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REPRESENTATIVE DOMAINS OF COMPLEX MANIFOLDS
JOHANN T. DAVIDOV

In this paper we consider the Bergman kernel function of a complex manifold with res-
pect to its volume element, define the representative domain of a complex manifold and
study the representative domains.

According to the Riemann mapping theorem every two simply connected
plane domains different from C are biholomorphically equivalent, i. e. there
exists a biholomorphic mapping from one of the domains onto the olher. This
is not true in the space of several complex variables; it is well- known that the
unit polydisk and the unit ball in C”, n=2, are not biholomorphically equivalent.
Hence, there is no “canonical” domain in the class of simply connected do-
mains in C” different from C% n=2. To determine, therefore, a “canonical”
domain for some class of domains is very worthwhile.

We can regard the so called representative domains, introduced by S.
Bergman, as representatives of some classes of domains (cf. [8, p. 28Y,
Corollary 2)). For a bounded domain M in C", Bergman defined a mapping F
(the representative mapping) on M by use of some extremum problem (see [4;
5] or the identity (2.6), point 2, in this paper). Bergman called the image set
of Min C" under F a representative domain of M. But F is, in general, meromor-
phic on M and the representative domain of M is no longer in C". Moreover,
we do not know whether the representative domain is a domain at all. In
this paper, we refuse to consider the representative mapping on the whole do-
main M. We consider F on a suitable subdomain M\ S of M. The mapping F
is locally biholomorphic on M\ S. Using this fact, we construct a suitable do-

main (4, z) over C" and a biholomorphic mapping F: M\ S — 4 such that zo F
=F on M\S. We call (4, n) a representative domain of M. If S= g and
F is biholomorphic on M, we can identify (4, =) with F(M). Then (4, =) is
the Bergman representative domain of M.

The fact that the representative domain (4, ») is a domain over C" sug-
gests considering domains over C”. But many definitions and propositions can
be formulated for complex manifolds. In particular, one can define the repre-
sentative domain of a complex manifold.

In the present paper, we consider the Bergman kernel function of a com-
plex manifold with respect to its volume element in point 1, define the
representative domain of a complex manifold in point 2 and study the
representative domains in point 3 (some results are announced in [7]).

Preliminaries. The convention in force throughout this paper is that all
complex manifolds are Hausdorff, connected and second countable.
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We shall consider every complex manifold M wilh its canonical orienta-
tion; if (2',...,2", n=dimM, is a coordinate sysiem of M thean the form
(@"/2mdz' \- - - N\ dz2" Adz' A\- - - A\dz" is positive under this orientation of M.
A positive real-value C«-differential 2n-form on M is called a volume element
of M. There exists at least one volume element of M since M is paracompact.

We shall denote the holomorphic tangent vector space of a complex ma-
nifold M at its point p by M, We shall identify M,, p ¢ M, with C* for every
domain M in C".

For a complex manifold .M, we shall denote the conjugate complex mani-
fold of M by M (M=M as topological space and if {(U,, 2.)} is an atlas of M,
then {(U,, z,)} is an atlas of M).

Let M and N be complex manifolds. We shall identify (MXN)p, ¢, (£, q)
¢ M N, with the complex vector space M,XN,. Let f: M—N be a holomor-
phic mapping. By f.,, we shall denote the linear tangent mapping of f at p ¢ M.
For a differential form @ on N, we shall denote the pull-back image of » un-
der f by f*w.

Let M be a connected Hausdorff topological space. Let n: M—C" be a
local homeomorphism. Then M is second couniable by the Poincaré-Volterra
theorem and M carries a natural structure of a complex manifold under which
7 is a locally biholomorphic mapping. We shall consider M with this structure.
The couple (M, =) is called a domain over C". If #=(x!,...,x"), then the form
@@ 12Mda ' N\ - - ANda" Nda' \ - -+ Ada" is a volume element of M. It is called
the Eucledean volume element of M. If = is an injective mapping then (M, =)
is called univalent.

Let (M, 7)) and (M v) be domains over C" and C™, respectively; Tlet

a=(@Y...,2" and z=(a,..., ™). We say that a mapping f: M—M is li-

near if there are complex constants &, j=1,...,n k=1,...,m, such that
anf=30_1aj’ for k=1,...,m. Obviously, every linear mapping f is holomor-

phic and the constants aj are uniquely determined.

Let M be an n-dimensional complex manifold. By (/u, pm) we shall de-
note the sheaf of germs of holomorphic mappings from open subsets of C”
into M. Hy is a Hausdorff topological space and pu:Hu—C" is a local ho-
meomorphism. Hence if 4 is an open and connected subset of /Hy and &= pul4
(the restriction of pu on 4), then (4, ) is a domain over C".

For a matrix [a,], @y, € C, [a;x] and [a;]* will denote the transpose
matrix of [a;,,] and the matrix [a,,] respectively. The determinant of a square
matrix [a;,,] we shall denote by det[a;u].

1. The Bergman function of a complex manifold with respect to its volume
element. Let M be an n-dimensional complex manifold and vy a volume ele-
ment of M. By L2H(vn) we denote the complex vector space of all holomor-
phic functions f on M such that the integral [|f|?>vm is convergent. We de-
fine a scalar product in L2H(vy) by the formula (f, @)= [mfgom: f, g ¢ L2H
(om). We set || f| =(f, /)2 for f ¢ L2H(vn).

Lemma 1.1. If p¢ M, then there is a compact neighbourhood U of p
and a constant C>0 such that:

(i) [f(p)P=Cfu f*um for every holomorphic function f on M;

(i) f(x)*=C|/f|? for every x¢ U and f ¢ L*H(vy).
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Proof. Let (W, 2), 2=(2',...,2"), be a chart of M at p such that 2(W)
is the unit polydisk in C” and z(p)=0. We have vy| W= (i*/2")dz' \- - -
Adz" Ndz' \ --- A\d2", where ¢ is a positive C~-function on W. Put:

V={xeW: 2%x)|<1/2, k=1,...,n}, U={x¢e¢ W:|2Xx)|<1/4, k=1,...,n}

and m-=miny ¢; obviously, m>0. Let f be a holomorphic function on M. We
may expand f on W in the Taylor series f| W=3, ., a,,.. ) LA 4 [

The above series converges absolutely and uniformly on V.
(i) (see e. g. [2, p. 78, Lemma]) We have

gIfl%mz(i"’/?")([‘f|’<pdz1/\.  AdZAAZA ... A\ dZ"
=m([2")[ | f Pz A- - - NdZ"NdZIN- - - Nd2"

a2 4720t (0 1)L L (1)

.....

—(ma"/16") X a,

=(ma"/16") @y, ..., 2=(ma"/16") f(p)|2
(i) (cf. [1, p. 66, Proposition 5]). If f¢ L2H(vy), then [f|2=[v fl,um
=(ma[4")3, .0, | Qrypy 2 2720t (v 1)L (v + 1)L Let x€U. We
have by Schwarthz’s inequality

.....

<(1—=1/4 3 la,,.,
Hence |f(x)|>=(4"/ma").(3/4)~>||f |2

We obtain from Lemma 1.1 (ii):

Corollary 1.1 (cf. [1, p. 67, Corollary]). Let p¢ M. Then, there is a
compact neighbourhood U of p and a constant C>O0 such that if f,, ..., fx
is a finite orthonormal system tn L2H(vm), we have Z*_|fi?<C on

By means of Lemma 1.1 (ii) and Corollary 1.1, one can prove:

Proposition L1 (see |l, p. 68, Proposition 6 and p. 69, Corollary]).
L2H(vm) is a separable complex Hilbert space.

Let Z¢ M. The linear functional [(f)=f(f), f ¢ L2H(vm), is continuous accor-
ding to Lemma 1.1 (ii). Hence, by Riesz’s theorem, there is a unique element
Ky € L2H(om) such that I(f)=(f, K)), i. e. f(t)=(f, K))= [m[KomforfcL2H(vy).
We have K/(f)=(K,, K,)=0. The following is well-known:

Proposition 1.2 Let t¢ M. Then, K/(t)>0 iff there is a function
f € L2H(vy) such that f(t)=+0.

Proof. If K/(#)>0, we put f=K,. If K(¢)=0, then 0= K,(¢)=(K,, K,), hence
K;=0. Therefore f(f)=(f, K,)=0 for every f¢ L2H(vu).

Let ¢q @,,... be an orthonormal basis in L2H(vm). If f¢ L2H(vy) and
a,=(f, ¢,), then the series X,a,p, converges to f uniformly on compact sub-

sets of M by Lemma 1.1 (ii). We have (K, @,)=(9,, K;)=¢,(f), hence
(1.1) K%)= So,()p,(%); x, teM.
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The above series converges absolutely and uniformly on compact subsets of
MxXM by Corollary 1.1 and [I, p. 62, Lemma]. .

