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SOME RESULTS OF CLASSICAL TYPE ABOUT
GENERALIZED ANALYTIC FUNCTIONS

TOMA V. TONEV

The generalized analytic functions of Arens-Singer [1] on special groups are de-
fined in another way, namely as the elements of uniform closure of inductive limit of poly-
nomials on the subsets of points with unit modulus from Riemannian surfaces of functions

n
Vz. We examine them from classical view point and obtain some generalizations of Schwarz’s
lemma, Rouché’s theorem, Radd’s theorem and others.

1. Introduction. Let A(4) be the algebra of continuous functions on the
closed unit disc 4={2¢C! |z|<1} which are analytic on its inner points. This
is the intensively examined in the last years so-called disc algebra. In various
situations in analysis one needs to deal with many-valued analytic functions
on /4 instead with one-valued functions. For instance such is the theory of
algebraically branch points of analytic functions, where arise Puiseux series [4],
intensively applied recently in the theory of partial differential equations. Such
is also the theory of Laplace transformation, where arise the so-called gene-
ralized power series [5]. The definitions of algebraic operations and of the
norm in such sets of many-valued functions cause some troubles.

In this paper we propose a method avoiding these difficulties in some
cases. It is useful for series, the denominators of rational powers of arguments
of which are different (note that in the above examples the denominators were
equal). It turns out that the obtained algebra is isomorphic to the algebra of
generalized analytic functions of Arens-Singer [1], [3] on the compact group G,
which character group G is isomorphic to the group of rational numbers (point
2). Afterwards we show that with scme modifications a part of classical re-
sults about disc algebra holds for the obtained algebra (points 4, 5)-

2. A generalization of analytic functions. Let R be the group of ration-
al numbers and R, — its nonnegative elements. By C, we denote the subset

n
of points with unit modulus from Riemannian surface of function 2. We equip
the set of natural numbers N with following partial ordering: m=n iff m/n is
an integer. Let m>n, i. e. let 1/m=1/n-1/k. Then for every z, ¢ C,, the point
Z,=((2,)"*): € C, is uniquely defined. Thus arises a continuous projection »™:
C, — Cy:2, — a™2,)= ((2m)"*). Denote by G the limit (lim {Cm» 7™} of obtain-

n
ed inverse system. Hence G is such a subset of 11 C,, the elements {z,}>
neN
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4 T. V. TONEY

of which satisfy the condition #(z.)=z, Besause C, are compact groups and
a™ — continuous homomorphisms, then G is also a-compact group. Let =, be
the projection z,: G— C,, which corresponds to element (={2,};°¢ G its n-th
co-ordinate. The continuous function zi(¢) = (7(¢))" is a homomorphism from G to
the unit circumference, i.e. yi, is a character of G. Every positive and nega-
tive power of i, is also a character of G. Let xm/n denote the character
(%)™ It is clear that the discrete subgroup I" of G, generating by charac-
ters {xiya}c., is isomorphic to the group of rational numbers R. Now from

Gc IM and from G=1I"4 gF|0=Fgf? (see [6]) we have that G=TI, according
to the Pontrjagin duality theorem. Hence G=R and Gj={1, pcRy}=Ry.
Let P(C,) be the ring of restrictions of polynomials of argument (z,)"".
It is obvious that P(C,)c P(Cy), if m=n. Denote by P(G) the limit lim {P(C,),
—

