obstacles are easily recoverable by using back-scatter rays

(Lax-Phillips [12], Majda [14] in the 70’s).

S0

p

u

Figure 1

More generally, star-shaped obstacles are uniquely recoverable, too (see [28]

or Ch. 10 in [22]).
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A much more difficult positive result concerns obstacles K that are finite

disjoint unions of strictly convex domains with smooth boundaries (Figure 1).

Theorem 1. ([28], [18], [21]) Assume that K and L are obstacles in R
n

(n ≥ 2) and each of them is a finite disjoint union of strictly convex domains

with C3 boundaries. If K and L have almost the same travelling times, i.e.

tK(x) = tL(x) for almost all x ∈ S
∗
+(S0), or almost the same scattering length

spectrum, then K = L.

The-real analytic case of the above (in the case of the scattering length spec-

trum) was dealt with in [27].

However recovering K in practice from travelling times appears to be rather

difficult. See [19] where an algorithm is described for the recovery of an obstacle

which is a disjoint union of two strictly convex domains in the plane with smooth

boundaries from travelling times. Even this seemingly simple case is non-trivial.

2. Conjugate flows

As one can easily observe, trajectories in the vicinity of an obstacle that never

escape to infinity present difficulties in the study of inverse scattering problems,

especially if there is a large set of points in the phase space that generate such

trajectories.

Definition 1. A point x = (q, v) ∈ S
∗(ΩK) = ΩK × S

n−1 is called trapped if

the forward trajectory γ+(x) = γ+K(x) in ΩK issued from q in the direction of v

is bounded.

A point x = (q, v) ∈ S
∗(ΩK) is called completely trapped if both (q, v) and

(q,−v) are trapped, i.e. both the forward trajectory γ+(x) and the backward tra-

jectory γ−(x) in ΩK issued from q in the direction of −v are bounded.

Denote by Trap+K(S0) the set of all trapped points x = (q, v) ∈ S
∗
+(S0) (trap-

ping considered with respect to the obstacle K), and by Trap(ΩK) the set of all

completely trapped points x = (q, v) ∈ S
∗(ΩK).

Definition 2. Let K,L be two obstacles in R
n. We will say that the domains

ΩK and ΩL have conjugate flows if there exists a homeomorphism

Φ : Ṫ ∗(ΩK) \ Trap(ΩK) −→ Ṫ ∗(ΩL) \ Trap(ΩL)
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which defines a smooth map on an open dense subset of Ṫ ∗(ΩK)\Trap(ΩK), and

the following conditions are satisfied:

(a) Φ maps S
∗(ΩK) \Trap(ΩK) onto S

∗(ΩL) \Trap(ΩL),

(b) F
(L)
t ◦ Φ = Φ ◦ F

(K)
t for all t ∈ R,

(c) Φ = id on Ṫ ∗(Rn \M) \ Trap(ΩK) = Ṫ ∗(Rn \M) \ Trap(ΩL).

It was established in [28] that if two obstacles K and L have (almost) the

same scattering length spectrum, then ΩK and ΩL have conjugate flows. A similar

result holds for travelling times:

Theorem 2. ([28], [19]) If the obstacles K,L ∈ K0 have almost the same

scattering length spectrum or almost the same travelling times, then ΩK and ΩL

have conjugate flows.

Some interesting consequences of this have been derived, too.

Corollary 1. ([28], [19]) Let the obstacles K,L ∈ L0 have almost the same

scattering length spectrum or almost the same travelling times. Then:

(a) If the sets of trapped points of both K and L have Lebesgue measure zero,

then Vol(K) = Vol(L).

(b) If K is star-shaped, then L = K.

(c) Let Trap(n)(∂K) be the set of those x ∈ ∂K such that (x, νK(x)) ∈ Trap(ΩK),

where νK(x) is the outward unit normal to ∂K at x. There exists a home-

omorphism ϕ : ∂K \Trap(n)(∂K) −→ ∂L \Trap(n)(∂L) such that ϕ(x) = y

whenever Φ(x, νK(x)) = (y, νL(y)), where Φ is the homeomorphism from

Definition 2.

(d) Let n ≥ 3, let dim(Trap(n)(∂K)) < n−2 and let dim(Trap(n)(∂L)) < n−2.