Definition 1.1. We call K(x, )=K/x), (x,t)€ MXM,the Bergman
function of L2H(vn).

The Bergman function K of L2H(vx) is holomorhic on MX M. The func-
tion k(x)=K(x, x)=2, | @,(x)|?, x ¢ M, is real-value and analytic; the latter series
converges uniformly on compact subsets of M.

Example 1.1. Let M be.a domain over C* and ey the Euclidean vo-
lume element of M. The Bergman function of L2H(en) is the ordinary Berg-
man kernel function. If vy is a volume element of M, we have vu=genm
where ¢ is a positive C=-function on M. Then the Bergman function of
L?H(vy) is the weighted Bergman kernel function with “weight” ¢.

One can prove the following:

Proposition 1.3. Let t ¢ M. Assume that K(t, t)==0. Then:
(D) (K¢, ) '=inf{| f [2: f € L*H(vm), f(H)=1}
(see e. g. (2, p. 88, Theorem 4.6]);
(ii) There is a unique function u, ¢ L*H(vy) such that
wt)=1 and || u,|2=inf{| f |2:f € L2H(vn), f(t)=1}.
We have u/x)=K(x,t)/K(t, 1), x ¢ M. (see e. g. [2, p. 89, Corollary]).
Let x,¢ M and let K(x, X,)==0. There is a chart (U, 2), z=(2,...,2")

of M at x, such that £(x)=K(x, x)>0 for every x ¢ U. The form £ given
locally by the formula

oy Pk A iTs
(1.2) QU zmz1 ey dz" A dz
is well-defined on the open set {x ¢ M:K(x, x)==0} and real-value.

Definition 1.2. We call Q the Bergman form of L2H(vu).

Let w be a real-value differential (1, 1)-form on a complex manifold M.
Let x ¢ N. One can associate with » a Hermitian form A, on N;XN, in an
invariant way (see [1, pp. 14, 15, 43, 54]). Let (U, 2), z=(2',...,2™), be a
chart of NV at x. If
w|U=1i/2204-1 haydzf Ndze, then H,=3q 4_1 ha 4(X) dze(x)X)d24(x). We say that
o is semi-definite (definite) at x if H, is semi-definite (resp. definite) (see [,
pp. 43, 44)).

We have:

Proposition 1.4. Let x¢ M and K(x, x)==0. Then:

(i) 2 is positive semi-definite at x;

(ii) Let f,¢ L2H(vm) be such that f(x)==0. Q is positive definite at x
iff there are n functions fy,...,f, in L2H(vm) such that (fi/fe ..., falfo) is
a local coordinate system of M in a neighbourhood of x.

The statement (i) follows from Corollary 1.1 and [1, p. 64, Proposition].
The proof of (ii) is analogous to [1, p. 71, Corollary 3].

Let (xo, 2) € MXM. Let (U, B), =(&,...,&"), and (V, n), n=0",..., 7")
be charts of M at x, and at £, respectively. Let (x,7) ¢ UXV and K(x, £)=0,
We put:
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(1.3)  Tr5(oms & n; Us V(% O)=(K(x, )72 (K(x, t) afr!;:ﬂ:’ (% #)
oK
o

K0 (,8): 7,5=1,...,n
If K(x, £)+0 for every (x,¢)¢ UX V, the functions T, 5 (om; &; n; U; V) are
holomorphic on UX V. The form T given locally by the formula:
(1.4) TIUXV= 3 ] T, s (om; &30y Us VYAE A dn®
is well-defined on the open set {(x, £) € MXM:K(x, t)==0}.

Definition 1.3. We call T the Tsuboi form of L2H(vn).

Remark. Let K(x, £)=0 and let U, and V be such that
| K(x, ) — K(x4, ty) |<| K(xe ty) | for every (x,£)c UxXV. We can pick out a
single-value holomorphic branch logw of the logarithm in the disk {w¢ C:
|w|<| K(xo,t,)|}. Obviously, 7,5 (vm; & n; U; V)=0%log K/0& dn®. T. Tsuboj
introduced the matrix [(0%log K/d&"0n°),%_,] in the case when M is a bounded
domain in C" and vy is the Euclidean volume element of M, and the deriva-
tives are taken with respect to the standard coordinate system of M (see [14,
p. 141)).

Le]t K(xo, Xo)==0 for some x,¢ M. Let (U, &), &=(&',...,&"), be a chart
of M at x, such that K{(x, X)==0 for every x€¢U. We have T, 5 (vm; &;
& U5 U)(x, x)=(02 In k/0&70g%)(x) for x ¢ U. Hence rank T(x, x)=rank Q(x)

for x¢ U.
Proposition 1.5. Let My and M, be complex manifolds. Let vy, be

a volume element of M, s—1, 2. Let ps: M X My—M; be the natural pro-
Jection, s=1, 2. Then vmxm, = P, Ym A\P,Om, is a volume element of M;X M,
and if Kmy, Kmxm,, 2my Cmxm, Tmy, Tmxm are the Bergman functions,
the Bergman forms and the Tsuboi forms of L*H(um) and L2H(vmxm,),
respectively, s= 1,2, we have:

(1.5) Kunxem, ((x1, X9), (L 6)=Km(X11 ) Km %y 1)

or Xy, ty € My Xo by ¢ M.

(1.6)  Qmxm=py2m, +pyQ2m, Tmxm, =(P1XP)* TmA-(p2 X pa)* Ta..

Proof. It is obvious that vyxm, is a volume element of M, XM, We
can prove the identity (1.5) in the same manner as the Bremermann theorem
using Lemma 1.1 (i) (see e. g. [2, p. 91, Theorem 4.8]). The identities (1.6)
follow at once from (1.5), (1.2) and (1.4).

Proposition 1.6. Let M and N be complex manifolds. Let vy and vy
be wvolume elements of M and N, respectively. Let f: M—N be a biholomor-
phic mapping onto N. Assume that
(1.7) f*on=|P Pvm,
where @ is a holomorphic function on M. If Km, Ky, Om 2x, Tm, Ty are
the Bergman functions, the Bergman forms and the Tsuboi forms of
L*H(vy) and L2H(vy), respectively, then
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(1.8) Ru(x, t) = Kn(f(x), f(2)) D(x)D(2)5 X, teM:
(1.9) Ou=f*Qn, Tu=(fXf)*Tn.

Proof. Let {y,) be an orthonormal basis in L2H(vy). Then {(y,of)d} is
an orthonormal basis in L2H(vy). Hance, (1.8) holds by (1.1). The identities
(1.9) follow at once from (1.8), (1.2) and (1.4).

Exemples 1.2. (a) Let V be an n-dimensional complex manifold and B(V) the
separable complex Hilbert space of all holomorphic n-forms a such that i”"[va A
a< + co (the scalar product in B(V')is given by (a, 8) = i** [va A B). Let ag, a,,... be an
orthonormal basis in B(V). The 2nr-form 6y defined by Oy —i"%, a, Aa, is inde-
pendent of the choice of the orthonormal basis «,, a;,.... Oy isinvariant under
biholomorphic mappings. If for every x ¢ V there is an a¢ B(V) such that
a(x)=£0, then 6y is a volume element of V (see [1, pp. 67—75]).

If vm=6n and vy=0y in Proposition 1.6, then (1.7) holds with @®=1.

(b) If M=(M,n) and N=(N, p) are domains over C* and vy, and vy are
the Euclidean volume elements of M and N, respectively, then (1.7) holds and
& is the Jacobi determinant of f with respect to = and p.

(c) Let M=N be a complex Lie group. Let vy=vy be a left (right) in-
variant volume element. If f is a left (resp. right) translation of M, then (1.7)
holds with @ =1.

Examples 1.3. It is possible L-H(vyu) to be trivial, for example when
M -Cn and vy is the Euclidean volume element of 4. Then the Bergman func-
tion K of L3H(vy) is identically zero. If M has a finite volume with respect
to vy, i. e. [m oM<+ oo, then L2H(vy) contains all constants, hence K(x, x)
>0 for every x ¢ M by Proposition 1.1. But the Bergman form Q of L2H(vu)
can be degenerated at some point of M. For example, if M is compact, then
0< V= [mom<+ oo, K(x,t)— V! for every (x,¢) ¢ MxXM and 2=0 on M.

(a) Let M be a bounded domain in €7 and vy the Euclidean volume ele-
ment of M. Then K(x, x)>0 and rank Q(x) - n for every x ¢ M by Propositions
1.1 and 1.4

(b) Let M be an n-dimensional complex manifold which admits a holomor-
phic immersion ¢=(¢y, ..., ¢,): M—C™ such that ¢(M) is a bounded subset
of C”. Let vy be a volume element of M. If K(x, x)>0 for some x ¢ M, then
rank Q(x)=n. In fact, there is a function f, ¢ L2H(vy) such that f(x)#0. Ob-
viously, f, o @, € L3H(vm), v=1, ..., m, since ¢, is bounded and f, ¢ L2H(vxy). We
can find n functions ¢,, ..., ¢,, which make a coordinate system of M around
Xx since ¢ is a holomorphic immersion. Hence rank £(x)=n by Proposition 1.4.