im} of arising direct system {P(C,), i}, where i’ is the corresponding imbedd-
ing im: C(C,)—C(Cn). As a direct limit of rings, P(G) can be supplied with
a ring structure and every P(C,) is imbeddable in it in a natural way. Let’s
examine this ring more detaily. Let 2¢C,, ={2,}>_,€ G and let’s consider the
character 21u(0)=(22)/"€¢ P(C,). 1f m=n (i.e. if m/n=k¢N) then im(xya(0))
= im((2a) ") = (7 zm)) " = ()= () " = (2™ = 20m(£) € P(Cp). Let now
the equality (i ) (2m)= ((2m)"'™Y=uym(¢) is satistied for some f¢C(Cy), i e.
3 =4 W3, 5
f(@ER) =" =@M = " " =@, ie. f(2n)=(un))* Now be-
cause f isione-valued, & necessarily devides /. But then f(z,):belongs to P(C,):
if l=s.k then f(2,)=(2Y")*=(x(¢))*. Consequently there arises a one-to-one
correspondence from the subsemigroup 5_,_:{1,,,,,, m/n¢ Ry} of G to the sub-
set of these functions {¢— (=,{)*"}>,_,, for which k/n=const. Namely the func-
tion {¢ — (#a0)¥"};? ., corresponds to the character y,s¢€ G, where s is the smal-
lest amongst all denominators of fractions k/n with p/s=#k/n. By this P(C,) is
mapped in a one-to-one way to the set of finite linear combinations of cha-
racters Xmm, m/n¢ Ry. Namely every fixed linear combination of elements
from §+ corresponds to some polynomial from P(C,), where % is the smallest
common multiple of those denominators of character’s indices, that take
part in the combination. Let A; be the uniform closure P(G) of algebra P(G).
It is clear, that A, coincides with the algebra of uniform limits of finite linear
combinations of characters from a+gR+, i. e. with the generalized analytic
functions of Arens-Singer (see [1]).
Let’s formulate the obtained results.

Theorem 1. Let C, be the set of points with unit modulus from Rieman-

nian surface of function \Jz; a™ — the projection z, — (2U%):: C,—Chp,
where m, n and k are natural numbers with m=n.k; P(C,) — the ring of
polynomials of argument (2m)''™, 2,¢€C,; i™ — the natural imbedding of
P(C,) into P(Cy,). The uniform closure of algebra l_iln> {P(C,), im} coincides
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with the algebra of generalized analytic functions in Arens-Singer sence on

the compact group G with character group G algebraically isomorphic to the
group of rational numbers. The group G represents as lim {Cpn, 2™}

Theorem 2. There exists a uniform algebra " extension of disc
algebra A(A), in which the functions z—z" have arbitrary natural roots.
Namely, this is the algebra A, in which A(4) is imbeddable (via 2" — z,)

isometrically and homomorphic. The isometric part is an immediate consequence
from equalities:

SUP | X Cota() | = sup B col(m(@))'e =sup [Be,2" .
’eG v €G v 2€S' ©

Since (Xmm)" = xmy Xmm € A is an n-th root of yp,.

3. Branch points of analytic functions. Let I" be the real line, equipped
with discrete topology, and 7', — its positive semiaxis. Let G=1". By 4,5 we
denote the factor-space GX[0, 1]J/G<{0}, and by = — the image of GX{0}jc G
X[0, 1] in Ag. Let’s define the functions Z,, on Ag in the following way:
2008 D) =2172,(8), p=+0, (& N+ #; 2(#)=0, p==0 and =1 (Hp=1) The al-
gebra Ag of generalized analytic functions (in Arens-Singer sense) on G is the
uniform closure of finite linear combinations of characters g, a¢ 'y from G.
The spectrum (=maximal ideal space) sp Az of A; coincides with 4; and the
Gelfand image ;,, of character y, a¢I'y — with the function Ya (see e. g.
[3]). The set Ag(e)={(g, 1) € Ag|2=e} appears naturally in the examining of branch
points of analytic functions. Let f be an analytic function on the punctured unit disc
A*=A4N_{0}. We consider that f has not any other singularities in 4. Then f is
representable as a Laurent series with respect to the powers of z. Let’s cor-
respond the function F(g,4)=f(z(g2)) to f. Obviously F¢C(4;). F is repre-
sentable as a “Laurent series” with respect to the integer powers of ;1 and
the correspondence f— F is an isometrical homomorphism. Let f does not be
a one-sheeted function on A% i.e.let fEC(4*), or equivalenily, F¢ C(4,)
=C(4g\{#}). One from both possibilities below may occur: a) There exists
such 7n>0, that the function f(xi.(g)) is constant over all co-sets of Ker xyn
in G; b) There is not such a number 7»>0. In the first case we shall corres-
pond to f the function @: (g, i) — f(z1.(g,2)), which is one-valued on 4
=dg\_{#}, because of certain standard analytical considerations (e.g. [4]), and
hence is representable as an absotutely convergent “Laurent series”: ~sl)(g, )
=37 e (1) (8 2) = 27 Cm 2minlg, 7). Hence @ ¢ Ag(47). Note that since (zmn)" =
(}l)’" we may formally write that ;?,,,,,,::Z""", from where @(g, )=2"_cm i’;"/"(g).
This is exactly the case when f has a branch point in O from (z — 1)-th order. In the
case b) f has a logarithmic branch point, independently from the existence or
nonexistence of such an a ¢ I'y, with f(x4(g)) constant over all co-sels of
KerX, in G. Note that if the first possibility occurs, then the one-valued func-
tion (g, 1) =f(z4(g, 4)) is representable as a Laurent series with respect to
the powers of x:: ?(g, A)ZE:’C,O Cm;:l(gr 4) =22, Cm;ma(gv A), hence P Ag
(4. If m. a is not a rational number we cannot write 77,,,,,:};"“ because I’
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is discrete. In the second possibility such representation is impossible and it is
not clear whether we can correspond any generalized analytic function to f
or not.

