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POINCARE SERIES OF ALMOST COMPLETE INTERSECTIONS
OF EMBEDDING DIMENSION THREE

LUCHEZAR L. AVRAMOV

A change of rings theorem is proved for the reduction of the Poincaré series of a local
Gorenstein ring modulo depth 3 perfect ideals, minimally generated by 4 elements. Together
with an earlier result of the author, this theorem establishes the rationality of the Poincaré
series of the title.

The conjectured rationality of the Poincaré series P,=237 biz' (b
=dim, Tor{(k, k)) for the local ring (A4, m, k) has been proved now for several

types of homomorphic images of regular local rings. Yet there are only very
few classes of rings, for which P, is known to be rational, and which admit
an intrinsic ring-theoretical characterization. In order to describe them, we
recall that b;=dim,m/m? is called the embedding dimension of A (also denot-

ed &), and d(A)=b,— (")) +dim A=e,—¢+cim A is called the complete

intersection defect of A; if one uses Cohen’s theorem to represent the m-adic
completion A in the form R/p with (R, n) regular local, then another expres-
sion for d(A) is dim,(b/nb)—(dim R—dim A).

The rationality of P, is known in the following cases:

(1) A is a local complete intersection, i.e. d(A)=0 (Tate; this includes
the case of regular A, due to Eilenberg and Auslander-Buchsbaum);

(2) ep=depth A+42 (Scheja);

(3) eo=depthA+3 and A is Gorenstein (Wiebe).

In this note we add to the list the following:

Theorem 1. Let (A,m, k) be an almost complete intersection (i. e.
d(A)=1), with ¢,—=depth A+3. Then P, is a rational function.

We note that by a theorem of Kunz there is no intersection between the
class of rings described in the theorem, and the one in (3) above (cf. [4]); as
a matter of fact, this also follows from our explicit formulas for P,

We deduce theorem 1 from two more general “change of rings” results.
One of them has already been proved in [1], and the second one is:

Theorem 2. Let (A,m, k) be a Gorenstein local ring, and let a be an
ideal minimally generated by 4 elements, which is perfect of depth 3 and
of type t=dim, Tor{(A/a, k).

If a is not contained in m? then t=2 and

PyP = (1+2)(1 322 —22%).
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If acm? then o is small (cf. [1]), and

| 422228+ 324+ 225 if t=2;
PuP,ra=31—422—t 28 —(t - 3)zt — 25— 28 if tisodd =3;
1 —422—£23—(t—3)z* if tiseven =4.

In order to establish this theorem we first prove that the “generic” height
3 almost complete intersections of Buchsbaum and Eisenbud (cf. [2, pro-
position 6.3]), define generically perfect ideals in the sense of Eagon and
Northcott [3]. This enables us to apply the techniques of [1], and deter-
mine the Poincaré series by making a reduction to explicit examples. An im-
portant step is the determination of the algebra structure of Tor4(A/a, &).

In the most interesting case, when A is regular, theorem 2 has been in-
dependently and somewhat earlier obtained by E. S. Golod, who uses a diffe-
rent method (cf. [6]).

Proof of theorem 1. Our assumptions can be written in the form:
eo—=depth A+3 and ¢, =4 —(dim A — depth A). The case, when A is not Cohen-
Macaulay is given by [1, corollary 7.3], while the case when dim A=depth A
is contained in theorem 2.

The proof of theorem 2 occupies most of the paper.

First we note, that if /=2, then by [2, corollary 5.4] there exist a depth
2 and type 2 perfect ideal a, and an element x¢m, which is regular modulo
a,, such that a==q,+(x). It follows that in this case the theorem is a conse-
quence of [1, theorem 7.1], and of the well known “change of rings modulo
regular elements” theorems of Tate and Scheja (cf. [1, proposition 4.2]).

From now on we assume f>2 and set s=[¢/2] (entire part).