(c) Let N be a complex manifold and v, a volume element of N. Let M
be an open connected and relatively compact subset of N. Put vy=on|M.
Let x ¢ M. If there is a holomorphic mapping z,: N—C”, n=dim N, which is a
local coordinate system of /V in a neighbourhood of x, then Ku(x, x)>0 and
rank Qp(x)=n. In particular, if NV is a Stein manifold or if N is a domain
over C7, then Ku(x, x)>0 and rank 2y(x)—n for every x ¢ M.

(d) Let vy and v}, be two volume elements of M. v}, /om is a positive
Ce=-function. Let ¥/, /vy is bounded above. Then L2H(vm)cC L2H(v),). Hence if
K(x, x)>0 for some x ¢ M, then K'(x, x)>0 and if rank Q(x)=dim M, then
rank Q'(x) =dim M; here K, K’, ©, ' are the Bergman functions and the
Bergman forms of [2?H(vm) and [2H(v),), respectively.
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2. Definition of the representative domain of a complex manifold. Let
M be an n-dimensional complex manifold and vy a volume element of M.
Let w¢ M and let [: M,—C be a C-linear mapping. Using Lemma 1.1 (ii), one
can prove the following:

Lemma 2.1. Denote Qu, vm, l)={f¢ L2H(on): f(u)=0, f..=1}. If Qu,
om, )<= &, then there is a unique function G¢ Qu, vm, 1) such that |G|?
=inf{| f 2:f¢ Qu,vm )} (see e. g. [3, p. 552, Theorem 1}).

S. Kobayashi proved the following assertion ([9, p. 269, the proof of
Theorem 2.2]; see and [8, p. 279)):

Lemma 2.2. Let x¢ M. There is an orthonormal basis ¢, @y, ... in
L2H(vpm) such that pi(x)=0 and ¢,(x)=0 for v=1.

Let K and 2 be the Bergman function and the Bergman form of L?H(vn),
respectively. Put k(x)=K(x, x) for x ¢ M. Let Q(u,vm ()--g and let G¢ Q
(u,vm, [) be the minimizing function defined by Lemma 2.1. Assume that K(u, u)==0
and rank Q(u)=n. We shall express G by / and the Bergman function K. Let
V, o), c=('y..., ", be a chart of M at # such that K(x, x)==0 for every

x ¢ V. We put lk=l(£kr (w), k=1,..., n. Let ¢4 @,... by an orthonormal
basis in L2H(vu) such that g,(2)=0 and ¢,(2)=0 for »=1. We have ¢y(u)>0
since (@,(1))?= K(u, u)==0. 1f f ¢ L2°H(vy) and a, =(f, ¢,), then the series 2,~o a,p,
converges to f uniformly on compact subsets of M by Lemma 1.1 (ii). The
conditions f(u)=0 and f,,=! become:

(2.1) a,—=0 and X a, (0p,/0c*)(u)=1, for k=1,..., n.
v=>1

We have f 2=, a,|? for f=2X,-0a,, ¢ L2H(vy). By the well-known rule
of finding an extremum under auxiliary conditions, we set the derivatives of
the expression

[ n
2 la, *—Aay —2 @ —_—;E;}'/( a, o“/ 7 (@)—)— ? 1/( 2‘ a a(p' (u) —1j), 2, 4€C,

»=0

with respect to “each of the variables Re(q,) and Im (a,), v=0, 1,..., equal
to zero. We obtain a,=1, and

(2.2) ay=[Ay, -, An) [o (@), -.., aL 2 (W) for y=1.
Now, by (2.1), we have 1,—=0 and
0
(2.3) Jdlz, 3 a,( )k @) =1, for k=1,.
We have:
(2.4) PINE ()= (k () (R() — o () — g (0) 2 ()

Cock oz ack agl IR

. 09, Op,
= (go(u))—2 :; o5 () ok ().

The determinant det [(02ln k/0;%0;/)(u)] is defferent from zero by the assump-
tion that rank Q(u)=n. We obtain from (2.3) and (2.4):



REPRESENTATIVE DOMAINS OF COMPLEX MANIFOLDS 43

021n k&

[71, seey I,,]z(K(ll, u))_l[lh veoey ln] [(W— (u))j,’;:]]_l'
The latter identity and (2.2) imply
(2:5) Ge0) = (K, ) s - ol (e (@),
" (9% 9®, e
. y;!b—g (u)s ey 5'&] (u)l (P,.(x)
021In k

= (R, )7y, - -+ Wl [z @)™

oK _ Ok . Kx, v) 0K _ Ok o\ K(x, 1)
.[0:—1(x, u) aEt(u) Raw ' a_;-"(x’ u) 5?:(“) K ) ]

for x ¢ M.

Proposition 2.1. Let M be an n-dimensional complex manifold and
om a volume element of M. Let K, Q and T be the Bergman function, the
Bergman form and the Tsuboi form of L:H(vw), respectively. Let (Hm, Pm)
be the sheaf of germs of holomorphic mappings from open subsets of C" into
M. Letu¢ M and let L=(L,...,L"):M,—C" be a C-linear mapping. Put:

Qu, vm, L)={f € L2H(vm):f (1) =0, fou=L"}, s=1,...,n,
SO =SW(u, vm)={x ¢ M: K(x, u)=0},
SO =SO(u, vp)={x € M\ SV :rank T(x, u)<n},
S= 8, vm)=SH U S,

Assume that: (a) K(u, w)F0 and rank Qu)=n; (b) L is non-degenerated ;
(c) Qu, om, LY== & for each s=1,...,n.

Let G*¢ Q(u, vm, L5) be the minimizing function defined by Lemma 2.1;
s=1,...,n Put: G=Gu, vm L)=(G,..., a".

Then :

(i) The mapping F=F(u, vm, L) defined by
(2-6) F(x) = (K(u, u)/K(x, u))G(x)
for x ¢ M\ SV is locally biholomorphic on M\ S

(ii) There is a natural holomorphic imbedding F:M\S-»Hpy such that
PyoF=F (M\S).

Proof. Note that M\ S is an open and connected subset of M\ S®
since S® is an analytic subset of M\ S®. The point u lies in M\ S by assump-
tion (a). Let (V,0), =Y, ...,¢"), be a chart of M at u such that K(x, x)==0
for every x ¢ V. Put lk,,=L‘(W(u)); k,s=1,...,n Denote the matrix [lx]

by L(¢). Let @, @y, ... be an orthonormal basis in L3/(vx) such that ¢u(u)=0
and ¢,(u)=0 for »=1. Let F=(F!, ..., F*). We have by (2.6) and (2.5)

(27) Fs(x)=[ll,s, ey ln.s] [( :;kl;—; (u))j_:=1]—1
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9y o . PX)
O B )
.y;(d: @),..., oo @ & 2

for x ¢ M\ S". The above series converges uniformly on compact subset of
MNSD, Let x, € MNSD and let (U, 2), z==(2!, ..., 27, be a chart of M\ SD

at x,. We have K(x, u)=qpyu)p,(x) and

0 0 9 ?, )
(2.8) o2k (V;I F () R’T-TE)) (x)

— 1\ —2 % ()}I,; ()fpv 7 ()(I’n . 0'7’7 7N
= (Ko m) 2 2 Cazr (@) e (2)qo(®) o0x) — G20 (%) 57 (@, () ()

oy, 0 — — B oy,
=(K(o )™ 3 (55 @) 28 @) —oow) g @) o @ o)
= (K w2 K, 1) 50 (5 )= g (6, 1) 55 ()

for x¢u and j--1,...,n. We obtain form (2.7) and (2.8):

(29) (G (N foil = Lo @), i T (oms 23 63U Vs, 0

for x ¢ U. Therefore, det |[0F*/0z%|(x)40 for x ¢ U\S by the assumptions (a)
and (b). This proves (i). The statement (ii) follows from (i) and the following:

Lemma 23. Let M and N be complex manifolds. Let f:M—N be a
locally biholomorphic mapping. Denote the sheaf of germs of holomorphic
mappings from open subsets of N into M by (H, p). Then, there is a natu-
ral holomorphic imbedding f: M—H such that pof=f.