4. Some results of classical type. Let /" now be an additive and dense
subgroup of real line R'. We equip /" with discrete topology and assume that
G=1I"is the character group of I'. Let I'y —1I'n R!. Suppose that f¢A; and
that Py={{P3laecx,lsesr is the set of all sequences of finite linear combinationS
P. of characters x, from Iy, that uniformly converge to f. Let a, denote the
smallest amongst all indices of z,, taking part in {P}, and let a,=lim sup
{a.|a€ 2y, pel}. The following theorem is a generalization of classical Schwarz’s
lemma.

Theorem 3. Let f be an element from Ag; for which maxg;|f|=1 and
7 (*)=0. If a;>O0, then for each (g,1) €A, we have | fl&2) | =a"r

Proof. Since f(%)=0 we may assume that the character yo=1 does not
take part in P,, ac¢2y, pel. Let 0<a<ay a¢I'y. Then we may assume that
the indices a, of characters taking part in P, are =a. But then the function
f(8)/x(g) will belong to Ag and hence for (g, 2)¢ A we'll have: (g )/ 1

& A)I =maxg f(g)/la-(g) "maXG|f(g)|*/—1 and If(g' ))é Xa(g’ }') l_l;_axa(g)l_;_a
(here we applied the fact that za(g, 2)=12%,(2)). Now ]f(g, 2)| = 2% because
the last inequality holds for every a<a,. The theorem is proved.

In [7] I. Glicksberg proved the following general Schwarz’s lemma for
uniform algebras A:If f and g are two elements from A with f/g bounded on
sp ANg'(0), then sup|f/g(sp AN\ £%(0)) =sup|f/g(@ANg '(0))|. We could
use that result to obtain the inequalily |/ /x.|s5=|/f/xallg in the proof of theo-
rem 3, if this inequality was not an immediate consequence of the obvious
fact that G is a boundary of Ag.

Let f and g be two elements of uniform algebra A. There is a generali-
zation of classical Rouché’s theorem for uniform algebras. Namely if the in-
equality f+g|<|f|+|g| holds on the Silov boundary dA of A,then f and g
are simultaneously invertible or not|[8]. In the situation of algebra A; the non-
invertible case of this result can be precised in a way similar to the classical
one. We call a function f¢ A, differentiable in the point g,¢ G with respect
to the character y,¢ Iy, if the differential ratio (f(g)— f(go))/(xa(g)—z,(go))
is convergent when yx,(g) — x.(g,). As usual the derivative f of f with
respect to x, we call the existed limit.

Theorem 4. Let f=x" @ and h=y"y are two elements of Ag where ¢
and vy are invertible and differentiable with respect to yx, elements of Ay
which derivatives are also in Ag. Then m=n if |f+h|<|f|+|k| on G.