Consider the rings, where R is a (commutative) Noetherian ring:

lR[{ Yiihsizs {Xyhzicy=d if ¢ is odd;
St: 1=/=t¢
lR[{Yu}l=2.3 v AXih=icjzer] it Zis even.
2=j=t+1

We denote by (V) the matrix (Y;;) and by (X) the (2s+1)<(2s+-1) alternat-
ing matrix with X,,=0 and X;;=—X;(i<j).| Y /- denotes the minor on
the columns i, j,..., while Pf;; . (X) denotes the Pfaffian (cf. [2]) of the
alternating matrix obtained from X by deleting rows and columns with indices
i, j,... We now define ideals in S;:

t
({2(-1)/+1y,, Pf,-(X)} v (= )iHithE| Y fisk Pf,,,,k(X))iftisodd;
Jj=1 i=1,2,3 i<j<k

1= t+1

(Pfl(X),{2<—1>f+* Yis Pf,(X)} © D (1) Y P A(X)

J=2 =23 1< j<k
if £ is even.

Lemma. (a). /, is a perfect ideal of depth 3.
(b) If (A, m) is a Gorenstein local ring and o is a depth 3 and type t
perfect ideal, minimally generated by 4 elements, then there exist x; ytm,
such that a=®(l,)A where @ is the ring homomorphism sending X;; to x;;
and Y;; to yi.
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Proof. (a) By the theory of generically perfect ideals, it is sufficient to
prove the lemma under the further assumption that R is either the ring of in-
tegers or a field (cf. [3, propositions 4 and 5]). From [3, lemma 6] we see
that the first three generators #,, ¢, and #; of /=1, form an S=S,-regular se-
quence, hence the Koszul complex £ on them is exact; denote its I-dimen-
sional generators by 7,:d7,=¢; (i=1, 2, 3). Let F denote the generic Buchs-
baum-Eisenbud complex, associated to the matrix (X) (cf. [2, section 3] or
[1, section 8]); F, is the free S-module on {A}< <241, With dA;=(—1)/*1 Pi;(X),
dF,=J. By [1, proposition 8.7 and corollary 8.6], F is exact and Hy(F)=S/J.
Giving F the multiplication constructed in [2, section 4] and [1, 8.4], define a
S-algebra map f:E — F by setting:

Y4, if £ is odd;
T)=
AT { A, if ¢ is even;
AT)==Y,4,; for i=2, 3.

Denoting Homg(—, S) by (—)*, let G be the mapping cone of the map f*
factored out by the subcomplex (F; .d) E;®F}) and suitably renumbered.

Localizing at any prime ¢ of S, we obtain a regular local ring S’B and
H,(G);B'_\:H,-(G;B). If ¢ does not contain J, then H(Fq)=0 for all i and the
mapping cone exact sequence shows that H,-(G;B)zo for i>0. If ¥, then

the same conclusion holds by [2, proposition 5.1a]. Hence G is acyclic, and
pd(S/[)=3. As noted at the beginning, depth(/, §)=3, and the assertion
follows.

(b) Let a=(ay, a, as a,). By [2, theorem 5.4. (b)], we can assume that
a,, a,, ag form a regular sequence, and a'=(a, @, a@;):(a,) is a Gorenstein
ideal with 2s+1 generators. Now [2, theorem 2.1] asserts the existence of a
(2s+1)X(2s+ 1) matrix (x) with x;€m, such that o’ =({Pf(x)}i<j<2s+1)- By [2,
proposition 5.1}, a=(a,, ay a;):a’. Considering the resolution of A/a construct-
ed according to [2, proposition 5.1a) from the map of complexes over
A/(ay, ag, a3) - Ala’, one sees that dim,Im((a;, @ a5)Xk — a’'Xk)=0o0r 1
depending on whether ¢ is odd or even. This shows how to choose the y,;tm,
which finishes the proof of (b).