Proof. Let m¢ M and let U be an open neighbourhood of s such that
fW) is open in N and fy—f|U:U—f(U) is a biholomorphic mapping. The
germ (f;"),,, of f7' at f(m) does not depend on the choice of U. In fact, if U’
is an open neighbourhood of m such that f;»=f/U" is a biholomorphic mapping, then
D~ flUNU") is a neighbourhood of f(m), Dcf(U)Nf(U') and f;,! | D=f;'|D.
We put F(m)— (f5'"),my Let A be a neighbourhood of f(m) in H. There is an
open neighbouthood W of f(m) such that Wc f(U) and the set {(f;"),:x¢€ wi
is contained in A. The set V=f;(W) is a neighbourhood of m and (V) c A.

Therefore, f is a continuous mapping. Obviously, pof=f. Hence f is holomor-

phic. Let m, and m, be points of M and let f(m,)=f(m,). Let Us be an open
neighbourhood of m, such that f(U,) is open in N and the mapping fu,=f| Us

:Us—f(Us) is biholomorphic, s=1, 2. We have f(m,)=f(m,) and f;'=f;! in a
neighbourhood of the point f(m,)=f(m,) since (fa.l)f(m.):(f—l}:)/(m;-)‘ In particular,
m=m,. Hence f is an injective mapping. Therefore, f is a holomorphic imbedd-
ing.
Let the assumption of Proposition 2.1 be fulfilled. Put 4=FM\S) and
7 =Ppy| 1. Then 4 is an open and conuected subset of /y, hence (I, ) is a
domain over C. F is a biholomorphic mapping of M\.S onto .I. '
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Definition 2.1. We shall say that M possesses a representative
domain with respect to u, vy and L if the assumptions of Proposition 2.1
are fulfilled. We call (4, n) a representative domain of M with respect to u,
vm and L. We call F a representative mapping of M with respect to u.
vy and L. ~ _

We shall often denote (A, #) and F by (A, 7; u, vy, L) and Flu, vn, L), res-
pectively. Note that F(u)= 0 and F,,- L.

Examples 2.1. Every bounded domain M in C” possesses a repre-
sentative domain with respeet to u ¢ M, the Euclidean volume element of M
and id, (cf. example 1.3 (a)).

2.2. Let M be an n-dimensional complex manifold which admits a holo-
morphic immersion ¢= (¢, . .., ¢,): M—C™ such that (M) is a bounded subset
of C". Let vy be a volume element of M such that [you<<+ co. Let u ¢ M. There
exist n functions ¢,,...,,, (1=vs=m, s=1,...,n) such that if we set
;s:(pm—tp,,s(u), s=1,...,n, and q~): (;?1,- RPN 799,.), then ;(u) =0, rank :;*,,:n, and
Ps € L*H(vm), s=1,..., n. Hence M possesses a representative domain with
respect to u, vy and ¢, (cf. example 1.3 (b)).

2.3. Let N be a complex manifold and v, a volume element of N. Let M
be an open connected and relatively compact subset of N. Put vy =on|N.
Let u ¢ M. Assume that there is a holomorphic mapping z,: N-—C”, n=dim N,
which is a local coordinate system of NV in a neighbourhood of u. We set
h=z,—z,u). Then M possesses a representative domain with respect to u,
oy and Ak, (ci. exemple 1.3 (c)).

2.4. Let M be a complex manifold possessing a representative domain
with respect to u, vum and L. Let ¥, be a volume element of M such that the
function o/, /vm is bounded above. Then M possesses a representative domain
with respect to u, v, and L (cf. example 1.3 (d)).

Remark. Let M be abounded domainin C” and ey the Euclidean volume
element of M. Let u¢ M. S Bergman [4; 5, pp. 105, 188, 189] called the
image set of M in C" under F=F(u, em, id_,) a representative domain of M
(with centre at u). But the mapping F is, in general, meromorphic on M and
the representative domain of M is no longer in C”. Moreover, we do not know
whether F is locally one-to-one. We also do not know whether the image set
of M under F is a domain at all (cf. [10, p. 293]). If SM=-g and F is biho-
lomorphic on M, then S® = g and =(d4)=F(M). The domain (4, ») is univalent
and we may identify 4 with n(4). Then 4=an(A)= F(M). is the Bergman repre-
sentative domain of M with centre at u.

3. Properties of the representative domains. Let M be an n-dimensional
complex manifold and vm a volume element of M. Let u¢ M and let L: M,
—C" be a linear mapping. By Q(u, vm, L) denote the set of all holomorphic
mappings k= (ky, ..., hy): M--C* such that A(u)=0, h,,=L and ks ¢ L2H(vy),
s=1,...,n ’

Proposition 3.1. Let M and N be n-dimensional complex manifolds.
Let vy and vy be volume elements of M and N, respectively. Let f: M—N
be a biholomorphic mapping such that f*vy=|® |>vm, where @ is a holomor-
phic function on M. Assume that M possesses a representative domain
(dmy, wms u, om, L). Then:
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(i) N possesses a representative domain (An, nn) with respect to w = f(u)
vy and P=L of;‘};
(”') f(S(') (u’ 'UM)) =80 (w’ 'UN)’ r=1, 2; f(S(u’ vM))=S(wI ‘UN);

(iii) Gu=(Gyof).( /D)), Fu=Fnof, the diagram
M\ Sy —L— N\ Sn

o l Fyoso F;l 1?N
1m — AN
N //
MoN N

is commutative and the mapping Fyof o Fa': Au—dy is linear. Here Gy
=G(u, vm, L), Gy=G(w, vy, P), Fu=F, vm, L), Fn=F(w, vy, P), Su= S, vn),
Sy =3S(w, vy).

Proof. (i) Let Ky and Qx be the Bergman function and the Bergman form
of L2H(vy), respectively. We have Ky(w, w)-+=0 and rank Qy(w)=n by Propo-
sition 1.6. Obviously, P is non-degenerated. Let 4 ¢ Q(u, vm, L). The function
@ has not zeroes on M, hence the mapping ¥ = ®(u)(k/®)of! is holomorphic
on N. We have (u)=0. Let k=(hy, ..., h,), y=(yy,...,y,). Then:

[1velow— | Q@)L (/B of~ 2 ST [2 (f=) vm=| D) [ | hy o< + o,

ie.ys € L2H(vy), s=1,...,n Let(U,2),z=(2',...,2"),and (V, ¢), t=(%, ....")
be charts of M al u and of N at w, resp., such that f(U)= V. We have:

s hsof o ! d(hg0 f1
o (@)= @) Me2L 20T (@) - MBS ()

n oh aZofh
= Y .2
_j:l 0z/ (u) ock (w)r

s=1,..., n,since hA(u)=0.Hence ¥ .=h,, of a=Lof }=P. Therefore y ¢ Q(w,
UN, P). .
(ii) The identities f(S{)=SY, r=1, 2, follow at once from Proposition 1.6.

Hence f(Sum)=Sn-.
(iii) Let Gm=(G},...,G%) and Gy=(G\,...,G%). We have (Gyof)

-(D/D(n)) € Qu, vm, L) since Gy € Q(w, vy, P). Then:
| Gy lP=1 (G of) - (D)D) P=|P@) ~2\| G} |3 s=1,...,n,

On the other hand ®(u) (Gm/d)of~' € Q(w, vy, P), hence

| GyylP= B(w) =3 B(w) (G3/B) 0 f~1 | 2= D) 2| Gy |2, s=1,...,n.
It follows that G§,=(G$,0f) (@/®(u)), s=1,...,n, by the uniqueness of the
minimizing function. Now, we obtain Fy=Fyof by (2.6) and (1.8). Hence
ano(FyofoFa')=(Fxof)oFu' = FyoFy'=axm. Proposition 3.11 which we
shall further prove implies that Fvofo Fy' is a linear mapping.
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Remark. If Fy is biholomorphic on M\ Su, then Fy is biholomorphic
on NN\ .Sy and /u, and /Iy are univalent domains; we may identify 44 and
Ay with ay(dm)==a(1n). Thus, Proposition 3.1 generalizes the following well-
known proposition: If M and N are bounded domain in C? u and w are points
of M and of N, respectively, and if f: M—N is a biholomorphic mapping such
that f(u)=w and f,,=idcn, then the Bergman representative domains of M and
of NV with centres at # and at w, respectively, coincide (see e. g. [8, p. 289,
Corollary 2]).

Proposition 3.2. Let M be an n-dimensional complex manifold po-
ssessing a representative domain (4, n; u, vm, L).

(i) Let o be a volume element of M such that v} =|® [*vy, where, ¥ is
a holomorphic function on M. Then:

(i1) (4, =) is the representative domain of M with respect to u, v, L;

(i2) S(u, v5)=8SNu, vm), r=1, 2, S(u, v),)=3Su, vm), G=G°o(2/P(u)),
F=F°; here G=G(u, vm L), G°=G(u, v), L), F=F(u, vm, L), F°=F(u, v}, L).