Proof. Following Glicksberg [8], we construct the integral

R4ty
Jt)= [Fit- 1l @) dol ),
G
where do is the Haar measure on (. J(¢) tends to zero when {—co and

J(0)= f(ﬁ h’)xa(g)do"J-(”H'_z“—”_-;_:z“)d" m—n.
G
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The theorem is proved.
Theorem 5. Let f==0 be differentiable with respect to y,¢ Iy element
of Ag, which derivative f ;a is also in Ag. If f takes the form f[=(x.—2i%,

(gl))ml (%a "lgxa(gQ))mz cee (Za—‘lg Za( gk»mk -9(Q), where ry=1, (g, A)€dg and
p€ AgG', then for each 1<i,<k

k
mioslll (l?o Za(glo) - }"l; Za(gs» :G’f’(g)/f(g) (%a— '1‘11 xa( &) "... (la'—lg Za(gk))mkd/‘lo,
s,
where ; is the representing measure on G of the point (Ri» 81, € 4g-

Proof. The function under the sign of integral is representable as:
f’/f (Za—‘llla (g1)) oo (la—lk Xa(gk)):ml (Xa Ny nga (ga)) s (la‘la a(gk)) + ma(la

- lfxa(gl)) (xa“‘}-gla(ga)) s (Za AIZZa(gk))'*" s F mx(la - l‘: Xa (gl)) ves (Za"'lz_| Xa

(&r—1))+ ,:;’(xa—l‘,'xa(gl) e (a—2%%(8,)) € Ag. The desired result can be obtained
by integrating with respect to the measure u,,.

5. Functional analytic properties of generalized analytic functions.
Let I" be a dense additive subgroup of R!, equipped with discrete topology
as in point 4. We mentioned above, that sp A=GX]0, 1]/GX{0}. There are
known many other facts about algebra A, For instance: a) Silov boundary of
Ag coincides with group G (see [12]); b) A, is a Dirichlet algebra (i.e. Re A is
dense in Cx(())[12]; ¢) Ag is an antisymmetric algebra (i. e. every real func-
tion of A; is constant on G); d) A; is analytic on A, (i. e. every f in Ag,

with f vanishing on a nonempty open subset of A; vanishes identically),
see [10]; e). The locally maximum modulus principle holds for A; (i.e. for
every @ ¢As\ G there exists a compact neighbourhood Uc A,\ G, for which
fl=sup|f(bU)| on U for every fe¢ A). As a consequence of that fact in A,
hold the Glicksberg’s results about generalization of the classical Phragmén-
Lindelof theorem for uniform algebras; f) A; is a maximal algebra of C(G)
(i. e. every uniform algebra B on G with A;c Bc C(G) coincides either with
Ag or with C(G)). The proofs of that fact are not very short [2, 3], and there-
fore we give a shorter one, modelling the proof of Wermer’s maximality theo-
rem for disc algebra A(A). '

Theorem 6 (Hoffman, Singer, (2]). If the group I' is algebraically
isomorphic to some subgroup of real numbers, then algebra A, of generaliz-
ed analytic functions on the group G=1Iq is a maximal subalgebra of C(Q).

Proof. Let B be a uniform algebra on G with A;c Bc C(G). Let ¢(x,)
==0 holds for every linear multiplicative functional ¢ ¢sp B and for every
character x,¢ I'y.. This means that all characters of G are invertible in B, i.e.
that B contains the whole I', since 1/x,=2%,=x—s According to the Weier-
strass-Stone’s theorem, the generated by 7" algebra is uniformly dense in C(G).
In this case B=C(G). lu the other case there exists a linear multiplicative
functional ¢¢sp B and a character x,¢ /'y, such that ¢(z)=0. Let x¢I'y,
b==a, b+0, is another character of /". Let for the integer m holds bm—a=0.
Then x7"= xom=1%a+Xom—-a aNd @) = (%) - P(Xom—a) =0, 1. €. @(25)"=0 simulta-
neously with ¢(x,). Thus, if ¢(x;)=( for some y,¢ I'y, then ¢ is identically
zero on I'y\{O}. Since ¢(x,)=¢(1)=1 the restriction of ¢ on the algebra A,
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corresponds to every function f its meaning in the point = Every represent-
ing measure of ¢ on G will present the homomorphism “meaning in the po-
int *” of algebra A, Because A, is a Dirichlet algebra, the Haar measure do
on G is the uniquely representing measure of ¢|AG on G. Consequently every