Corollary. Under the assumptions of theorem 2, a is small and

PP gya=Ps/Ps,1,
with R=Fk in the definition of the ring S,

Proof. Immediate from the lemma and [1, theorem 6.2}.

Having reduced the problem to the generic situation, we now perform a
second reduction, specializing to an explicity constructed ideal in the ring
B=Fk|X, Y, Z]. For this purpose define a map of k-algebras ¢:S;, — B by
setting :

X if i is odd and j=i+1;
: _J Y if i is even and j=i+1;
AXiD=\ 7 s j=2s—j+2;
0 in all other cases.
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¢(yn)___y={ Y .if t.is odd;
1 if £ is even;
o Yos11)=2;
o(Y325:1) =X
o(Yiy)=0 if (@ =1, 1),(2,s+1), (3, 25+1).

(Here we have adopted the convention that Y,,=1 if £ is even.)
We set p=¢(/;)B and L=G®stB, where G is the complex constructed in
the proof of the lemma. The complex L has the form:

0 — B+! _d PB3®R™+l 4 B3GR 4 B

and its differentials are given in the canonical bases by the matrices: -
d,=(yYs, (—1yZg, X+, (—1yXyZgy)

0 — X5+ (—1)2g (—1)y"'XZg . 0 . 0
X+l 0 —yYs 0 C(—1)yt+Xyg, - 0
G\ (—prizg oy 0 o 10 (—lytlyZa

0 0 0 ye L (—1)yg Xe

(only the columns with indices 1, 2, 3, 4, s+4 and 2s+4 are displayed)
y 0...000...00
df OO ... 0 Z0...00
“loo...000...0%x%

o Xiy)

(the nonzero elements in the first 3 rows are in positions (1, 1), (2, s+1)
(3, 2s+4-1)), where g="Pf;+1(p(X)) and g, =Pi1 254+1(e(X))

In order to show that L is acyclic, it is sufficient, by the lemma and the
results in [3], to establish that depth(p, B)==3. Since an easy induction gives
that g= 4+ Z* mod (XY), we see that yVs, X*+!, Zg form a B-sequence. It is
relevant to note at this place that the matrix ¢(X) we have used in the de-
finition of p has already been exploited by Buchsbaum and Eisenbud in order
to construct height 3 Gorenstein ideals in B, with exactly 2s+1 generators:
[2, proposition 6.2].

Applying once again [1, theorem 6.2], we get:

Ps |Ps,1,= PB/pB/B'
We now apply [I, corollary 3.3] and obtain a final reduction of our problem

Pg/P a/b:(P TorB@b, 1)

In order to compute this last Poincaré series we construct partially the
strictly skew-commutative DG algebra structure on L, whose existence is
established by [2, proposition 1.3]. To this effect we denote by Vi, V,, Vj,
M, M,, ..., My the elements of the canonical basis of Ly, by U,, U, Us, N
those of L,, and set:
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U,U2=—V3, U2Ua:—‘vn Uanf:—vm
(*) U,N=yM,, U,N=ZM,.1, UsN=XMss.1.

The Leibnitz rule is immediate from the matrix description of d. Further we
note that both d, and d, have entries in (X, ¥, Z)?, hence dy(L,Ly)C(d\L,)L,
+ L(d,Ly)c (X, Y, Z)?L,. Using the fact that B is graded and comparing deg-
rees, we easily conclude that L,L,c (X, Y, Z)Ls which implies:

(= %) A343=0, A=Tor?(B/b, k).

We denote by bars the images of elements of L in L(X)sk and use the
same letters for cycles and the homology classes they define. The exterior al-
gebra functor is denoted by FE(—) and square brackets are the symbol for
trivial extensions. The cases of odd and even ¢ require now separate consi-
deration.