(ii) Let L': M,—C" be a non-degenerated linear mapping. Then:

(iil) M possesses a representative domain (A', n') with respect to
u, Um, L';

(ii2) G’=L"oLoUG; FF=L'"oL Yo F and the diagram

M\S(ll, 'UM)

F .
e =~ N
7 $—1 *
A ig_.ﬁ_,___,, A
* , s ] l B
-4 L'O L
Cr —_— Cn

is commutative; here G =G0(u, vm, L'), G=G(u, ovm, L), F'=F@u, vy L)
F—=F(u, vm, L).

Proof. (i) M possesses a representative domain (4° =°) with respect
to u, ¥), and L by Proposition 3.1 (i). The statement (i2) holds by Proposi-
tions 3.1 (ii) and 3.1 (iii). Hence (4° =0 = (4, x). (ii) The set S(u, vm) depends
upon u and vy only but it does not depend upon L. It is clear that £¢ Q(u,
om, L) iff L'oL 'oh¢Qu, vm L'). Hence the statement (ii) holds.

Corollary 3.1. Let M be an n-dimensional complex manifold. Let
(A, a5 u', vy, L) and (A", 25w, vy, L") be representative domains of M,
Assume that there is an automorphism f of M (= biholomorphic onto self
mapping) such that f(u')=u" and f*v) =!®*v), where @ is a holomorphic
function on M. Then the diagram

/

M —— M\
"‘_.” 1 - l 'Fl’
F F-l
A o /o o o
t 14 J . A’
Cn Lo f.u' o (L)~ . Cn

is commutative; here S'=S(u',v,), S"=SWw",vy), F'=FW,v),, L), F'=Fu",
Uy L"),
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Let M, and M, be complex manifolds. The mapping i:/Hm X Hm—Hmxm,
defined by #(fa, 2)=1{(fX&%asy fa € Hm, & ¢ Hu, is a holomorphic imbedding
such that puy, Xpm. ~pmxm,oi. We shall identify Hum, X Hm, with i(Hm X Hnm,)
and pu, X pm, With pusem, | i(Hm, X Hm,).

Proposition 3.3. Let M, and My be complex manifolds, dim M,=n,,
dim M,=n,. Let v, be a volume element of M, u, @ point of M, and
L,:(M,),,—C" a non-degenerated linear mapping, r=1, 2. Let p,: M, X M:
—M, be the natural projection, r=1, 2. Put v=pv, \p,v, u= (U, Us) and
L=L,XL, We have:

(1) (MN\ Sy, 7)) X (My\ Sy, 5)) =M X Mg\ S(u, v);

(i) If MyXM, and M, possess representative domains (4, n; 4, v, L) and
(A 7, U O, L,), respectively, for r=1, 2, then F(u, v, L)=F(u,, vy, L))
X F(,, vy, Ly); in particular, F(u, v, L)—F(u,, vy, Ly)XF(ty, v, L), 4= 4,X 4y
and n—=mn,Xn,;

(iii) /f M, XM, possesses a representative domain with respect to u,
v and L, then M, possesses a representative domain with respect to u,, v,
and L, for each r=1, 2;

(iv) If [m vr<+co and M, possesses a representative domain with
respect to u,, v, and L, for each r=1, 2, then M, XM, possesses a repre-
sentative domain with respect to u, v and L.

Proof. (i) follows at once from Proposition 1.5.

(i) Let K, K, ©,, £ be the Bergman functions and the Bergman forms
of [2H(v,) and L?H(v), respectively, r=1, 2. Denote: F,=F(u, v, L,), F,=(F},
eov, FPr), r=1, 2, and F=Fu, v, L), F=(F',..., Fmtm). Let ¢, ¢, ... be
an orthonormal basis in L2H(v,) such that ¢f(u,)>0 and «p:’(u,).-:() for v, =1,
r=1, 2. Using Lemma 1.1 (i), one can prove that ¢, (X, X;) :(pl‘(xl)(pz‘(x‘z),
(X1, Xg) € M X M,, is an orthonormal basis in L2/H(v) just as in the Bremermann
theorem (see e. g. [2, p. 91, Theorem 4.8)). Let (V,, ¢,), &=(cl, ..., 7). be a
chart of M, at u, such that K/(x, x,)>0 for every x, ¢ V,; r=1, 2. Let

Ly=(LY,...,L¥) and Ir, = Ls( £”T(u,)), r=1,2; m, s=1,...,n,. We set

@ oes i Chy oo )= ooe, gmtm). Let L=(Lh..., Lmim) and Ly,
— U (@), B j=1,..., n-+ny Then:

o if (r=Dn,+1=k, j=n+F—1ny r=1, 2;
/ = k,j 1 ’ 1 ) ’
(31) el { 0 otherwise.
Obviously, ¢oo(u)>0 and ¢, , () =0 if »,+vy=1. Hence, by (2.7) we have
0%1ln k
(32) F-“(x) = [ll.s, ey ln.-}»n.,s] [(7k—;2'j—— (u));"lk*-:i;]-ﬂ
0%, . 99, ,,. Pyws (¥)
E [ 0:1 - (u)i LR | 0M”I+';= (u)]* K(x ll) ) X e M|><M2,
Vl'il"::zl i !

where k()=K(¢, t), t € M{XM,. For every natural p, (r—l)n+l=p,=n
4+ (r—Nng, r=1, 2 and x=(x,, X,) ¢ M X M, we have:
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b v:v Vl 'a( )
(3.3) ,,321 i ( ) Kix. a)
r 1 2
y (x1) ¢, (x2)
- ‘\ f & a, 3_, Ua q)"l re s
b=l O p,< 9,57, (s=r) 70 (1) 95 (¥e)og (1r) ()
ag” 7y (x,) 0_(5’_ 7y (X))
= E .p’ (u,) ,—‘r—r_ = 3 ‘,p ( ’)K(X )
v,=1 oyr 7o (Xr)pg (1) v, =1 ocer r Ur
Obviously
%(u,) if (r—)n,+1=k, j=n,+(r—1)n,,
(3.4) g’lnk W= r=1, 2;
0 otherwise,

since k(x) =k \(x)Ry(X;) for x=(x, Xy) € M{XMy; here k.(x)=K/(x, x,;) for
X, €M,; r=1, 2. We obtain from the identities (3.1)—(3.4) and (2 7) that
Fs=F; it lxs/rz1 and FF=F3m if ny+1<=s<n,+n,, i.e. F=F,X

(m) We have K(u,, u,)==0 by (1.5) and rank ¢ ,(u,) n, by (1.6) (or (3.4)),
r=1, 2. Let 2¢ Q(u, v, L) and let h=(h!, y Ry Rt Do pMitne) The func-
tions he(x, uy), x € My, a=1,..., n; and hﬂ(u,,y), ye Mg, ﬁ::n,-H, couy Nyt g,
belong to L3H(v,) and L?H(w,), respectively, by Lemma 1.1 (i) (see e. g. [2,
p. 91, Theorem 4.8])). Put #A,(x)=(hYx, uy), ..., h™(x, uy)) for x¢ M, and
ho(y)= (" (), ¥), ..., A™+"(u,, y)) for y¢ M,y Obviously, #(z,)=0 and
hg(us)=0. Under notations in the proof of (ii), we have

J
a’.'ﬂx' “z>) = @) =ly=13, it 1<k, j=n,
x=u,
dlz/ u oh’/
dfkl—n?,)) =Gk ()=lLpy=13 if ny+ 1=k, j=n,+n,.
y=u,

Hence 4, ¢ Q(u,, v,, L,), r=1, 2.
(1v) 'We have K(u, u):i:O and rank Q(u)=n,+n, by Proposition 1.5. Let
hy=(hy, .., k7Y € Q,, v, L)), r=1, 2. Put h=—=h,Xh, “Then h(u)=0
Il_ «=L and
[ B Bo,= a2 [ v ,<4oo, k=1,...,
M XM, M3—r
i e. € Qu, v, L).
Lemma 3.1. Let M be an n-dimensional complex manifold and vm a

volume element of M. Let A be an analytic subset of M, dimA=n—1. De-
note vy a=vy (M\ A).

(i) Ewery function f ¢ L2H(vm-a) extends to a (unique) function
fé LQH('U/W) 5

(i) If Kmy Km~ay, 2m, Qum~a, Tu, T a are the Bergman functions, the
Bergman forms and the Tsuboi forms of L’H(vM) and L*H(vm- a), respectively,

then Kma=Ky|(M\A), Qu-a=2p|(M\A), Taa= Ty (M\A)X(M\A)).

n, r:l, 2»
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Proof. (i) Let f¢ L2H(vm- 4). It is enough to show that for every point
a ¢ A there is its neighbourhood U in M such that the restriction f (U\A)
extends to a holomorphic function on U. Therefore, we may assume that: (a)
M is the unit polydisk M={(zy,...,2,)€C":|z,|<1, k=1,...,n}; (b) a=0;
(c) Ac{(zi---»2,) €EM:2,=0} and AN{(2y,.--,2n) € M:2y=---=2,=0}={0};
(d) vy=@.(@"/27dz,\. ..\ dzaNd2z;/\...\dZ,, Where ¢ is a positive C=-func-
tion on M such that @=c=const>0. We have (i"/2")[m al|f|?dz,\...\dz,
AdZ ... ANdzn=c"[m-a f[*Vm a< +co. This implies that f can be extended
to a holomorphic function on M (see [9, p. 270, Theorem 2.4]);

(ii) follows at once from (i).