representing measure of ¢ on G will coincide with do. Hence the Haar mea-
sure will be multiplicative on the algebra B. Let f¢B and let a>0. Then

g' 1a(2) f (2)do(g) = ( (j)‘ z.,(g)da(g)).(af f(Q)ds(g))=0. As a continuous function f is

uniformly approximable by finite linear combinations P, of characters of G.
Then if a>0, O=sz,,fda:limof %,P.do. 1f the character y_,—yx, takes part in

polynomials P, with coefficient c,, then ¢, — 0 since fxaPada:c,,gxa;ada:c,,,
G

i. e. we may drop all negative indexed characters from P, without breaking
the convergence to f. Censequently f¢ A; and in this case B=A; The theo-
rem is proved.

Remember that a uniform algebra is called analytically closed in C(sp A)
iff every continuous function on sp A is in A, if it satisfies some equality
F(fy--es fus /)=0 on sp A, where f;¢A and F is an analytic function in
some neighbourhood of the range of the map o:x— (f;(x),..., Fnlx), f(x))
c C+! with [(0/0z,.,)*F] o(x)==0 for some k=1 [7]. As shown in [7], if Ais
a maximal subalgebra of C(sp A) having its Silov boundary proper in
sp A, and if A is analytic on sp A, then A is analytically closed in C (sp A).
Applying this to the maximal analytic algebra A; with sp Ag=A454+G=04,,
we obtain the following:

Corollary. The algebra A, is analytically closed.

It is known [3), that there exists an imbedding j of C’={ 2z |Imz=0} as a dense
subset in dg, such that for every f¢ Ag, foj—' is an analytic function on €’
It f(4 8)= Zcx2p (4 &) then foj=l(x+it)=2Z ¢, eP*+i0, where p,=0, j(x)=g,
and f= -Ini. Also if £>0 and 2, is such that |f (1, 8)—f(=)|<<e for 0=41<4,,
then [fojl1—f(=)|<e for t>t,= —Ini,

Theorem 7. The algebra Ag; is isomeltrically isomorphic to these con-
tinuous functions f on Ag, for which foj ' is an analytic on C' function.

Proof. Let B be the uniform algebra on /g described in the theorem.

-~

Because B contains all the functions y, p=0, we have that C(G)>B>A,.
Obviously B==C(G). From the maximality of algebra A;, we obtain that B= A4,
E.D

Let K be a compact subset of A; We define the algebra RGK) as the
uniform closure in C(K)_of ratios of finite linear combinations of restric-
tions on K of extensions x,, a¢I'y. A well known theorem of Rad¢6 says (see
e.g. [3]) that if a continuous function f on the closed unit disc is analytic on
the subset of inner points of the set, where it does not vanish, then f is ana-
lytic on the whole open unit disc. The following is an extension for algebra
Ag=Ay4g) of Radd’s theorem.

Theorem 8. If the continuous function f belongs to the algebra Ry(4g
N\.int f—Y0)), then f is a generalized analytic function on Ag.

Proof. Let F be the function F(x-+if)=f (2, g), where j(x)=g, and f{=
~Ini If j(C)YNZ(f)=, then F is analytic on C’, i. e. f¢ A; (theorem 7),
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Let K'=j(C)NnZ(f)+ . Then F is analytic on C'\ K’, and F,?—TO' Now

according to the classical theorem of Radd, F is analytic on C’. We obtained
that f¢ C(4;) and that foj—' is analytic on C’, i. e. that f¢ A5 The theorem
is proved.
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