Then K and L have the same number of connected components.

3. Trapped trajectories

As we have already mentioned, the size of the set Trap(ΩK) of trapped points

is rather important for the inverse scattering problem that we are considering in

this paper.
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Let us mention that there are relatively few points that are trapped in only

one direction. This was observed by Lax and Phillips in their very well-known

monograph [12]; a rigorous proof was given later in [28].

Theorem 3. ([12], [28]) The set

Trap+K(S0) = Trap(ΩK) ∩ S
∗
+(S0)

has Lebesgue measure zero in S
∗
+(S0).

It is easy to create trajectories that are trapped in one direction. For example,

let K be the union of two disjoined strictly convex compact domains in R
n, and

let [x0, y0] be the shortest distance between them. The trajectory γ0 issued from

x0 in direction v0 =
y0 − x0

‖y0 − x0‖
is periodic (bouncing from ∂K at x0 and y0

repeatedly). Let W s
ǫ (x0, v0)) be the local stable manifold of (x0, v0). Then for

every (x, v) ∈ W s
ǫ (x0, v0) the trajectory γ+(x, v) has infinitely many reflections

at ∂K getting closer and closer to γ0. So, any (x, v) ∈ W s
ǫ (x0, v0) is a trapped

point. However the backward trajectory γ−(x, v) escapes to infinity after finitely

many reflections at ∂K, so (x, v) is not completely trapped.

However there are cases when the set of completely trapped trajectories is

very large. Livshits’ Example (see Figure 2 adapted from [15]) describes one such

case.

E

F1 F2
A1 A2

K0

Figure 2: Livshits’ Example
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The main features of this example are the following:

• The closed curve in Figure 2 determines an obstacle K0 in R
2.

• The part of the boundary E is half an ellipse with end points A1 and A2,

• F1 and F2 are the foci of the ellipse.

• According to a well-known property of the ellipse, any straight-line ray en-

tering the area inside the ellipse between the foci F1 and F2, after reflection

at E, will go out intersecting the segment [F1, F2].

• No scattering ray ‘coming from infinity’ can have a common point with the

parts of the boundary ∂K from A1 to F1 and from A2 to F2. That is, no

information about these parts of ∂K can be obtained from travelling times.

• Clearly for this obstacle K0 the set of trapped points in S
∗(ΩK0

) has a

non-empty interior, and so a positive measure.

Thus, the obstacle K in Livshits’ Example is not recoverable from travelling

times. Using this example one can create similar examples in higher dimensions.

Theorem 4. ([20]) For any integer n ≥ 2 there exist obstacles K in R
n

such that Trap(ΩK) has a non-empty interior in S
∗(ΩK), and therefore a positive

Lebesgue measure in S
∗(ΩK).

It is natural to ask whether the set of trapped points possesses some kind of

stability.

Question: Starting with an example of an obstacle K with a ‘massive’ set

Trap(ΩK) of trapped points (e.g. Livshits’ example) and smoothly perturbing

the boundary of the obstacle slightly, can we destroy the ‘massive’ set Trap(ΩK)

to a very big extend, i.e. obtain an obstacle whose set of completely trapped

points has zero measure (and empty interior)?

For part of the Question the answer is negative. We will now state some

precise results in this direction.

Let k ≥ 3 and let Ck(∂K,Rn) be the space of all smooth embeddings

F : ∂K −→ R
n endowed with the Whitney Ck topology (see [10]). We will not

attempt here to provide the precise definition of this topology, let us just mention

that Ck(∂K,Rn) is a metric space with a metric d such that, roughly speaking,
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two embeddings F,G of ∂K into R
n are ǫ-close if ‖F (x) − G(x)‖ < ǫ for all

x ∈ ∂K, and also all derivatives of F and G of order up to k satisfy similar

relationships.

Given F ∈ Ck(∂K,Rn), let KF be the obstacle in R
n with boundary ∂KF =

F (∂K) contained in the interior of the sphere S0, and let ΩKF
= Rn \KF .

Let λ be the Lebesgue measure on S
∗(Rn) = R

n × S
n−1.

Theorem 5. ([29]) Let K be an obstacle in R
n, n ≥ 2. Assume that K

belongs to the generic class K described in Sect. 1.