Let M be an n-dimensional complex manifold and N an open complex
submanifold of M. Let f, ¢ Hy and let the holomorphic mapping f: V—AN\,
where V is an open neighbourhood of a in C?, be a representative of the
germ f, The mapping f': V—-M defined by f(2)=f(z), z¢ V, is holomorphic
and the germ f, does not depend on the choice of the representative f of f,. The
mapping i': Hy—H, defined by i'(f,)=f, is a holomorphic imbedding such
that pyoi’ =pn. We shall identify My with #(Hy) and py with p,,|'(Hw).

Corollary 3.2. Let M be an n-dimensional complex manifold and v,
a volume element of M. Let A be an analytic subset of M, dim A=n—1.
Denote vy a=vy | (MN\A). Let ue¢ M\ A. Then, M possesses a representa-
tive domain (Ay, 7y U, Uy, L) iff M\ A possesses a representative domain
(Am~a, am~a; &, Um~a, L).

Moreover, we have

(3.5)  S(u, vm a)=SNu, vy )\ A, r=1, 2, S(u, vm a)=Su, vu)\ 4,
G(u: UM~ Ay L)ZG(U, 'va L)I(M\A)l F(u) vM\Ay L)=F(u: 'vMy L)l(M\\A)v
Fra=Fp | (MNA)NSua), AMAC Apgy, T 4= pq/ At a°

Following C. Carathéodory, we give the definitions:

Definition 3.1. Let X be a topological space. Let D and D,,v=1, 2,...,
be open and connected subsets of X. We say that D is a kernel of the se-
quence {D,}> | if:

(a) for every x ¢ D there is its neighbourhood U, in X and a natural
number v, such that U,c D, for each v=—v,;

(b) D is a- maximal, with respect to the inclusion, open and connected
subset of X having the property (a).

Definition 3.2. We say that the sequence {D,}> , converges to D if
D is a kernel of every subsequence of the sequence {D,}> .

It X is locally connected, then {D,} has a kernel iff there is a natural
number u such that the interior of N{D,:»>u} is non-empty. Note that {/),}
can have more than one kernel. If D,cD »=1, 2,... and D has the property
(a) from Definition 3.1, then D= y= D, and D is the unique kernel of every
subsequence of {D,}; in particular, {D,}>=  converges to D.

Proposition 34. Let M be an n-dimensional complex manifold and
v a volume element of M. Let M, be an open and connected subset of M
and v, a volume element of M,, v=1,2,...Let u¢ M and u,¢ M,, v=1,2,...
Let K and K, be the Bergman functions of L*H(v) and L2H(v,), respective-
ly. Assume that : -
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(a) lim, o u,=u;

(b) For every a¢ MXM, there is its neighbourhood W, and a natural
number v, such that W,c M, XM, for v=v, and the sequence {K,:»=v,}
converges to K uniformly on W,;

LQH((C)) K(u, u)+=0 and rank QQu)=n, where Q is the Bergman form for

V).

Then, M\ S is the unique kernel of every subsequence of {M,\S,}= ;
in particular, {M,\S,} converges to M\ S; here S=S5(u,v), S,=Su,, v,).

Proof. By 7 and 7, denote the Tsuboi forms of L%?/(v) and L2H(%v,),
respectively. :

The set M\ S is non-empty by assumption (c). Let x, ¢ M\ S. There are
charts (U, 2) and (V,¢) of M at x and at u, respectively, and a natural num-
ber u such that K(x, £)=4-0 for every (x,£) € UXV,UXVcM,XM, for »=>u
and the sequence {K,:»=u} converges to K uniformly on UX V. Then, since
K(x, u)==0, there exist open mneighbourhoods U, of x, and V, of #, and a
natural number w,=u such that U,c U, V,cVand K,(x, )50 for every (x,¢)
¢ U, XV, and »=pu,. The functions

Tw=T.s(v;2; 53U V) aud TO-=T,5(v,; 2; & Uy; V) v=p,

ry S
r, s=1,...,n,

(see (1.3)) are holomorphic on U, X V,. The sequence {7’ : v=u,} converges

to 7,5 uniformly on U, X V,. We have det[T} 5 (X, u)]=0 since rank 7{(x,,
u)=n. Hence there are neighbourhoods U, of x, and V| of u, and a natural
number wuy=u, such that U,cU,, Voc V, and det[Tﬁ"’; (x, £)]=0, i. e. rank

T\(xo, t)=n for every (x, £)¢ UyXV,, and »=u, There is a natural number
vo—ug such that u, € V, for v=», Hence rank 7,(x,u,)=n for every x ¢ U,
and » =v, Thus, U,c M,\ S, for y=,.

Let x,€¢ M and let there is an open neighbourhood U, of x, and a natur-
al number », such that U,cM,\S, for v=v, Then K,(x, u,)F0 for every
x¢ U, and » v, In what follows, we shall denote the closure of a subset
X of M by [X]. By assumption (b), there are open and relatively compact
neighbourhoods U’ of x, and V' of u, and a natural number x’ such that:
U is connected, [U']cU, [U]IX[V]cM, XM, for w»=u', the sequence
{K,:v=u'} converges to K uniformly on [U']X([V’] and u, ¢ V* for v=u'. The
function K is uniformly continuous on [U')X[V’]. Hence the sequence {K,( -,
u,):v ~u'} converges to K(-, u) uniformly on [U’] since lim,_ . u,=u. Then,
since K,(x, u,)40 for every x¢ U’ and »=u', either K(x,u)=0 for every x ¢ U’ or
K(-, u)==0 on U’ by the Hurwitz theorem. If K( -, #)=0 on U’ we would have
K(x,u)=0 for every x ¢ M by the identity theorem, hence K(u,#)=0 contradicting
the assumption (c). Thus X, ¢ U'c M\ S™ where SO =S80 (u, v). Since K(x,,
u)+0 and {K,:»>=u'} converges to K uniformly on U'X V"’ there exist charts
(U", z) and (V", ) of M at x,, and at u, respectively, and a natural number

w'"=p' such that: U”"c U, V"c V', K(x, t)=0 for each (x,?) ¢ U"X V", K, (x, {)
=40 for each (x, #) ¢ U"X V" and v=u". Denote Q.5 =T7,5(v; z; ¢; U";
V') and QV-=T,5(v; 2; ¢; U3 V) for v=u", r,s=1,...,n The func-
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tions Q, s and Qﬁ"s, v=—u'", are holomorphic on U"”x V. Let U, V and
u=u" be open and relatively compact neighbourhoods of x, and of u, and a
natural number, respectively, such that: U is connected, [U]c U"”, [V]c V" and
u, ¢ V for v=u. The sequence {Q‘,");:v>,.u} converges to Q, 5 uniformly on
[U]X[V] and Q, 7 is uniformly continuous on [U]X|V]. Hence the sequence
{Q(,',);( ©y u,):v=u} converges to Q.5 (-, #) uniformly on [U]. We have
det[Q(,'_); (%, 1,)]=F0 for every x¢ U and v=u since Uc M\ S, for »=pu. Then
either det [Qr, 5 (x, #)]=-0 for every x ¢ U or det[Q, s (x, u)]=0 for every x¢ U
by the Hurwitz theorem. If det[Q,5 (-, #)]=0 on U, i. e. rank T(x,u)<n for
each x ¢ U, the point x, would be interior for S® where S@=S®(u, v), hence
SHO=M\ S since S@ is an analytic subset of the open and connected set
M\ SW. Then u ¢ S®, contradicting the assumption (c). Therefore, x, ¢ Uc M
\.S®. Thus, every subset of M having the property (a) from Definition 3.1
with D,=M,\S, is contained in M\ S. The set M\ S is non-empty, open,
connected and has the property (a) from Definition 3.1 with D, =M, \_S, as we
showed above. Hence M\ S is the unique kernel of {M,\ S,}. Let {M,,}>>  be
a subsequence of the sequence {M,}> .. The assumptions of our proposition

r=1"

are fulfilled for M and M,,, k=1, 2,.... Hence M\ S is the unique kernel of
{M'k \ Svk};.;l’
Let M and M,, »=1, 2,..., be bounded domains in C”. Let v and v, be

the Euclidean volume elements of M and M,, respectively. Let K and K, be
the Bergman functions of L?H(v) and L2H(v,), respectively. If M,c M, v=1
2,..., and {M,} converges to M, then the sequence {K,} converges to K lo-
cally uniformly on MXM, i.e. the assumption (b) of Proposition 3.4 is fulfilled,
(12, p. 761, Corollary 3]); the proof in [12] is formulated in the case when
M,cM,,cM and M=uU= M, however, as M. Skwarczynski ([13, p,

309]) remarked, it is applicable to the general case with only minor changes.
By analogy, we have:

Proposition 3.5. Let M be a complex manifold and v a volume ele-
ment of M. Let M,, v=1, 2,..., be open and connected subsets of M. De-
note v,=v'M,, v=1, 2,... Let K and K, be the Bergman functions of L*H(v)
and L2H(v), respectively, v=1, 2,.... Assume that: - :

(a) {M,} conwverges to M;

(b) K¢, t)==0 for each t¢ M.