If ¢ is odd, formulas () show that U,N=0 and that the subalgebra I"C A
generated by U, U,, U, is isomorphic to E(kU,®kU,®kU,) /(U U, U;). From
this and (= ) one sees that A~I7A/I'], where the quotient vector space is
given the trivial I'-action via the augmentation &:I" — I'y=k. Using Gullik-
sen’s computation of the Poincaré series of trivial extensions (cf, [1, proposi-
tion 9.1]), we get:

PV = (1 — 2PpT) = PY(1 —2PpPyiT) = Pyt — 2(2 + 122 + 129).

To finish with this case we substitute in the above formula the expression
P;'=1-3224324—25—25 obtained in [1, proposition 9.2].

In the case of even ¢, denote by I'y (resp. [I}) the algebra k[kN® k U,
@kUs) (resp. klkU,)), and let I'=I",(XI'y. Formulas () and (:=) in this case
establish an isomorphism of k-algebras A=~1I"[A/I']. Reasoning as above and
invoking once more QGulliksen’s theorem in order to obtain P’} (i=1, 2),
we get:

Pl=Prl—z(t2? +12°) = P! . P' —2(t2 + 12)

= (1 —-322)(1—22) — 123 —tzt = | — 429 —t28 —(t—3)2*.

The proof of theorem 2 is now complete.

Before proceeding to the last result of this paper, we pause to make a
few remarks.

(1) If A is a Gorenstein local ring of depth at least 3, and X, Y, Z is an
A-regular sequence, take the ring S; defined over the integers and construct
a ring homomorphism ¢:S; — A as in the proof of the theorem. It is imme-
diately checked, that ¢(S;)A is a depth 3 and type ¢ perfect ideal, minimally
generated by 4 elements. Hence all the possible values of P,/Pa/, given by
theorem 2, are indeed achieved by suitable ideals of A.

(2) When ¢=3, the ideals of Theorem 2 are included among those consi-
dered in theorem 6.10 of [1]: take n==3 in the last theorem. It is easy to see
that the Poincaré series in both cases are the same — as they should be!

(3) One of the by-products of the proof of theorem 2 is the fact that for
A=Tor*(A/a, k) and a as in the theorem, one always has the equality
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dimg A?=3. Taking into account the classical result that Z3_(—1)! dimea;=0,
this is seen to be equivalent to the relation dim,(A4,/4})=¢. In this form the
result can be generalized to embedding dimensions higher than three. To this
end we recall that when A is regular and q is in the square of the maximal
ideal, A is identified with the homology of the Koszul complex K of A/a.Then
eg=dim, H,(K)/H}K) is an important invariant of A/qa, called the second devia-
tion, and the dimension of the last non-vanishing homology group of K is
called the typeof A/a.

Proposition. If A is a Cohen-Macaulay almost complete intersection,
then its second deviation equals its type.

Proof. Assume, as we can, A=R/(ay ..., @4 @a+), With (R, n) regular
local, a;tn? for 1<<i<d-+1 and a,, ..., a4 forming a regular sequence. Denote
by E (resp. F) a minimal R-free resolution of R/(ay, ..., as)(resp. R/(ay,...,aa):
(@g41)). If f:E — F denotes an R-linear map of complexes over the projection
Rl(ay, ..., as) — R/(a,, ..., ad):(@s+), then by [2, proposition 5.1a] the mapp-
ing cone of f¥% truncated by a suitable subcomplex as in the proof of ‘the
lemma above, gives an R-free resolution of A. Hence we have:

Tor R(A, k)~Ker (f(Rk).

On the other hand, the commutative diagram:

Exr "2 . rk
i 11
(ay, ..., aa)Xk — ((ay, - - ., Qa):(Aa+1)Rk

shows that Coker (f,Rk)=[((ay, ..., ada):(@a+1))/(@y, ..., ad))Xk. We conclude
from the chain of equalities, the last of which is a result of Wiebe [5, co-
rollary 3 to theorem 5]:

type of A=dim,H,K)=dim,Ker (f;{(X)k)=dim, Coker (f,(Xk)
=dimg((ay, - . ., aa):(@as1))/(@y - -- , Qa)|XR = &
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