(a) If λ(Trap(ΩK)) > 0, then there exists an open neighbourhood U of id in

Ck(∂K,Rn) such that λ(Trap(ΩKF
)) > 0 for every F ∈ U .

(b) More generally, for every ǫ > 0 there exists an open neighbourhood U of

id in Ck(∂K,Rn) such that

|λ(Trap(ΩKF
))− λ(Trap(ΩK))| < ǫ

for every F ∈ U .

The proof of the above result is based on a consequence of the well-known

Santalo’s formula in Riemannian geometry which we discuss in the next section.

4. The Travelling Time Formula

Let K, ΩK and S0 be as in Sect. 1. Set

Ω = ΩK ∩M,

where as before M is the closed ball with boundary S0. Let ϕt : S
∗(Ω) −→ S

∗(Ω)

(t ∈ R) be the billiard flow in Ω. It is well-known that it preserves the Lebesgue

measure dλ = dqdv on S
∗(Ω) ([1]).

For q ∈ ∂Ω, let ν(q) ∈ S
n−1 be the inward unit normal to ∂Ω. Set

S
∗
+(∂Ω) = {x = (q, v) : q ∈ ∂Ω , v ∈ S

n−1 , 〈v, ν(q)〉 ≥ 0}.

Given x = (q, v) ∈ S
∗
+(∂Ω), define the first return time τ(x) ≥ 0 as the maximal

number (or ∞) such that ϕt(x) = (q+ tv, v) is in the interior of Ω for all 0 < t <

τ(x). In the special case when x = (q, v) ∈ S
∗
+(∂Ω) is such that 〈ν(q), v〉 = 0 set

τ(x) = 0.
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The Liouville measure µ on S
∗
+(∂Ω) is defined by

dµ = dρ(q)dωq | 〈ν(q), v〉 |

where ρ is the measure on ∂Ω determined by the Euclidean structure (surface

area) and ωq is the Lebesgue measure on the (n − 1)-dimensional unit sphere

Sq(Ω) = S
n−1. It is well-known (see e.g. [1]) that the billiard ball map

B : S∗+(∂Ω) −→ S
∗
+(∂Ω)

preserves the Liouville measure µ, i.e.

µ(B(A)) = µ(B−1(A)) = µ(A)

for every measurable subset A of S∗+(∂Ω).

In the situation considered here the well-known Santalo’s formula in Rieman-

nian geometry ([23]) has the following form.

Theorem 6. (Santalo’s formula)

∫

S∗(Ω)
f(x) dλ(x) =

∫

S∗+(∂Ω)

(

∫ τ(x)

0
f(ϕt(x)) dt

)

dµ(x)

for every λ-integrable function f : S∗(Ω) −→ C.

The original Santalo’s formula has been used a lot in Riemannian geometry

– see e.g. [4] and [5] and the references there. In the case of billiard flows this

formula has also been applied by various authors – see e.g. [2] and [3].

Using Santalo’s formula we proved in [29] a similar formula that involves

travelling times of whole scattering trajectories in the exterior of the obstacle K

contained in the ball M :

Theorem 7. ([29]) Let K be an obstacle in R
n, n ≥ 2, that belongs to the

class K (see Sect. 1). Then for every λ-measurable function

f : S∗(Ω) \Trap(ΩK) −→ C

such that |f | is integrable we have
∫

S∗(Ω)\Trap(Ω)
f(x) dλ(x)(1)
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=

∫

S∗+(S0)\Trap
+
K
(S0)

(

∫ tK(x)

0
f(ϕt(x)) dt

)

dµ(x).

Formula (1) is what we call the travelling time formula in this paper.

Remark. If λ(Trap(ΩK)) = 0, then (1) gives

∫

S∗(Ω)
f(x) dλ(x) =

∫

S∗+(S0)

(

∫ tK(x)

0
f(ϕt(x)) dt

)

dµ(x).

As established in [29], this is true for every integrable f ; there is no need to

assume integrability of |f |).

We should remark also that the main tool used in the proof in [29] of Theorem

5 above is the travelling time formula (1).

Using Theorem 7 with f = 1 yields the following.