Then the sequence {K,} converges Lo K locally uniformly on MX M.

Note that Proposition 1.3 holds for M by assumption (b). Since M,c M,
we have K,(Z, ¢)==0 for every t¢ M,, =1, 2,..., by Proposition 1.2 and the
assumption (b). Hence Proposition 1.3 holds for M,, »=1, 2,.... Now, the
proof of Proposition 3.4 is analogous to [12, p. 761, Corollary 3].

Proposition 3.6. Let M be an n-dimensional complex manifold and
v a volume element of M. Let A,, v=1, 2,..., be analytic subsets of M,
dimA,<n 1. Assume that:

(a) {M\A,}>=, converges to M;

v=1
(b) Ki(x, x)==0 for every x ¢ M; where K is the Bergman function of
L2H(v);
(c) M possesses a representative domain (A, n; u, v, L).
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Then there is a natural number v, such that if v=v, the complex ma-
nifold M\ A, possesses a representative domain (d4,,n,) with respect to u,
v, =v (M\A,) and L, A,c 4 for v=v, and {4A,:v=v,} converges to A.

Proof. Let », be a natural number such that u¢ M\ A, for »=», By
Corollary 3.2, if v=», the manifold M,=M\ A, possesses a representative
domain (,, #,; u, v,, L) and if we set F= F‘(u, v, L), F, =F’(u, v,, L), S=S(u,
v), S,=S(u, v,), then F, =F (M,\S,) and 4,C 4. The sequence {M,\ S, :»=v,
converges to M\ S by Propositions 3.4 and 3.5. It follows that {A,:v;vog
converges to 4.

Proposition 3.7. Let M be a complex manifold and (A, n; u, vy, L)
be a representative domain of M. Let Fy =F(u, v,, L) be the corresponding
representative mapping of M. Then (A, n) possesses a representative do-
main (], 7) with respect to a=Fy(u), vs= (Fu')*vy and n,q, Sla, vs)= ¢ and
Fy=n where Fy=F(a, v4, 7.4).

Proof. We have n,=Lo(Fn'),a by mnoFy=F, and (Fy).=L. Then
since Sy =S(u, vy) is an analytic subset of M, (4, =) possesses a represen-
tative domain (4, =) with respect to @, v, and z,, by Corollary 3.2 and Pro-
position 3.1 (i). Denote v, | (M\Sy) by vm.s, - We have S(u, vn~s, )= 2 by
(3.5), Corollary 3.2. By Propositions 3.1 (ii) and 3.1 (iii), S(a, v4)= & and
F/,"::;o F,,-———n on /.

Let X=(X, #) be a domain over C~ Let rx: X~—>/Hx be the natural holo-
morphic imbedding of X into the sheaf (Hy, Py) (see Lemma 2.3). We may
identify (X, =) with (1x(X), px|zx(X)). If (4, =), (4, n) and F, are as in Pro
position 3.7, then z,4 -F, by n=F, Hence if we identify (4,x) with (x4(4)
pa ta(A)) then (4, #)=(4, 7) and F,—id,. Roughly speaking, the representa-
tive domain of a representative domain 4 coincides with 4.

Definition 3.3. Let (4, n) be a domain over C* possessing a rep-
resentative domain (1, n; a, vy, L). Let v4:A—H, be the natural holomorph-
ic imbedding of A into the sheaf (Hga ps). We shall say that (4, n) is a
representative domain itself with respect to a, vs, L if t4(4)=A4.

Proposition 3.8. Let (4, n) be a domain over C" possessing a re-
presentative domain (4, n; a, vs, L). Put Fy=F(a, v4, L). The following con-
ditions are equivalent :

(i) (A, =) is a representative domain itself with respect to u, vy L;

(ii) S(a, v4)= & and Fy==n on 4;

(iii) S(a, v4)= # and Fy=t, on A;

(iv) SO(a, v4)= g and Fy=n on A\ S(a, v4).

Proof. (i) — (ii). Let x ¢ 4 and let U be an open neighbourhood of x
such that n({/) is open and ay==|U:U—a(U) is a biholomorphic mapping.
Then (ay " )a(r=14(X) € t4(A)=1. Put y:FI‘ (14(x)). We have y¢ A\ S(a, v,).
Let V be an open neighbourhood of y such that Fy=F,| V is a biholomorph-
ic mapping. Then (F;?’)FA(,,,=FA(y):tA(x)=(nE'),,(,,. Hence F4(y)==(x) and
F;'=a;" on some open neighbourhood Wc F(V)na(U) of the point F4(y)
=n(x). Then y=F; (Fs(y))=ay'(#(x))=x and F,=a on a;'(W). Hence Fy=n
on AN\ S"(a, vs) by the identity theorem. Assume that S(a, v4)5= ¢ and let
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X € S(a, vy). The point y=F;"(r,(x)) belongs to 4\ S(a, v,). We see that
y—=x as above. Hence x¢ S(a, v4), a contradiction. Therefore, S(a, v,)= &

(if) — (iii) obvious by the definitions of F, and z,.

(ili)y — (iv) Fy=n0F = nors=n.

(iv) = (1) S(a, v,)=S¥(a, , Us)= & since F4== is locally biholomorphic

A. Hence Fy=1, on A and A— -Fy(A)y=14(N).

Example 3.1. Under notations of Proposition 3.7, (4, =) is a represen-
{ative domain itself with respect to a = Fy(u), v, —= (Fu' vy and 7.

Let (4, n), n=(a',...,x"), be a domain over C”, v, a volume element of
/\;vand K the Bergman functlon of L2H(v,). Let (x,£)€ AXA and K(x, t)+0.

e put

(3.6) Tr 5 (Ua)(x, £)=(K(x, ))"4K(x, t)

ras (x, 0)

'_";r (xr t) (X, t)), 7, S'—]

We obtain at once from (2.9) and Proposition 3.8:

Proposition 3.9. Let (4, n), n=(a',...,n") be a domain over C"
possessing a representative domain (4, n; a, vs, L). Let =(a)=0. Then
(4, =) is a representative domain itself with respect to a, v, and L iff
SWNa, vy)= & and [T, 5 (v4)(x, @)|]=L(n)" [T, s (v4) (a, a)] for every x¢ A

N\S@, ); here L(z)=[(L( 2y @) o_y); (LY., LY)=L.

Example 3.2. A domain 4 in C” is called circular with centre at 2,
if z,€ 4 and z,+4-(z2 —2,)e’? for every 2ed and 6¢ R. Let 4 be a bounded
circular domain with centre at the origin 0. Let e, be the Euclidean volume
element of 4 and K, the Bergman function of L2H(e,). We have K (¢! z, 0)

K4z, 0) for every z2=(2,,..., 2,) €4 and 6 ¢ R by Proposition 1.6. We ob-

tain:
Fld)7e al*lK
eilklo _ 4 (b e (2
dzf' .. .0 :n (8 % 0) 02f' e s dz:n ( O)
for z¢ 4, 0¢R, where |k|=k,+---+k, k>0 — integers, j=1,...,n Hence

(0% K,/dz‘*'. .0z,n) (0, 0)=0 for |k =1. Therefore, K4(z, 0)=K,(0, 0)=+0 for
every z¢ 4, hence SM (0, eq)= . By analogy, we obtain 7,75 (es) (2, 0)
=T, 75 (ey) (0, 0) for every z¢ 4, r,s=1,...,n, from the identity

T, 5 (es) ez, 0)=T, 5 (es)(2, 0); z€ 4, H€R.

Hence / is a representative domain itself with respect to 0, e, and idcn.

We obtain at once from Propositions 3.3 and 3.8:

Proposntxon 3.10. Let (4,, n,) be a domain over C'r and v, its vo-
lume element, r=1, 2. Let a, ¢ 4, and let L,:(4,),,—C"r be a non- degenerat-
ed linear mappmg, r=1, 2. Put A=A4,Xdy, n=nyXmy, a=(ay, as), L=L; XL,
v =piv; \Pyvs, Where p,:4,X 4,4, (r__l 2) is the natural projection. Assume
that n(a,)=0 and [yov,<-+co for r=1, 2. Then (4, n) is a representa-

tive domain itself with resPect to a, v and L iff (4,, =,) is a representative
domain itself with respect to a,, v, and L, for each r=1, 2
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Remark. The Propositions 3.9 and 3.10 were proved by Tsuboi ([14,
p. 144, Theorem 2.2 and p. 145, Corollary 2.1]) for Bergman representative
domains of bounded domains in C~.

Proposition 3.11. Let M, and M, be n-dimensional complex mani-
folds. Let M, possesses a representative domain (4,, n,; u,, v, L,) and let

F.= I?(u,, v,, L,) be the corresponding representative mapping of M, r=1, 2.
Let f:A,—dy be a biholomorphic mapping such that:

(a) f(a,)=/(ay), where a,=F/u,), r=1, 2;

(b) (Fi'ofo F\)*vy=| @ %0, on M\ S(u,, v,), where & is a holomorphic
function on M\ .S(u,, vy).

Then f is a linear mapping.

Proof. Put vA,=(F‘7')*'u,,n,=(n},... , ah); r=1, 2. We have f*v,=|®
o Fi'?v,, by assumption (b). Hence, by Proposition 1.6, if K, and K, are
the Bergman functions of L?H(v,) and L*H(v,,), respectively, then

Ki(x, =K (f(x), f(&) (@ o F)x) (BoFi ) (t)
for every (x, £)¢ 4, %X 1,. Therefore

a(=bof)
ONT

[T (v4) (%, a)]'=[( - (al))l,’:n=ll*

ol
AT @) 0, @ (55 (9D,

for every x ¢ A,. We have [Tx 5 (v4,) (X, a,)]= constant matrix, x ¢ 4,, r=1, 2,
by Propositions 3.7 and 3.9. Hence [d(n}of)/0n7] = constant matrix. Therefore,
afof=2r  aja|+ by, k=1,..., n, where aj, by € C. But zy(f(a,))=mny(as)= (2

o Fy) (15) = Fy(t) =0 and ny(a,) = (n, o Fy)(u,)=0. Hence b,=0, k=1,...,n.

Remark. If M,, M, are domains over C” and v, v, are the Euclidean
volume element of M; and M, respectively, then the assumption (b) of Pro-
position 3.11 is fulfilled, Proposition 3.11 was proved by Bergman ([5, p.
190, Theorem]) for the Bergman representative domains of bounded domains
in C* (see also [8, p. 301, Proposition 3], [14, p. 146, Corollary 2.2]).

Corollary 3.3.Let M be a domain over C* and ey its Euclidean vo-
lume element. Assume that M possesses a representative domain (4,n; u,
ey L) and let Fy —Fu, ey, L) be the corresponding representative mapping
of M. Then every automorphism of A leaving the point Fm(u) fixed is a li-
near mapping.

We obtain from Example 3.2 and Corollary 3.3:

Corollary 3.4 ([6, p. 30, Theorem VI|). Lef 4 be a bounded circula”
domain in C* with centre at the origin 0. Then every automorphism of A
leaving O fixed is a linear mapping.

Corollary 3.5. Let M be a complex manifold possessing a repre-
sentative domain (A, n; u, vy, L). Let @ be an automorphism of M such
that :
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(a) p(u)=u;

(b) @,u=idy,;

(c) o*vpy=|D|?vy, where D is a holomorphic function on M.

Then @=idy,,.

Proof. Put F= F, Upy L), S=S(u, v,), a=Fu). The mapping ¢ is an
automorphism of M\_S by Proposition 3.1. Set f=Fo o F-!. We have fla)=a,
(F'ofoFyuy—g*uy=|®|%y and fu=F.u 0 @u o (F)a=Fo idya
o(F.,)"'=id. Hence zof=n by Proposition 3.11. Therefore, f=id,. Then
@ | (MN\S) =idu.s. Hence @=idy,.

Remark. If M is a bounded domain in C” and v, is the Euclidean vo-
lume element of M, then the assumption (c) of Corollary 3.5 is fulfilled and

Corollary 3.5 coincides with a well-known result of H. Cartan ([6, p. 30,
Theorem VII]) (see also [2, p. 368, Theorem 23.1], [8, p. 297, Theorem 16]).

Proposition 3.12. Let (M, p) be a domain over C*, v, a wvolume
element of M and u a point of M. Put S=S(u, v,). We have.

(i) If S==M and (M, p) is a domain of holomorphy, then (M\S, p) is a
domain of holomorphy ;

(ii) Let (M, p) possesses a representative domain (4, n; u, Uy, L).

(iill) If (M, p) is a domain of holomorphy then (A, n) is a domain of
holomorphy ;

(ii2) If (M, p) is a bounded domain in C* and (A, n) is a domain of
holomorphy, then M is a domain of holomorphy.

Proof. (i) It is enough to prove that if {x,} is a sequence of points of
M\ S which has no limit point in M\ S, then there is a holomorphic func-
tion f on M\ S such that the sequence {f(x,)}is unbounded. If {x,} has no limit
point in M, then such a function f exists since M is holomorphically convex.
If {x,} has a limit point x, in M, then x,¢S. Let K be the Bergman func-
tion of L2H(vy). Put 7T, 5=T,5(vy), r,s=1,...,n The function f(x)=((K(x,
u))’ritdet [T, s (x, w)])™ !, x € M\ S, is holomorphic on M\ S and it converges
to co when x converges to some point of S. Hence {f(x,)} is unbounded.

(ii1) (4, =) is holomorphically convex since 4 is mapped biholomorphically
onto M\ S which is holomorphically convex by (i).

(ii2) MN\S is a domain of holomorphy since M\ g is mapped biholomor-
phically onto 4. Hence, for every z¢ d(M\S), there is an open neighbourhood
U and a holomorphic function f on (M\ S)NU such that f cannot be extend-
ed to a holomorphic function on U. In particular, this holds for every z ¢ oM
since OMc I(M\S). Hence M is a domain of holomorphy (see e. g. [3, p. 400,
Theorem 4]).

REFERENCES

. A. Bein DBseneHue B Teopuio keaneposnix MHoroo6pasu#l. Mocksa, 1961.

. B. ® yxc. CneuvaibHble raassl TEOPHH AHANMTHYECKHX (YHKUHH MHOIHX KOMIVIEKCHBIX Tie=
pemenHbix. MockBa, 1963.

b. [la6ar. Bsenenue B KommiekcHbi! aHaiu3. Mocksa, 1969.

S. Bergman. Uber die Existenz von Reprisentantenbereichen in der Theorie der Abbil-
dugg 4‘;‘leurch Paare von Funktionen sweir komplexen. Math, Ann., 102, 1929,
430446,

1

2
3.
4



REPRESENTATIVE DOMAINS OF COMPLEX MANIFOLDS 57

5.S. Bergman. The kernel function and conformal mapping. New York. 1970.

6. H. Cartan. Sur les fonctions de deux variables complexes et probléme de la représenta-
tion analytique. J. math. pures et appl., 10, 1931, 1—114.

7. J. Davidov. The representative domain of a complex manifold and the Lu-Qi-Keng con-
jecture. C. R. Acad. bulgare Sci., 30, 1977, 13—16.

8. S. Kakurai. Characterization of canonical domain of Bergman and analytic automorhisms
with invariant point. Sci. Report of the Tokyo Kyoiku Daigaku. sec. A, 7, 1963,
Nos. 182—186, 275—307.

9. S. K%g;iyashi‘ Geometry of bounded domains. Trans. Amer. Math. Soc., 92, 1959,

—290.

10. Lu-Qi-K eng. On Kaehler manifolds with constant curvature. Chinese Math. Acta, 8,
1966, 283—298.

11. S. Ozaki, I. Ono, T. Umezawa. General minimum problem and representative do-
mai1715. Sci. Report of the Tokyo Kyoiku Daigaku. sec, A, 5, 1955, Nos. 110—115,
1-7.

12. 1. Ramadanov. Sur une propriété de la fonction de Bergman. C. R. Acad. bulgare
Sci., 20, 1967, 759—762.

13. M. Skwarczynski. The invariant distance in the theory of pseudo-conformal trans-
formation and the Lu-Qi-Keng conjecture. Proc. Amer. Math. Soc., 22, 1969, 305—
310.

14. T. Tsuboi. Bergman representative domains and minimal domains. Japanese J. Math.,
29, 1959, 141—148.

Centre for Mathematics and Mechanics Received 30. 10. 1978

1090 Sofia P. O. Box 373