Theorem 8. ([29]) Under the assumptions in Theorem 7,

λ(Trap(ΩK)) = λ(S∗(Ω))−

∫

S∗+(S0)\Trap
+
K
(S0)

tK(x) dµ(x).

So, if we know the travelling time function tK(x) and have enough information

about Ω = M ∩ΩK to determine its volume, then we can determine the measure

of the set of the completely trapped points in ΩK , as well.

Another consequence of Theorem 7 with f = 1 is the following

Corollary 2. ([29]) If λ(Trap(ΩK)) = 0, then

(2) Voln(K) = Voln(M)−
1

Voln−1(Sn−1)

∫

S∗+(S0)
tK(x) dµ(x),

where Voln(K) is the standard Riemann volume of K in R
n and Voln−1(S

n−1) is

the standard (n− 1)-dimensional volume (surface area) of Sn−1 .

Remarks: (a) Formula (2) shows that from travelling times data we can

recover the volume of K. That is, without seeing K and without any preliminary

information about K (assuming though that K is not too bad so that its set

of completely trapped points is relatively small), just measuring the times that

certain kind of signals spend in the interior of the sphere S0, we can compute the
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volume of K. Apart from that, it appears that (2) could be useful in numerical

approximations of the volume of K.

(b) In Theorem 8 we only used the trivial function f = 1. Naturally, one

would expect that using Theorem 8 for a large family of functions f would bring

much more significant information about the obstacle K.

It is already known from previous results that a certain amount of information

about K is recoverable from travelling times. However by means of the travelling

times formula (1) it might be possible to get such information in a more explicit

way.

Example 1. Assume that K is a disjoint union of k balls of the same radius

r > 0, where k ≥ 1 is arbitrary (possibly a large number). Suppose that we

know r from some preliminary information. Then measuring travelling times

t(x) = tK(x) for a relatively large number of points x = (q, v) ∈ S
∗(S0) we get an

approximation of the integral
∫

S∗+(S0)
t(x) dµ(x),

and therefore an approximate value for the number k of connected components

of K. The precise formula (assuming we can measure almost all travelling times)

is:

k =
Voln(K)

πn/2rn/Γ(n/2 + 1)

=
Rn

rn
−

Γ(n/2) Γ(n/2 + 1)

2πnrn

∫

S∗+(S0)
t(x) dµ(x),

where R is the radius of S0 and Γ is Euler’s Gamma function,

Γ(a) =

∫ ∞

0
ta−1e−t dt, a > 0.

5. Some recent results and open problems

Recently, generalising the method from [18] it was proved in [30] that for obstacles

K in R
n satisfying some regularity conditions and such that the set S

∗
+(S0) \

Trap(ΩK) is connected, the scattering length spectrum, and also the travelling

times’ spectrum, uniquely determine K.
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Generally speaking it appears that for n ≥ 3 the set S
∗
+(S0) \ Trap(ΩK)

is connected ”more often”. As Antoine Gansemer ([7]) observed, when K is

a disjoint union of two strictly convex domains with smooth boundaries in R
2

the set S
∗
+(S0) \ Trap(ΩK) is disconnected. More precisely, S∗+(S0) ∩ Trap(ΩK)

contains a closed curve. The same happens for every obstacle K in R
2 which is

a disjoint union of several strictly convex compact domains.

Comments and Some Open Problems

• Is there any stability of other numerical characteristics of Trap(ΩK), e.g.

its Hausdorff dimension or fractal dimension, similar to what we have about

the Lebesgue measure in Theorem 5?

• If Trap(ΩK) has a non-empty interior, is it true that for all sufficiently close

to id perturbations F of ∂K, Trap(ΩKF
) also has a non-empty interior?

• Is it possible that Trap(ΩK) has positive Lebesgue measure and an empty

interior?

• If Trap(ΩK) has an empty interior (regardless whether its Lebesgue measure

is positive or not), then its complement in S
∗(ΩK) is open and dense. So,

every point in S
∗(ΩK) is arbitrarily close to non-trapped points. That is,

for every q ∈ ∂K there exist non-trapped scattering trajectories having

reflection points q′ ∈ ∂K arbitrarily close to q. Thus, generally speaking

every point on ∂K should be ‘observable’, and so perhaps the obstacle K

can be uniquely recovered from travelling times. Whether this is the case

is not known at present.
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